
© 2014 IBM Corporation

C++ Memory Model Meets High-Update-Rate Data
Structures

Paul E. McKenney, IBM Distinguished Engineer, Linux Technology Center
Member, IBM Academy of Technology

CPPCON, Bellevue WA USA, September 10, 2014

© 2014 IBM Corporation2

CPPCON 2014

Overview

The Issaquah Challenge

Aren't parallel updates a solved problem?

Special case for parallel updates
–Per-CPU/thread processing
–Read-only traversal to location being updated
–Existence-based updates

The Issaquah Challenge: One Solution

© 2014 IBM Corporation3

CPPCON 2014

But First: The Elephant in the Room

© 2014 IBM Corporation4

CPPCON 2014

The Elephant in the Room

C, Razor blades,
productivity...

© 2014 IBM Corporation5

CPPCON 2014

Atomic Multi-Structure Update: Issaquah Challenge

© 2014 IBM Corporation6

CPPCON 2014

Atomic Multi-Structure Update: Issaquah Challenge

1 2 3 4 1 2 3 4

Atomically move element 1 from left to right tree
Atomically move element 4 from right to left tree

© 2014 IBM Corporation7

CPPCON 2014

Atomic Multi-Structure Update: Issaquah Challenge

1 2 3 4 1 2 3 4

Atomically move element 1 from left to right tree
Atomically move element 4 from right to left tree
Without contention between the two move operations!

© 2014 IBM Corporation8

CPPCON 2014

Atomic Multi-Structure Update: Issaquah Challenge

1 2 3 4 1 2 3 4

Atomically move element 1 from left to right tree
Atomically move element 4 from right to left tree
Without contention between the two move operations!
Hence, most locking solution “need not apply”

© 2014 IBM Corporation9

CPPCON 2014

But Aren't Parallel Updates A Solved Problem?

© 2014 IBM Corporation10

CPPCON 2014

Parallel-Processing Workhorse: Hash Tables

Lock

Lock

Lock

Lock

Lock

Lock

A

B

E

G

F

C D

Perfect partitioning leads to perfect performance and stunning scalability!Perfect partitioning leads to perfect performance and stunning scalability!
In theory, anyway...In theory, anyway...

© 2014 IBM Corporation11

CPPCON 2014

Read-Mostly Workloads Scale Well,
Update-Heavy Workloads, Not So Much...

And the horrible thing? Updates are all locking ops!

© 2014 IBM Corporation12

CPPCON 2014

But Hash Tables Are Partitionable! # of Buckets?

S
o

m
e

im
p

ro
ve

m
en

t,
 b

u
t.

. .

© 2014 IBM Corporation13

CPPCON 2014

Hardware Structure and Laws of Physics

Electrons move at 0.03C to 0.3C in transistors and, so need locality of referenceElectrons move at 0.03C to 0.3C in transistors and, so need locality of reference

S
O

L
 R

T
 @

 2
G

H
z

S
O

L
 R

T
 @

 2
G

H
z

7.
5

ce
n

ti
m

et
er

s
7.

5
ce

n
ti

m
et

er
s CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

© 2014 IBM Corporation14

CPPCON 2014

Two Problems With Fundamental Physics...

© 2014 IBM Corporation15

CPPCON 2014

Problem With Physics #1: Finite Speed of Light

Observation by Stephen Hawking

© 2014 IBM Corporation16

CPPCON 2014

Problem With Physics #2: Atomic Nature of Matter

Observation by Stephen Hawking

© 2014 IBM Corporation17

CPPCON 2014

Read-Mostly Access Dodges The Laws of Physics!!!
S

O
L

 R
T

 @
 2

G
H

z
S

O
L

 R
T

 @
 2

G
H

z

7.
5

ce
n

ti
m

et
er

s
7.

5
ce

n
ti

m
et

er
s CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Read-only data remains replicated in all cachesRead-only data remains replicated in all caches

© 2014 IBM Corporation18

CPPCON 2014

Updates, Not So Much...
S

O
L

 R
T

 @
 2

G
H

z
S

O
L

 R
T

 @
 2

G
H

z

7.
5

ce
n

ti
m

et
er

s
7.

5
ce

n
ti

m
et

er
s CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Read-only data remains replicated in all caches,Read-only data remains replicated in all caches,
but each update destroys other replicas!but each update destroys other replicas!

© 2014 IBM Corporation19

CPPCON 2014

“Doctor, it Hurts When I Do Updates!!!

