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RCU and C++

What Is RCU, Really?

" Publishing of new data: rcu_assign_pointer()
" Subscribing to the current version of data: rcu_dereference()

" Waiting for pre-existing RCU readers: Avoid disrupting

readers by maintaining multiple versions of the data
—Reader begins with rcu_read_lock() and ends at matching
rcu_read_unlock()
—The time an updater must wait is a grace period
—Blocking wait for a grace period: synchronize_rcu()

—Asynchronous wait for a grace period: call _rcu()
* Specified function invoked at the end of a grace period
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Publication of And Subscription to New Data

Key: Dangerous for updates: all readers can access
M sl dangerous for updates: pre-existing readers can access (next slide)
B safe for updates: inaccessible to all readers

(cptr)

gn_pointer(cptr,p)

initialization
rcu dereference

p:

rcu assi

/ /

tmp tmp

3 But if all we do is add, we have a big memory leak!!!  e205 Bmcorporation
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RCU Removal From Linked List

" Combines waiting for readers and multiple versions:
— Writer removes the cat's element from the list (list_del_rcu())

— Writer waits for all readers to finish (synchronize_rcu())
— Writer can then free the cat's element (kfree())

One Version Two Versions One Version One Version
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£

But how can software deal with two different versions simultaneously???
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Two Different Versions Simultaneously???

| think the poor

thing has expire

Where there is a brain-
wave, there is a wayl
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RCU and C++

Toy Implementation of RCU: 20 Lines of Code,
Full Read-Side Performance!!!

" Read-side primitives:

#define rcu read lock()

#define rcu read unlock()

#define rcu dereference(p) \

({ \
typeof(p) pl = (*(volatile typeof(p)*)&(p)); \
smp read barrier depends(); \
_pl; \

})

" Update-side primitives
#define rcu assign pointer(p, v) \
({ \
smp _wmb(); \
(p) = (v); \
})

void synchronize rcu(void)

{

int cpu;

for each online cpu(cpu)
run_on(cpu);

Only 9 of which are needed on sequentially consistent systems...
And some people still insist that RCU is complicated... ;-)
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RCU Usage: Readers

" Pointer to RCU-protected object guaranteed to exist

throughout RCU read-side critical section

rcu read lock(); /* Start critical section. */
p = rcu dereference(cptr);

/* *p guaranteed to exist. */

do something with(p);

rcu read unlock(); /* End critical section. */
/* *p might be freed!!! */

" The rcu_read_lock(), rcu_dereference() and
rcu_read_unlock() primitives are very light weight

" However, updaters must take care...
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RCU Usage: Updaters

" Updaters must wait for an RCU grace period to elapse
between making something inaccessible to readers and
freeing it

spin lock(&updater lock);

q = cptr;

rcu assign pointer(cptr, new p);

spin unlock(&updater lock);

synchronize rcu(); /* Wait for grace period. */
kfree(q);

"RCU grace period waits for all pre-exiting readers to complete
their RCU read-side critical sections
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RCU Grace Period: A Self-Repairing Graphical View

Reader

Reader

Reader Grace period

extends as
Reader / needed.
—

<¢— synchronize_rcu() —»

_ Change Visible
Grace Period to All Readers

A grace period is not permitted to end until all pre-existing readers have completed.
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RCU Grace Period: A Lazy Graphical View

Reader Reader

Reader

Reader

Reader

Reader

<¢— synchronize_rcu() ——»

_ Change Visible
Grace Period to All Readers

But it is OK for RCU to be lazy and allow a grace period to extend longer than necessary
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RCU Grace Period: A Really Lazy Graphical View

Reader

Reader
Reader

Reader

synchronize_rcu() —»

_ Change Visible
Grace Period to All Readers

And it is also OK for RCU to be even more lazy and start a grace period later than necessary
But why is this useful?
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RCU Grace Period: A Usefully Lazy Graphical View

Reader

Reader
Reader

<4—— synchronize_rcu() —» Change Visible
to All Readers

Grace Period —
Change Visible
Change synchronize_rcu() — % 5 Al Readers

Change

Starting a grace period late can allow it to serve multiple updates, decreasing
the per-update RCU overhead. But...
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The Costs and Benefits of Laziness

" Starting the grace period later increases the number of

updates per grace period, reducing the per-update overhead
—In the Linux kernel, can be thousands of updates per grace period!

