RCU vs. Locking
Performance on Different Types of CPUs

Paul E. McKenney
IBM Linux Technology Center
Paul.McKenney@us.ibm.com
Who is Paul McKenney, Anyway?

- Oregon State University
 - BSCS & BSME 1981, MSCS 1988
- Self-employed contract programmer 1981-1985
- TCP performance, SMP/NUMA hacking, co-inventor of RCU, Sequent 1990-1999
- AIX®, Linux, IBM 1999-present
- Oregon Graduate Institute Ph.D. in progress
Overview

- Why isn't Moore's Law helping my code???
- Hash-table mini-benchmark
- How can we fix this?
 - Linked-list insertion and removal
- Performance results
 - On x86, IPF/x86, Opteron, and PPC
- Summary and Conclusions
Why Isn't Moore's Law Helping My Code?

- Moore's Law provided uneven benefits:
 - Instruction execution overhead much improved
 - Pipeline-flush overhead has not improved much
 - Memory latencies have not improved much
 - Contention overhead not helped

- Moore's Law speeds up instructions

- But SMP SW does pipeline flushes, memory accesses, and suffers contention
Operation Costs: How Bad??
4-CPU 700MHz i386 P-III

<table>
<thead>
<tr>
<th>Operation</th>
<th>Nanoseconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instruction</td>
<td>0.7</td>
</tr>
<tr>
<td>Clock Cycle</td>
<td>1.4</td>
</tr>
<tr>
<td>L2 Cache Hit</td>
<td>12.9</td>
</tr>
<tr>
<td>Atomic Increment</td>
<td>58.2</td>
</tr>
<tr>
<td>Cmpxchg Atomic Increment</td>
<td>107.3</td>
</tr>
<tr>
<td>Atomic Incr. Cache Transfer</td>
<td>113.2</td>
</tr>
<tr>
<td>Main Memory</td>
<td>162.4</td>
</tr>
<tr>
<td>CPU-Local Lock</td>
<td>163.7</td>
</tr>
<tr>
<td>Cmpxchg Blind Cache Transfer</td>
<td>170.4</td>
</tr>
<tr>
<td>Cmpxchg Cache Transfer and Invalidate</td>
<td>360.9</td>
</tr>
</tbody>
</table>
But Wait!!!

How bad is this, really???

Don't speculate, run a benchmark!
Hash-Table Mini-Benchmark

- Dense array of buckets
- Doubly-linked hash chains
- One element per hash chain
 - You do tune your hash tables, don't you???
- Mix of operations:
 - Search
 - Delete followed by reinsertion: maintain loading
 - Random run lengths selected for specified mix
Hash-Table Mini-Benchmark

- Locking Designs Tested:
 - Global spinlock & rwlock
 - Per-bucket spinlock & rwlock
 - brlock
 - RCU
 - “Ideal”: take single-CPU results without locking, and multiply by the number of CPUs
 - Can be achieved in some cases using per-CPU data
 - No whining, no excuses!!!
Global Locking

Graph showing the number of hash table searches per microsecond for different numbers of CPUs, with lines labeled "ideal", "global", and "globalrw".
What is With rwlock??
“Scalable” Locking

Hash Table Searches per Microsecond

CPUs
How Can We Fix This???

What do we want?

- Good locking for read-mostly data structures!!!
- Want to avoid expensive operations for readers
 - No memory latency (cache thrashing)
 - No pipeline flushing (memory barriers)
 - No contention
- Can accept some additional overhead for writers
 - But must stay within the realm of reason
We Can Do Linked-List Insertion...

- Initialize then insert
 - Readers will either see it or not
 - But list will always be properly formatted
- Need memory barriers on weakly ordered machines (pretty much all of them)
- Taken care of for you by _rcu() list macros:
 - Use list_add_rcu() to insert into the list
 - Use list_for_each_entry_rcu() to scan the list
But Sooner Or Later...

Something will need to be removed from the list
Just hop the pointer over the element to be deleted!!!
Lock-Free Removal Animation (1)
Lock-Free Removal Animation (2)
Lock-Free Removal Animation (3)
But Sooner Or Later...

It will be necessary to free up elements removed from the list...

Unless it is OK to wantonly leak memory!!!

But readers might be referencing the removed element for quite some time...
When Are Readers Done?

- Read-side rwlock critical section:
 - Preemption disabled
 - No blocking
 - No return to user-mode execution
 - No page faults or exceptions
 - No holding references from one CS to another!