© 2014 IBM Corporation20

CPPCON 2014

“Doctor, it Hurts When I Do Updates!!!

 “Then don't do updates!”

© 2014 IBM Corporation21

CPPCON 2014

“Doctor, it Hurts When I Do Updates!!!

 “Then don't do updates!”

 “But if I don't do updates, I run out of registers!”

© 2014 IBM Corporation22

CPPCON 2014

“Doctor, it Hurts When I Do Updates!!!

 “Then don't do updates!”

 “But if I don't do updates, I run out of registers!”

We have no choice but to do updates, but we clearly need to
be very careful with exactly how we do our updates

© 2014 IBM Corporation23

CPPCON 2014

Update-Heavy Workloads Painful for Parallelism!!!
But There Are Some Special Cases...

© 2014 IBM Corporation24

CPPCON 2014

But There Are Some Special Cases

Per-CPU/thread processing (perfect partitioning)
–Huge number of examples, including the per-thread/CPU stack
–We will look at split counters

Read-only traversal to location being updated
–Key to solving the Issaquah Challenge

© 2014 IBM Corporation25

CPPCON 2014

Split Counters

© 2014 IBM Corporation26

CPPCON 2014

Split Counters Diagram

Counter 0

Counter 1

Counter 2

Counter 3

Counter 4

Counter 5

Increment only your own counter

Rely on C++11/C11 memory_order_relaxed to avoid store tearing

© 2014 IBM Corporation27

CPPCON 2014

Split Counters Diagram

Counter 0

Counter 1

Counter 2

Counter 3

Counter 4

Counter 5

Sum all counters
While they continue changing

Rely on C++11/C11 memory_order_relaxed to avoid load tearing

© 2014 IBM Corporation28

CPPCON 2014

Split Counters Lesson

Updates need not slow us down – if we maintain good locality

For the split counters example, in the common case, each
thread only updates its own counter

–Reads of all counters should be rare
–If they are not rare, use some other counting algorithm
–There are a lot of them, see “Counting” chapter of “Is Parallel

Programming Hard, And, If So, What Can You Do About It?”
(http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html)

© 2014 IBM Corporation29

CPPCON 2014

Read-Only Traversal To Location Being Updated

© 2014 IBM Corporation30

CPPCON 2014

Read-Only Traversal To Update Location

Consider a binary search tree

Classic locking methodology would:
1) Lock root
2) Use key comparison to select descendant
3) Lock descendant
4) Unlock previous node
5) Repeat from step (2)

The lock contention on the root is not going to be pretty!
–And we won't get contention-free moves of independent elements, so

this cannot be a solution to the Issaquah Challenge

© 2014 IBM Corporation31

CPPCON 2014

And This Is Why We Have RCU!

 (You can also use garbage collectors, hazard pointers, reference
counters, etc.)

 Design principle: Avoid expensive operations in read-side code

 Lightest-weight conceivable read-side primitives
/* Assume non-preemptible (run-to-block) environment. */
#define rcu_read_lock()
#define rcu_read_unlock()

Quick overview, references at end of slideset.

© 2014 IBM Corporation32

CPPCON 2014

And This Is Why We Have RCU!

 (You can also use garbage collectors, hazard pointers, reference
counters, etc.)

 Design principle: Avoid expensive operations in read-side code

 Lightest-weight conceivable read-side primitives
/* Assume non-preemptible (run-to-block) environment. */
#define rcu_read_lock()
#define rcu_read_unlock()

 I assert that this gives the best possible performance, scalability, real-time
response, wait-freedom, and energy efficiency

Quick overview, references at end of slideset.

© 2014 IBM Corporation33

CPPCON 2014

And This Is Why We Have RCU!

 (You can also use garbage collectors, hazard pointers, reference
counters, etc.)

 Design principle: Avoid expensive operations in read-side code

 Lightest-weight conceivable read-side primitives
/* Assume non-preemptible (run-to-block) environment. */
#define rcu_read_lock()
#define rcu_read_unlock()

 I assert that this gives the best possible performance, scalability, real-time
response, wait-freedom, and energy efficiency

 But how can something that does not affect machine state possibly be
used as a synchronization primitive???

Quick overview, references at end of slideset.