"Delaying the end of the grace period increases grace-period
latency

"Increasing the number of updates per grace period

Increases the memory usage
—Therefore, starting grace periods late is a good tradeoff if memory is cheap
and communication is expense, as is the case in modern multicore

systems
* And if real-time threads avoid waiting for grace periods to complete
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RCU Asynchronous Grace-Period Detection

" The call _rcu() function registers an RCU callback, which is invoked
after a subsequent grace period elapses

" API:

call rcu(struct rcu head head,
void (*func) (struct rcu head *rcu)) ;

"The rcu_head structure:
struct rcu_head {
struct rcu head *next;
void (*func) (struct rcu_head *rcu) ;

¥

" The rcu_head structure is normally embedded within the RCU-
protected data structure
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RCU Grace Period: An Asynchronous Graphical View

Reader Reader

Reader

Reader

Reader

Grace Period

call_rcu(&p->rcu, func);

15

Reader

Change Visible
to All Readers

func(&p->rcu);
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Destructors Not Necessarily Known At Construction
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Destructors Not Necessarily Known At Construction

f() Sometimes f() Always
Known Here Known Here
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Construction
Structure
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When f() is not known until call_rcu() time, need fixed-width storage!!! T —
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Any Type Any Time Any Translation Unit Anywhere

18

RCU Callback List

Translation Unit A Translation Unit C Translation Unit E
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Any Type Any Time Any Translation Unit Anywhere

RCU Callback List

19

Must get to the right translation-unit context: Some sort of function pointer...

Translation Unit A Translation Unit C Translation Unit E
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Underlying C-Language RCU API

=
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void
void
void

void

void
void
void
void
void

void

std
std
std
std

std
std
std
std
std
std

::rcu_read lock();
::rcu_read unlock();
: :synchronize rcu();
::call rcu(struct std::rcu head *rhp,
void cbf(class rcu head *rhp));
::rcu_barrier();
::rcu _register thread();
::rcu_unregister thread();
::rcu_quiescent state();
::rcu_thread offline();

::rcu_thread online();
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Defining an RCU Domain

1 class rcu domain ({
2 public:
3 virtual void register thread() = 0;

virtual void unregister thread() = 0;

virtual void read lock() noexcept = 0;
virtual void read unlock() noexcept = 0;

0;

0 N o b

virtual void synchronize() noexcept

) virtual void call(class rcu_head *rhp,

10 void cbf(class rcu head *rhp))

11 virtual void barrier() noexcept = 0;

12 virtual void quiescent state() noexcept

13 virtual void thread offline() noexcept =

14 virtual void thread online() noexcept =

15 };

Derived concrete class for each “flavor” in userspace RCU library

21

static inline bool register thread needed() { return true; }
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RCU Scoped Readers

1 class rcu scoped reader ({

2 public:

3 rcu_scoped reader();

4 rcu scoped reader(class rcu domain *rd);

5 rcu_scoped reader(const rcu scoped reader &) = delete;

6 rcu_scoped reader&operator=(const rcu scoped reader &) = delete;
7 ~rcu_scoped reader();

8 }

Derived concrete class for each “flavor” in userspace RCU library
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Tracking RCU Callbacks: Approach #0
That Would Be Mine: The Less Said, The Better!!!
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Tracking RCU Callbacks: Approach #1
(Work In Progress)

// Isabella Muerte approach
template <class T>

struct default deleter;

1
2
3
4
5 template<class T, class Deleter=default deleter<T>>
6 struct rcu head delete2: rcu head, Deleter {

7

8

Deleter& get deleter () { return *this; }
10 void call ();

11 void call (rcu domain& rd);

12 };

© 2015 IBM Corporation
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Tracking RCU Callbacks: Approach #2

(Work In Progress)

// Arthur O'Dwyer approach

template<typename T,

typename D =

default delete<T>,

bool E = is empty<D>::value>

public:
void call(D d = {});

{

void call(rcu domain &rd, D d = {});

1
2
3
4
5 class rcu head delete
6
7
8
9

}i

25
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Schrodinger's Zoo: Read-Only
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RCU Area of Applicability

Read-Mostly, Stale &
Inconsistent Data OK
(RCU Works Great!!!)

Read-Mostly, Need Consistent Data
(RCU Works OK)

Read-Write, Need Consistent Data
(RCU Might Be OK...)

Update-Mostly, Need Consistent Data
(RCU is Really Unlikely to be the Right Tool For The Job, But It Can:
(1) Provide Existence Guarantees For Update-Friendly Mechanisms
(2) Provide Wait-Free Read-Side Primitives for Real-Time Use)

Schrodinger's zoo is in blue: Can't tell exactly when an animal is born
or dies anyway! Plus, no lock you can hold will prevent an animal's death...
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Future

" Add Hazard Pointers and RCU to Concurrency TS
—And then to the C++ Standard

"\Working drafts:
—Hazard Pointers: P0233R1
—RCU memory_order_consume semantics: PO190R2
—RCU marked dependency chains: TBD
—RCU C++ bindings: TBD

28
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