Paul E. McKenney, IBM Distinguished Engineer, Linux Technology Center
Member, IBM Academy of Technology
CPPCON, September 23, 2016

j/’/ /

=
=

’

RCU and C++

© 2015 IBM Corporation

RCU and C++

What Is RCU, Really?

" Publishing of new data: rcu_assign_pointer()
" Subscribing to the current version of data: rcu_dereference()

" Waiting for pre-existing RCU readers: Avoid disrupting

readers by maintaining multiple versions of the data
—Reader begins with rcu_read_lock() and ends at matching
rcu_read_unlock()
—The time an updater must wait is a grace period
—Blocking wait for a grace period: synchronize_rcu()

—Asynchronous wait for a grace period: call _rcu()
* Specified function invoked at the end of a grace period

2 © 2015 IBM Corporation

RCU and C++

Publication of And Subscription to New Data

Key: Dangerous for updates: all readers can access
M sl dangerous for updates: pre-existing readers can access (next slide)
B safe for updates: inaccessible to all readers

(cptr)

gn_pointer(cptr,p)

initialization
rcu dereference

p:

rcu assi

/ /

tmp tmp

3 But if all we do is add, we have a big memory leak!!! e205 Bmcorporation

RCU and C++

RCU Removal From Linked List

" Combines waiting for readers and multiple versions:
— Writer removes the cat's element from the list (list_del_rcu())

— Writer waits for all readers to finish (synchronize_rcu())
— Writer can then free the cat's element (kfree())

One Version Two Versions One Version One Version

| g | g m
£

But how can software deal with two different versions simultaneously???

4 © 2015 IBM Corporation

RCU and C++

Two Different Versions Simultaneously???

| think the poor

thing has expire

Where there is a brain-
wave, there is a wayl

© 2015 IBM Corporation

RCU and C++

Toy Implementation of RCU: 20 Lines of Code,
Full Read-Side Performance!!!

" Read-side primitives:

#define rcu read lock()

#define rcu read unlock()

#define rcu dereference(p) \

({ \
typeof(p) pl = (*(volatile typeof(p)*)&(p)); \
smp read barrier depends(); \
_pl; \

})

" Update-side primitives
#define rcu assign pointer(p, v) \
({ \
smp _wmb(); \
(p) = (v); \
})

void synchronize rcu(void)

{

int cpu;

for each online cpu(cpu)
run_on(cpu);

Only 9 of which are needed on sequentially consistent systems...
And some people still insist that RCU is complicated... ;-)

© 2015 IBM Corporation

RCU and C++

RCU Usage: Readers

" Pointer to RCU-protected object guaranteed to exist

throughout RCU read-side critical section

rcu read lock(); /* Start critical section. */
p = rcu dereference(cptr);

/* *p guaranteed to exist. */

do something with(p);

rcu read unlock(); /* End critical section. */
/* *p might be freed!!! */

" The rcu_read_lock(), rcu_dereference() and
rcu_read_unlock() primitives are very light weight

" However, updaters must take care...

7 © 2015 IBM Corporation

RCU and C++

RCU Usage: Updaters

" Updaters must wait for an RCU grace period to elapse
between making something inaccessible to readers and
freeing it

spin lock(&updater lock);

q = cptr;

rcu assign pointer(cptr, new p);

spin unlock(&updater lock);

synchronize rcu(); /* Wait for grace period. */
kfree(q);

"RCU grace period waits for all pre-exiting readers to complete
their RCU read-side critical sections

8 © 2015 IBM Corporation

RCU and C++

RCU Grace Period: A Self-Repairing Graphical View

Reader

Reader

Reader Grace period

extends as
Reader / needed.
—

<¢— synchronize_rcu() —»

_ Change Visible
Grace Period to All Readers

A grace period is not permitted to end until all pre-existing readers have completed.