© 2014 IBM Corporation34

CPPCON 2014

RCU Addition to a Linked Structure

A cptr

->a=?
->b=?
->c=?

cptrcptr cptr

in
iti

al
iz

at
io

n

km
a

llo
c(

)

->a=1
->b=2
->c=3

->a=1
->b=2
->c=3

p
=

 r
cu

_d
er

ef
er

en
c e

(c
pt

r)

Key: Dangerous for updates: all readers can access
Still dangerous for updates: pre-existing readers can access (next slide)
Safe for updates: inaccessible to all readers

readertmp tmp tmp

But if all we do is add, we have a big memory leak!!!But if all we do is add, we have a big memory leak!!!
rc

u_
as

si
g n

_p
oi

nt
er

(c
pt

r,
p)

© 2014 IBM Corporation35

CPPCON 2014

RCU Safe Removal From Linked Structure

A

B

C

boa

cat

gnu

boa

cat

gnu

boa

cat

gnu

boa

gnu
sy

nc
hr

on
i z

e_
rc

u(
)

lis
t_

de
l_

rc
u(

)

One Version Two Versions One Version

Readers? Readers? Readers?X

One Version

 Combines waiting for readers and multiple versions:
– Writer removes the cat's element from the list (list_del_rcu())
– Writer waits for all readers to finish (synchronize_rcu())
– Writer can then free the cat's element (kfree())

But if readers leave no trace in memory, how can we But if readers leave no trace in memory, how can we
possibly tell when they are done???possibly tell when they are done???

kf
re

e(
)

© 2014 IBM Corporation36

CPPCON 2014

RCU Waiting for Pre-Existing Readers: QSBR

 Non-preemptive environment (CONFIG_PREEMPT=n)
– RCU readers are not permitted to block
– Same rule as for tasks holding spinlocks

 CPU context switch means all that CPU's readers are done

 Grace period ends after all CPUs execute a context switch

synchronize_rcu()

CPU 0

CPU 1

CPU 2

co
nt

ex
t

sw
itc

h

Grace Period

RCU re
ad

er

remove cat free cat

© 2014 IBM Corporation37

CPPCON 2014

Synchronization Without Changing Machine State???

But rcu_read_lock() and rcu_read_unlock() do not need to
change machine state

–Instead, they act on the developer, who must avoid blocking within
RCU read-side critical sections

RCU is therefore synchronization via social engineering

As are all other synchronization mechanisms:
–“Avoid data races”
–“Access shared variables only while holding the corresponding lock”
–“Access shared variables only within transactions”

RCU is unusual is being a purely social-engineering approach
–But RCU implementations for preemptive environments do use

lightweight code in addition to social engineering

© 2014 IBM Corporation38

CPPCON 2014

Toy Implementation of RCU: 20 Lines of Code,
Full Read-Side Performance!!!
 Read-side primitives:

#define rcu_read_lock()
#define rcu_read_unlock()
#define rcu_dereference(p) \
({ \
 typeof(p) _p1 = (*(volatile typeof(p)*)&(p)); \
 smp_read_barrier_depends(); \
 _p1; \
})

 Update-side primitives
#define rcu_assign_pointer(p, v) \
({ \
 smp_wmb(); \
 (p) = (v); \
})
void synchronize_rcu(void)
{
 int cpu;

 for_each_online_cpu(cpu)
 run_on(cpu);
}

Only 9 of which are needed on sequentially consistent systems...
And some people still insist that RCU is complicated... ;-)

© 2014 IBM Corporation39

CPPCON 2014

RCU Usage: Readers

Pointers to RCU-protected objects are guaranteed to exist
throughout a given RCU read-side critical section

rcu_read_lock(); /* Start critical section. */
p = rcu_dereference(cptr); /* consume load */
/* *p guaranteed to exist. */
do_something_with(p);
rcu_read_unlock(); /* End critical section. */
/* *p might be freed!!! */

The rcu_read_lock(), rcu_dereference() and
rcu_read_unlock() primitives are very light weight

However, updaters must use more care...

© 2014 IBM Corporation40

CPPCON 2014

RCU Usage: Updaters

Updaters must wait for an RCU grace period to elapse
between making something inaccessible to readers and
freeing it

spin_lock(&updater_lock);
q = cptr; /* Can be relaxed load. */
rcu_assign_pointer(cptr, newp); /* store release */
spin_unlock(&updater_lock);
synchronize_rcu(); /* Wait for grace period. */
kfree(q);

RCU grace period waits for all pre-exiting readers to complete
their RCU read-side critical sections

© 2014 IBM Corporation41

CPPCON 2014

Better Read-Only Traversal To Update Location

© 2014 IBM Corporation42

CPPCON 2014

Better Read-Only Traversal To Update Location

An improved locking methodology might do the following:
–rcu_read_lock()
–Traversal:

• Start at root without locking
• Use key comparison to select descendant
• Repeat until update location is reached
• Acquire locks on update location
• Do consistency checks, retry from root if inconsistent

–Carry out update
–rcu_read_unlock()

Eliminates contention on root node!