- If a CPU does a context switch, it is done!
 - All prior read-side critical sections complete
 - With no locking operations!!!
Grace Periods
Implemented in 2.6 kernel

It is called “RCU”

(Short for “Read-Copy Update”)

RCU Performance Testing

- Four-CPU 700MHz P-III System
- Four-CPU 1.4GHz IPF System (running x86 code)
- Four-CPU 1.4GHz Opteron System
- Eight-CPU 1.45GHz Power4+ System
 - Only four CPUs were used in these benchmarks
Test Scenarios

- Read-only test
 - For data structures that are almost never modified
 - Routing tables, HW/SW configuration, policies

- Mixed workload
 - Vary fraction of accesses that are updates
 - See how things change as read-intensity varies
 - Expect breakeven point for RCU and locking
Overview of Results: Read-only

- Global spinlock/rwlock scale negatively
- Per-bucket schemes scale, but poorly
 - 10-20% of ideal at 4 CPUs
 - Less than half of ideal on single CPU
 - But why would you run CONFIG_SMP on one CPU?
- brlock scales better
 - But still less than 40% of ideal
 - And brlock is known to have trouble on writes...
x86 Read-Only Results

![Graph showing the performance of various search algorithms with different number of CPUs]

- "ideal"
- "bkt"
- "bktrw"
- "brlock"
- "rcfct"
- "rcu"

The graph illustrates the number of searches or updates per unit time as a function of the number of CPUs. Each line represents a different algorithm, with "ideal" showing the best possible performance and "rcu" showing the least efficient.
IPF Read-Only Results
Opteron Read-Only Results

[Graph showing the comparison of different algorithms such as "ideal", "bkt", "bktrw", "brlock", "refcnt", and "rcu" on the number of searches per unit time against the number of CPUs.]
PPC Read-Only Results

![Graph showing the number of searches and updates per unit time against the number of CPUs, with different lines representing different algorithms: "ideal", "bkt", "bktrw", "brlock", "rcu", "refcnt".](image-url)
Overview of Results: Mixed Workload

<table>
<thead>
<tr>
<th>CPU Type</th>
<th>Crossover</th>
</tr>
</thead>
<tbody>
<tr>
<td>X86</td>
<td>0.2-0.5</td>
</tr>
<tr>
<td>IPF/x86</td>
<td>0.1-0.4</td>
</tr>
<tr>
<td>Opteron</td>
<td>0.2-0.5</td>
</tr>
<tr>
<td>PPC</td>
<td>0.3-0.5</td>
</tr>
</tbody>
</table>
x86 Results for Mixed Workload

![Graph showing the results for mixed workload calculations. The x-axis represents the update fraction (lambda = 10), and the y-axis represents searches per unit time. The graph compares different scenarios labeled as "ideal," "bkt," "bktrw," "brlock," "refcnt," and "rcu." Each scenario is represented by a line with a unique pattern.](image-url)
IPF Results for Mixed Workload

![Graph showing searches(updates) per unit time against update fraction (lambda=10). The graph compares various workloads such as "ideal", "bkt", "bktrw", "brlock", "refcnt", and "rcu". The y-axis represents the number of searches/updates per unit time, ranging from 1 to 0.01, and the x-axis represents the update fraction, ranging from 0 to 1. Each workload has a distinct line style and marker, indicating their performance under mixed workload conditions.](image-url)
Opteron Results for Mixed Workload

![Graph showing Opteron Results for Mixed Workload](chart.png)
PPC Results for Mixed Workload

![Graph showing searches per unit time against update fraction (lambda=10). The graph compares different algorithms like ideal, bkt, bktrw, brlock, refcnt, and rcu.]
Summary and Conclusions (1)

RCU is great for read-mostly data structures
- But not so great for update-mostly situations
- RCU optimal when less than 10% of accesses are updates

RCU updates cannot exclude readers
- Good for deadlock avoidance and scalability
- Adds complexity in some cases
 - But need 1,000s of instructions to make rwlock pay!!!

RCU best when designed in from the start
Future/Ongoing Work

- Testing RCU on more algorithms and data structures
- Decreasing RCU grace-period overhead
 - Make things faster, increase RCU usefulness
- Make RCU safe for realtime use (e.g., 250 microseconds scheduling latency)
- Enlist RCU to prevent DoS attacks
- Improve RCU ease of use
Legal Notice

- The views expressed in this paper are the author's only, and should not be attributed to IBM.
- UNIX is a registered trademark of The Open Group in the United States and other countries.
- IBM and AIX are registered trademarks of International Business Machines Corporation in the United States and/or other countries.
- Linux is a registered trademark of Linus Torvalds.
- Other company, product, and service names may be trademarks or service marks of others.
Use the right tool for the job!!!