9 © 2015 IBM Corporation

RCU and C++

RCU Grace Period: A Lazy Graphical View

Reader Reader

Reader

Reader

Reader

Reader

<¢— synchronize_rcu() ——»

_ Change Visible
Grace Period to All Readers

But it is OK for RCU to be lazy and allow a grace period to extend longer than necessary

10 © 2015 IBM Corporation

RCU and C++

RCU Grace Period: A Really Lazy Graphical View

Reader

Reader
Reader

Reader

synchronize_rcu() —»

_ Change Visible
Grace Period to All Readers

And it is also OK for RCU to be even more lazy and start a grace period later than necessary
But why is this useful?

1 1 © 2015 IBM Corporation

RCU and C++

RCU Grace Period: A Usefully Lazy Graphical View

Reader

Reader
Reader

<4—— synchronize_rcu() —» Change Visible
to All Readers

Grace Period —
Change Visible
Change synchronize_rcu() — % 5 Al Readers

Change

Starting a grace period late can allow it to serve multiple updates, decreasing
the per-update RCU overhead. But...

12 © 2015 IBM Corporation

RCU and C++

The Costs and Benefits of Laziness

" Starting the grace period later increases the number of

updates per grace period, reducing the per-update overhead
—In the Linux kernel, can be thousands of updates per grace period!

"Delaying the end of the grace period increases grace-period
latency

"Increasing the number of updates per grace period

Increases the memory usage
—Therefore, starting grace periods late is a good tradeoff if memory is cheap
and communication is expense, as is the case in modern multicore

systems
* And if real-time threads avoid waiting for grace periods to complete

13 © 2015 IBM Corporation

RCU and C++

RCU Asynchronous Grace-Period Detection

" The call _rcu() function registers an RCU callback, which is invoked
after a subsequent grace period elapses

" API:

call rcu(struct rcu head head,
void (*func) (struct rcu head *rcu)) ;

"The rcu_head structure:
struct rcu_head {
struct rcu head *next;
void (*func) (struct rcu_head *rcu) ;

¥

" The rcu_head structure is normally embedded within the RCU-
protected data structure

14 © 2015 IBM Corporation

RCU and C++

RCU Grace Period: An Asynchronous Graphical View

Reader Reader

Reader

Reader

Reader

Grace Period

call_rcu(&p->rcu, func);

15

Reader

Change Visible
to All Readers

func(&p->rcu);

© 2015 IBM Corporation

RCU and C++

Destructors Not Necessarily Known At Construction

uoneoso|eaq

uononnsaq ()}

poliad
Y1 =J o)

slapeay p|O Ol
AlUO 9]qISS822y

2.1N]dNNS
wo.lH aAOWa Y

f() Always
Known Here

slapeay ||V oL
9|gISS320Y

2InoNiNS
Ol PPY

uoldnNJsuod

f() Sometimes
Known Here

uoneI0||Y

© 2015 IBM Corporation

16

RCU and C++

Destructors Not Necessarily Known At Construction

f() Sometimes f() Always
Known Here Known Here

N\ N\

Allocation
Construction
Structure
Remove From
Structure
f(): Destruction
Deallocation

< =9
VO S o
a9 O o
0 © @ 3
D % Y
S <=E n S
< 5 80
[t Q
<P
When f() is not known until call_rcu() time, need fixed-width storage!!! T —

17

RCU and C++

Any Type Any Time Any Translation Unit Anywhere

18

RCU Callback List

Translation Unit A Translation Unit C Translation Unit E

] [er
2ot

P .
A3 A2
Translation Unit B Translation Unit D Translation Unit F
or-or M R
oroor e

© 2015 IBM Corporation

RCU and C++

Any Type Any Time Any Translation Unit Anywhere

RCU Callback List

19

Must get to the right translation-unit context: Some sort of function pointer...