But need some sort of consistency-check mechanism...
–RCU protects against freeing, not necessarily removal
–“Removed” flags on individual data elements

© 2014 IBM Corporation43

CPPCON 2014

Deletion-Flagged Read-Only Traversal

 for (;;)
–rcu_read_lock()
–Start at root without locking
–Use key comparison to select descendant
–Repeat until update location is reached
–Acquire locks on update location
–If to-be-updated location's “removed” flag is not set:

• Break out of “for” loop
–Release locks on update location
–rcu_read_unlock()

Carry out update

Release locks on update location and rcu_read_unlock()

© 2014 IBM Corporation44

CPPCON 2014

Read-Only Traversal To Location Being Updated

Focus contention on portion of structure being updated
–And preserve locality of reference to different parts of structure

Of course, full partitioning is better!

Read-only traversal technique citations:
–Arbel & Attiya, “Concurrent Updates with RCU: Search Tree as an

Example”, PODC'14 (very similar lookup, insert, and delete)
–McKenney, Sarma, & Soni, “Scaling dcache with RCU”, Linux Journal,

January 2004
–And possibly: Pugh, “Concurrent Maintenance of Skip Lists”, University

of Maryland Technical Report CS-TR-2222.1, June 1990
–And maybe also: Kung & Lehman, “Concurrent Manipulation of Binary

Search Trees”, ACM TODS, September, 1980

After 34 years, it might be time to take this seriously ;-)

© 2014 IBM Corporation45

CPPCON 2014

Issaquah Challenge: One Solution

© 2014 IBM Corporation46

CPPCON 2014

Locking Regions for Binary Search Tree

Same tree algorithm with a few existence-oriented annotations

© 2014 IBM Corporation47

CPPCON 2014

Possible Upsets While Acquiring Locks...

1

1

Before

After

1

1

1

1

1

1

What to do?
Drop locks and retry!!!

© 2014 IBM Corporation48

CPPCON 2014

Existence Structures

© 2014 IBM Corporation49

CPPCON 2014

Existence Structures

Solving yet another computer-science problem by adding an
additional level of indirection...

© 2014 IBM Corporation50

CPPCON 2014

Example Existence Structure Before Switch

Data
Structure A

Existence

Data
Structure B

Existence

Existence

Offset=0

Existence

Offset=1

Existence
Switch

1

0

0

1

© 2014 IBM Corporation51

CPPCON 2014

Example Existence Structure After Switch

Existence

Existence

Existence

Offset=0

Existence

Offset=1

Existence
Switch

1

0

0

1

Data
Structure A

Data
Structure B

© 2014 IBM Corporation52

CPPCON 2014

Existence Structure Definition (Sorry, C Code!)

/* Existence-switch array. */
const int existence_array[4] = { 1, 0, 0, 1 };

/* Existence structure associated with each moving structure. */
struct existence {
 const int **existence_switch;
 int offset;
};

/* Existence-group structure associated with multi-structure change. */
struct existence_group {
 struct existence outgoing;
 struct existence incoming;
 const int *existence_switch;
 struct rcu_head rh; /* Used by RCU asynchronous free. */
};

© 2014 IBM Corporation53

CPPCON 2014

Example Existence Structure: Abbreviation

Existence

Existence

Existence

Offset=0

Existence

Offset=1

0

0
1 1

Existence
Switch

1

0

0

1

Data
Structure A

Data
Structure B

© 2014 IBM Corporation54

CPPCON 2014

But Levels of Indirection Are Expensive!

And I didn't just add one level of indirection, I added three!

But most of the time, elements exist and are not being moved

So represent this common case with a NULL pointer
–If the existence pointer is NULL, element exists: No indirection needed
–Backwards of the usual use of a NULL pointer, but so it goes!

 In the uncommon case, traverse existence structure as
shown on the preceding slides

–This is expensive, multiple cache misses
–But that is OK in the uncommon case

There is no free lunch: With this optimization, loads need
memory_order_acquire rather than memory_order_relaxed or
memory_order_consume

© 2014 IBM Corporation55

CPPCON 2014

Abbreviated Existence Switch Operation (1/6)

1 2 3 2 3 4

Initial state: First tree contains 1,2,3, second tree contains 2,3,4.
All existence pointers are NULL.

© 2014 IBM Corporation56

CPPCON 2014

Abbreviated Existence Switch Operation (2/6)

1 2 3

4 1

2 3 4

1
1 0

0

First tree contains 1,2,3, second tree contains 2,3,4.

© 2014 IBM Corporation57

CPPCON 2014

Abbreviated Existence Switch Operation (3/6)

1 2 3 4 1 2 3 4

1
1 0

0

After insertion, same: First tree contains 1,2,3, second tree contains 2,3,4.

© 2014 IBM Corporation58

CPPCON 2014

Abbreviated Existence Switch Operation (4/6)

1 2 3 4 1 2 3 4

0
0 1

1

After existence switch: First tree contains 2,3,4, second tree contains 1,2,3.
Transition is single store, thus atomic! (But lookups need barriers in this case.)

© 2014 IBM Corporation59

CPPCON 2014

Abbreviated Existence Switch Operation (5/6)

1 2 3 4 1 2 3 4

0
0 1

1

Unlink old nodes and allegiance structure

© 2014 IBM Corporation60

CPPCON 2014

Abbreviated Allegiance Switch Operation (6/6)

2 3 4 1 2 3

After waiting a grace period, can free up existence structures and old nodes
And data structure preserves locality of reference!

© 2014 IBM Corporation61

CPPCON 2014

Existence Structures

Existence-structure reprise:
–Each data element has an existence pointer
–NULL pointer says “member of current structure”
–Non-NULL pointer references an existence structure

• Existence of multiple data elements can be switched atomically

But this needs a good API to have a chance of getting it right!
–Especially given that a NULL pointer means that the element exists!!!

© 2014 IBM Corporation62

CPPCON 2014

Existence APIs

 struct existence_group *existence_alloc(void);

 void existence_free(struct existence_group *egp);

 struct existence *existence_get_outgoing(struct existence_group *egp);

 struct existence *existence_get_incoming(struct existence_group *egp);

 void existence_set(struct existence **epp, struct existence *ep);

 void existence_clear(struct existence **epp);

 int existence_exists(struct existence **epp);

 int existence_exists_relaxed(struct existence **epp);

 void existence_switch(struct existence_group *egp);

© 2014 IBM Corporation63

CPPCON 2014

Existence Operations for Trees

 int tree_atomic_move(struct treeroot *srcp, struct treeroot *dstp,

 int key, void **data_in)

 int tree_existence_add(struct treeroot *trp, int key,

 struct existence *ep, void **data)

 int tree_existence_remove(struct treeroot *trp, int key,

 struct existence *ep)

 int tree_insert_existence(struct treeroot *trp, int key, void *data,

 struct existence *node_existence, int wait)

 int tree_delete_existence(struct treeroot *trp, int key,

 void **data, void *matchexistence, int wait)

Same tree algorithm with a few existence-oriented annotations

© 2014 IBM Corporation64

CPPCON 2014

Pseudo-Code for Atomic Tree Move

 Allocate existence_group structure (existence_alloc())

 Add outgoing existence structure to item in source tree (existence_set())
–If operation fails, report error to caller

 Insert new element (with source item's data pointer) to destination tree
with incoming existence structure (variant of tree_insert())

–If operation fails, remove existence structure from item in source tree,
free and report error to caller

 Invoke existence_switch() to flip incoming and outgoing

 Delete item from source tree (variant of tree_delete())

 Remove existence structure from item in destination tree
(existence_clear())

 Free existence_group structure (existence_free())

© 2014 IBM Corporation65

CPPCON 2014

Use of the C11/C++11 Memory Model

memory_order_acquire to load from existence pointers and
structures

memory_order_release to store to existence pointers and
structures

Mythical memory_order_acqrel store to update existence
switch

–Emulate with memory_order_release store followed by
atomic_thread_fence()

memory_order_consume to traverse tree pointers
–But C11 and C++11 compilers don't implement this efficiently, so we

use rcu_dereference(), which is implemented as in the Linux kernel

© 2014 IBM Corporation66

CPPCON 2014

Existence Structures: Performance and Scalability

100% moves (worst case). Better than N4037 last May!