Translation Unit A Translation Unit C Translation Unit E

] [er
2ot

P .
A3 A2
Translation Unit B Translation Unit D Translation Unit F
or-or M R
oroor e

© 2015 IBM Corporation

RCU and C++

Underlying C-Language RCU API

=

20

R O W 00 4 o U & W N -

void
void
void

void

void
void
void
void
void

void

std
std
std
std

std
std
std
std
std
std

::rcu_read lock();
::rcu_read unlock();
: :synchronize rcu();
::call rcu(struct std::rcu head *rhp,
void cbf(class rcu head *rhp));
::rcu_barrier();
::rcu _register thread();
::rcu_unregister thread();
::rcu_quiescent state();
::rcu_thread offline();

::rcu_thread online();

© 2015 IBM Corporation

RCU and C++

Defining an RCU Domain

1 class rcu domain ({
2 public:
3 virtual void register thread() = 0;

virtual void unregister thread() = 0;

virtual void read lock() noexcept = 0;
virtual void read unlock() noexcept = 0;

0;

0 N o b

virtual void synchronize() noexcept

) virtual void call(class rcu_head *rhp,

10 void cbf(class rcu head *rhp))

11 virtual void barrier() noexcept = 0;

12 virtual void quiescent state() noexcept

13 virtual void thread offline() noexcept =

14 virtual void thread online() noexcept =

15 };

Derived concrete class for each “flavor” in userspace RCU library

21

static inline bool register thread needed() { return true; }

© 2015 IBM Corporation

RCU and C++

RCU Scoped Readers

1 class rcu scoped reader ({

2 public:

3 rcu_scoped reader();

4 rcu scoped reader(class rcu domain *rd);

5 rcu_scoped reader(const rcu scoped reader &) = delete;

6 rcu_scoped reader&operator=(const rcu scoped reader &) = delete;
7 ~rcu_scoped reader();

8 }

Derived concrete class for each “flavor” in userspace RCU library

22 © 2015 IBM Corporation

RCU and C++

Tracking RCU Callbacks: Approach #0
That Would Be Mine: The Less Said, The Better!!!

23 © 2015 IBM Corporation

RCU and C++

Tracking RCU Callbacks: Approach #1
(Work In Progress)

// Isabella Muerte approach
template <class T>

struct default deleter;

1
2
3
4
5 template<class T, class Deleter=default deleter<T>>
6 struct rcu head delete2: rcu head, Deleter {

7

8

Deleter& get deleter () { return *this; }
10 void call ();

11 void call (rcu domain& rd);

12 };

© 2015 IBM Corporation

24

RCU and C++

Tracking RCU Callbacks: Approach #2

(Work In Progress)

// Arthur O'Dwyer approach

template<typename T,

typename D =

default delete<T>,

bool E = is empty<D>::value>

public:
void call(D d = {});

{

void call(rcu domain &rd, D d = {});

1
2
3
4
5 class rcu head delete
6
7
8
9

}i

25

© 2015 IBM Corporation

RCU and C++

Schrodinger's Zoo: Read-Only

100000

©
C
o
Q
O
B2
=
.
b
Q.
wn
Q
-]
X
@
@]
—l
]
—
o
|_

Number of CPUs/Threads

26 RCU and hazard pointers scale quite well!!! © 2015 1BM Corporation

RCU and C++

RCU Area of Applicability

Read-Mostly, Stale &
Inconsistent Data OK
(RCU Works Great!!!)

Read-Mostly, Need Consistent Data
(RCU Works OK)

Read-Write, Need Consistent Data
(RCU Might Be OK...)

Update-Mostly, Need Consistent Data
(RCU is Really Unlikely to be the Right Tool For The Job, But It Can:
(1) Provide Existence Guarantees For Update-Friendly Mechanisms
(2) Provide Wait-Free Read-Side Primitives for Real-Time Use)

Schrodinger's zoo is in blue: Can't tell exactly when an animal is born
or dies anyway! Plus, no lock you can hold will prevent an animal's death...

27 © 2015 IBM Corporation

RCU and C++

Future

" Add Hazard Pointers and RCU to Concurrency TS
—And then to the C++ Standard

"\Working drafts:
—Hazard Pointers: P0233R1
—RCU memory_order_consume semantics: PO190R2
—RCU marked dependency chains: TBD
—RCU C++ bindings: TBD

28

© 2015 IBM Corporation

	IBM Presentation Template Full Version
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