6.4x6.4x

3.7x

© 2014 IBM Corporation67

CPPCON 2014

Existence Structures: Performance and Scalability

100% moves: Still room for improvement!
Issues: allocators and user-space RCU (both fixable)

12.7x

© 2014 IBM Corporation68

CPPCON 2014

Existence Structures: Performance and Scalability

90% lookups, 3% insertions, 3% deletions, 3% full tree scans, 1% moves
(Workload approximates Gramoli et al. CACM Jan. 2014)

39.9x

© 2014 IBM Corporation69

CPPCON 2014

Existence Structures: Performance and Scalability

100% lookups
Now we are talking!!!

80.5x

© 2014 IBM Corporation70

CPPCON 2014

Existence Structures: Performance and Scalability

But properly tuned hash table is about 4x better...
And can apply existence to hash tables (future work)

80.5x

© 2014 IBM Corporation71

CPPCON 2014

Existence Structures: Towards Update Scalability

 “Providing perfect performance and scalability is like committing the perfect crime.
There are 50 things that might go wrong, and if you are a genius, you might be able
to foresee and forestall 25 of them.” – Paraphrased from Body Heat, w/apologies to Kathleen
Turner fans

 Issues thus far:
– Getting possible-upset checks right
– Non-scalable random-number generator
– Non-scalable memory allocator
– Node alignment (false sharing)
– Premature deletion of moved elements (need to remove allegiance!)
– Unbalanced trees (false sharing)
– User-space RCU configuration (need per-thread call_rcu() handling)
– Getting memory barriers correct (probably more needed here)
– Threads working concurrently on adjacent elements (false sharing)
– Need to preload destination tree for move operations (contention!)
– Issues from less-scalable old version of user-space RCU library
– More memory-allocation tuning
– Wakeup interface to user-space RCU library (instead of polling)
– More URCU tuning in the offing

 The good news: there is no sign of contention among move operations!!!

© 2014 IBM Corporation72

CPPCON 2014

Existence Advantages and Disadvantages

 Existence requires focused developer effort

 Existence specialized to linked structures (for now, anyway)

 Existence requires explicit memory management
– Might eventually be compatible with shared pointer, but not yet

 Existence-based exchange operations require linked structures that accommodate
duplicate elements

– Current prototypes disallow duplicates

 Existence permits irrevocable operations

 Existence can exploit locking hierarchies, reducing the need for contention
management

 Existence achieves semi-decent performance and scalability

 Existence's use of synchronization primitives preserves locality of reference

 Existence is compatible with old hardware

 Existence is a downright mean memory-allocator and RCU test case!!!

© 2014 IBM Corporation73

CPPCON 2014

When Might You Use Existence-Based Update?

We really don't know yet

Best guess is when one or more of the following holds and
you are willing to invest significant developer effort to gain
performance and scalability:

–Many small updates to large linked data structure
–Complex updates that cannot be efficiently implemented with single

pointer update
–Need compatibility with hardware not supporting transactional memory
–Need to be able to do irrevocable operations (e.g., I/O) as part of data-

structure update

 If investing significant developer effort is not your cup of tea,
check out Michael Wong's talk on Friday!

© 2014 IBM Corporation74

CPPCON 2014

Existence Structures: Production Readiness

© 2014 IBM Corporation75

CPPCON 2014

Existence Structures: Production Readiness

No, it is not production ready (but getting there)
–In happy contrast to earlier this week...

Limping

Builds

Benchmark Special

Production: 1K Instances

Production: 1M Instances

Production: 1G Instances

CurrentR&D Prototype

N4037

© 2014 IBM Corporation76

CPPCON 2014

Existence Structures: Production Readiness

Limping

Builds

Benchmark Special

Production: 1K Instances

Production: 1M Instances

Production: 1G Instances

Production: 1T Instances
Need this for Internet of Things,
Validation is a big unsolved problem

R&D Prototype

No, it is not production ready (but getting there)
–In happy contrast to earlier this week...

Current

N4037

© 2014 IBM Corporation77

CPPCON 2014

Existence Structures: Known Antecedents

Fraser: “Practical Lock-Freedom”, Feb 2004
–Insistence on lock freedom: High complexity, poor performance
–Similarity between Fraser's OSTM commit and existence switch

McKenney, Krieger, Sarma, & Soni: “Atomically Moving List
Elements Between Lists Using Read-Copy Update”, Apr 2006

–Block concurrent operations while large update is carried out

Triplett: “Scalable concurrent hash tables via relativistic
programming”, Sept 2009

Triplett: “Relativistic Causal Ordering: A Memory Model for
Scalable Concurrent Data Structures”, Feb 2012

–Similarity between Triplett's key switch and allegiance switch
–Could share nodes between trees like Triplett does between hash

chains, but would impose restrictions and API complexity

© 2014 IBM Corporation78

CPPCON 2014

Summary

© 2014 IBM Corporation79

CPPCON 2014

Summary

There is currently no silver bullet:
–Split counters

• Extremely specialized
–Per-CPU/thread processing

• Not all algorithms can be efficiently partitioned
–Stream-based applications

• Specialized
–Read-only traversal to location being updated

• Great for small updates to large data structures, but limited otherwise
–Hardware lock elision

• Some good potential, and some potential limitations
• Michael Wong will be talking about this (and transactional memory) on

Friday

Linux kernel: Good progress by combining approaches

Lots of opportunity for collaboration and innovation

© 2014 IBM Corporation80

CPPCON 2014

To Probe Deeper (1/4)
 Hash tables:

– http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Chapter 10

 Split counters:
– http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Chapter 5
– http://events.linuxfoundation.org/sites/events/files/slides/BareMetal.2014.03.09a.pdf

 Perfect partitioning
– Candide et al: “Dynamo: Amazon's highly available key-value store”

• http://doi.acm.org/10.1145/1323293.1294281
– McKenney: “Is Parallel Programming Hard, And, If So, What Can You Do About It?”

• http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Section 6.5
– McKenney: “Retrofitted Parallelism Considered Grossly Suboptimal”

• Embarrassing parallelism vs. humiliating parallelism
• https://www.usenix.org/conference/hotpar12/retro%EF%AC%81tted-parallelism-considered-

grossly-sub-optimal
– McKenney et al: “Experience With an Efficient Parallel Kernel Memory Allocator”

• http://www.rdrop.com/users/paulmck/scalability/paper/mpalloc.pdf
– Bonwick et al: “Magazines and Vmem: Extending the Slab Allocator to Many CPUs and Arbitrary

Resources”
• http://static.usenix.org/event/usenix01/full_papers/bonwick/bonwick_html/

– Turner et al: “PerCPU Atomics”
• http://www.linuxplumbersconf.org/2013/ocw//system/presentations/1695/original/LPC%20-

%20PerCpu%20Atomics.pdf

© 2014 IBM Corporation81

CPPCON 2014

To Probe Deeper (2/4)

 Stream-based applications:
– Sutton: “Concurrent Programming With The Disruptor”

• http://www.youtube.com/watch?v=UvE389P6Er4
• http://lca2013.linux.org.au/schedule/30168/view_talk

– Thompson: “Mechanical Sympathy”
• http://mechanical-sympathy.blogspot.com/

 Read-only traversal to update location
– Arcangeli et al: “Using Read-Copy-Update Techniques for System V IPC in the Linux 2.5

Kernel”
• https://www.usenix.org/legacy/events/usenix03/tech/freenix03/full_papers/arcangeli/arcan

geli_html/index.html
– Corbet: “Dcache scalability and RCU-walk”

• https://lwn.net/Articles/419811/
– Xu: “bridge: Add core IGMP snooping support”

• http://kerneltrap.com/mailarchive/linux-netdev/2010/2/26/6270589
– Triplett et al., “Resizable, Scalable, Concurrent Hash Tables via Relativistic Programming”

• http://www.usenix.org/event/atc11/tech/final_files/Triplett.pdf
– Howard: “A Relativistic Enhancement to Software Transactional Memory”

• http://www.usenix.org/event/hotpar11/tech/final_files/Howard.pdf
– McKenney et al: “URCU-Protected Hash Tables”

• http://lwn.net/Articles/573431/

© 2014 IBM Corporation82

CPPCON 2014

To Probe Deeper (3/4)

 Hardware lock elision: Overviews
– Kleen: “Scaling Existing Lock-based Applications with Lock Elision”

• http://queue.acm.org/detail.cfm?id=2579227

 Hardware lock elision: Hardware description
– POWER ISA Version 2.07

• http://www.power.org/documentation/power-isa-version-2-07/
– Intel® 64 and IA-32 Architectures Software Developer Manuals

• http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
– Jacobi et al: “Transactional Memory Architecture and Implementation for IBM System z”

• http://www.microsymposia.org/micro45/talks-posters/3-jacobi-presentation.pdf

 Hardware lock elision: Evaluations
– http://pcl.intel-research.net/publications/SC13-TSX.pdf
– http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Section 16.3

 Hardware lock elision: Need for weak atomicity
– Herlihy et al: “Software Transactional Memory for Dynamic-Sized Data Structures”

• http://research.sun.com/scalable/pubs/PODC03.pdf
– Shavit et al: “Data structures in the multicore age”

• http://doi.acm.org/10.1145/1897852.1897873
– Haas et al: “How FIFO is your FIFO queue?”

• http://dl.acm.org/citation.cfm?id=2414731
– Gramoli et al: “Democratizing transactional programming”

• http://doi.acm.org/10.1145/2541883.2541900

© 2014 IBM Corporation83

CPPCON 2014

To Probe Deeper (4/4)

 RCU
– Desnoyers et al.: “User-Level Implementations of Read-Copy Update”

• http://www.rdrop.com/users/paulmck/RCU/urcu-main-accepted.2011.08.30a.pdf
• http://www.computer.org/cms/Computer.org/dl/trans/td/2012/02/extras/ttd2012020375s.pdf

– McKenney et al.: “RCU Usage In the Linux Kernel: One Decade Later”
• http://rdrop.com/users/paulmck/techreports/survey.2012.09.17a.pdf
• http://rdrop.com/users/paulmck/techreports/RCUUsage.2013.02.24a.pdf

– McKenney: “Structured deferral: synchronization via procrastination”
• http://doi.acm.org/10.1145/2483852.2483867

– McKenney et al.: “User-space RCU” https://lwn.net/Articles/573424/

 Possible future additions
– Boyd-Wickizer: “Optimizing Communications Bottlenecks in Multiprocessor Operating

Systems Kernels”
• http://pdos.csail.mit.edu/papers/sbw-phd-thesis.pdf

– Clements et al: “The Scalable Commutativity Rule: Designing Scalable Software for
Multicore Processors”

• http://www.read.seas.harvard.edu/~kohler/pubs/clements13scalable.pdf
– McKenney: “N4037: Non-Transactional Implementation of Atomic Tree Move”

• http://www.rdrop.com/users/paulmck/scalability/paper/AtomicTreeMove.2014.05.26a.pdf

© 2014 IBM Corporation84

CPPCON 2014

Legal Statement

This work represents the view of the author and does not
necessarily represent the view of IBM.

 IBM and IBM (logo) are trademarks or registered trademarks
of International Business Machines Corporation in the United
States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.

© 2014 IBM Corporation85

CPPCON 2014

Questions?

UseUse
the right toolthe right tool
for the job!!!for the job!!!

Image copyright © 2004 Melissa McKenney

© 2014 IBM Corporation86

CPPCON 2014

BACKUP

© 2014 IBM Corporation87

CPPCON 2014

Hardware Lock Elision: Potential Game Changers

What must happen for HTM to take over the world?

© 2014 IBM Corporation88

CPPCON 2014

Hardware Lock Elision: Potential Game Changers

Forward-progress guarantees
–Mainframe is a start, but larger sizes would be helpful

Transaction-size increases

 Improved debugging support
–Gottschich et al: “But how do we really debug transactional memory?”

Handle irrevocable operations (unbuffered I/O, syscalls, ...)

Weak atomicity

© 2014 IBM Corporation89

CPPCON 2014

Hardware Lock Elision: Potential Game Changers

Forward-progress guarantees
–Mainframe is a start, but larger sizes would be helpful

Transaction-size increases

 Improved debugging support
–Gottschich et al: “But how do we really debug transactional memory?”

Handle irrevocable operations (unbuffered I/O, syscalls, ...)

Weak atomicity – but of course the Linux-kernel RCU
maintainer and weak-memory advocate would say that...

© 2014 IBM Corporation90

CPPCON 2014

Hardware Lock Elision: Potential Game Changers

Forward-progress guarantees
–Mainframe is a start, but larger sizes would be helpful

Transaction-size increases

 Improved debugging support
–Gottschich et al: “But how do we really debug transactional memory?”

Handle irrevocable operations (unbuffered I/O, syscalls, ...)

Weak atomicity: It is not just me saying this!
– Herlihy et al: “Software Transactional Memory for Dynamic-Sized Data Structures”
– Shavit: “Data structures in the multicore age”
– Haas et al: “How FIFO is your FIFO queue?”
– Gramoli et al: “Democratizing transactional memory”

With these additions, much greater scope possible

	IBM Presentation Template Full Version
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90

