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What is RCU?

Mutual Exclusion
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What is RCU?

Mutual Exclusion Challenge: Double-Ended Queue

Can you create a trivial lock-based deque allowing concurrent 
pushes and pops at both ends?

–Coordination required if the deque contains only one or two elements
–But coordination is not required for three or more elements
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Mutual Exclusion Challenge: Double-Ended Queue

Can you create a trivial lock-based deque allowing concurrent 
pushes and pops at both ends?

–Coordination required if the deque contains only one or two elements
–But coordination is not required for three or more elements
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A Pointless problem, but
solution on later slide...
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Mutual Exclusion Question

What mechanisms can enforce mutual exclusion?
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What is RCU?

Example Application
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What is RCU?

Example Application

Schrödinger wants to construct an in-memory database for the 
animals in his zoo (example in upcoming ACM Queue)

–Births result in insertions, deaths in deletions
–Queries from those interested in Schrödinger's animals
–Lots of short-lived animals such as mice: High update rate
–Great interest in Schrödinger's cat (perhaps queries from mice?)
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What is RCU?

Example Application

Schrödinger wants to construct an in-memory database for the 
animals in his zoo (example in upcoming ACM Queue)

–Births result in insertions, deaths in deletions
–Queries from those interested in Schrödinger's animals
–Lots of short-lived animals such as mice: High update rate
–Great interest in Schrödinger's cat (perhaps queries from mice?)

Simple approach: chained hash table with per-bucket locking

0: lock

1: lock

2: lock

3: lock

mouse zebra

boa cat gnu
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What is RCU?

Example Application

Schrödinger wants to construct an in-memory database for the 
animals in his zoo (example in upcoming ACM Queue)

–Births result in insertions, deaths in deletions
–Queries from those interested in Schrödinger's animals
–Lots of short-lived animals such as mice: High update rate
–Great interest in Schrödinger's cat (perhaps queries from mice?)

Simple approach: chained hash table with per-bucket locking

0: lock

1: lock

2: lock

3: lock

mouse zebra

boa cat gnu

Will holding this lock prevent the cat from dying?
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Read-Only Bucket-Locked Hash Table Performance

2GHz Intel Xeon Westmere-EX,  1024 hash buckets

Why the dropoff???
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Varying Number of Hash Buckets

2GHz Intel Xeon Westmere-EX 

Still a dropoff...
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NUMA Effects???

 /sys/devices/system/cpu/cpu0/cache/index0/shared_cpu_list:
–0,32

 /sys/devices/system/cpu/cpu0/cache/index1/shared_cpu_list:
–0,32

 /sys/devices/system/cpu/cpu0/cache/index2/shared_cpu_list:
–0,32

 /sys/devices/system/cpu/cpu0/cache/index3/shared_cpu_list:
–0-7,32-39

Two hardware threads per core, eight cores per socket

Try using only one CPU per socket: CPUs 0, 8, 16, and 24
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Bucket-Locked Hash Performance: 1 CPU/Socket

This is not the sort of scalability Schrödinger requires!!! 
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Locking is BAD: Use Non-Blocking Synchronization!
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What is RCU?

Use Non-Blocking Synchronization!

Big issue: Lookups run concurrently with deletions
–Bad form for a lookup to hand back a pointer to free memory

Hash Table
Lookup

Deletion

Deletion

Lookup

Lookup

Lookup

Lookup
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Deletion



© 2018 IBM Corporation17

What is RCU?

Use Non-Blocking Synchronization!

Big issue: Lookups run concurrently with deletions
–Bad form for a lookup to hand back a pointer to free memory
–Results in lookups writing to shared memory, usually atomically

Hash Table
Lookup

Deletion

Deletion

Lookup

Lookup

Lookup

Lookup

Lookup

Deletion

Deletion
Lookup

Lookup

Lookup

Deletion
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Performance of Synchronization Mechanisms
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Performance of Synchronization Mechanisms

16-CPU 2.8GHz Intel X5550 (Nehalem) System16-CPU 2.8GHz Intel X5550 (Nehalem) System

Operation Cost (ns) Ratio
Clock period 0.4 1
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache miss 12.9 35.8
CAS cache miss 7.0 19.4

31.2 86.6
31.2 86.5
92.4 256.7
95.9 266.4

Single cache miss (off-core)
CAS cache miss (off-core)
Single cache miss (off-socket)
CAS cache miss (off-socket)

And these are best-case values!!!  (Why?)And these are best-case values!!!  (Why?)
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What is RCU?

Why All These Low-Level Details???
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Why All These Low-Level Details???

Would you trust a bridge designed by someone who did not 
understand strengths of materials?

–Or a ship designed by someone who did not understand the steel-alloy 
transition temperatures?

–Or a house designed by someone who did not understand that 
unfinished wood rots when wet?

–Or a car designed by someone who did not understand the corrosion 
properties of the metals used in the exhaust system?

–Or a space shuttle designed by someone who did not understand the 
temperature limitations of O-rings?
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What is RCU?

Why All These Low-Level Details???

Would you trust a bridge designed by someone who did not 
understand strengths of materials?

–Or a ship designed by someone who did not understand the steel-alloy 
transition temperatures?

–Or a house designed by someone who did not understand that 
unfinished wood rots when wet?

–Or a car designed by someone who did not understand the corrosion 
properties of the metals used in the exhaust system?

–Or a space shuttle designed by someone who did not understand the 
temperature limitations of O-rings?

So why trust algorithms from someone ignorant of the 
properties of the underlying hardware???
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What is RCU?

But What Do The Operation Timings Really Mean???
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But What Do The Operation Timings Really Mean???

Single-instruction critical sections protected by data locking

256.7 cycles

1
cycle

256.7 cycles

1
cycle

256.7 cycles

Uncontended

Contended,
No Spinning

So, what does this mean?

Acquire

Release

Critical
Section
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But What Do The Operation Timings Really Mean???

Single-instruction critical sections protected by data locking

256.7 cycles

1
cycle

256.7 cycles

1
cycle

256.7 cycles

Uncontended

Contended,
No Spinning

258 CPUs to
break even with
single CPU!

514 CPUs to
break even with
single CPU!!!
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But What Do The Operation Timings Really Mean???

Single-instruction critical sections protected by data locking

256.7 cycles

1
cycle

256.7 cycles

1
cycle

256.7 cycles

Uncontended

Contended,
No Spinning

256.7 cycles

1
cycle

256.7 cycles

Contended,
Spinning

??? cycles

258 CPUs  to
break even with
single CPU!

514 CPUs to
break even with
single CPU!!!
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What is RCU?

Reader-Writer Locks Are Even Worse!



© 2018 IBM Corporation28

What is RCU?

Reader-Writer Locks Are Even Worse!

266.4 cycles

1
cycle

266.4 cycles

1
cycle

200.0 cycles

266.4 cycles266.4 cycles

CPU 0

CPU 1

Acquire Release

Acquire

800 CPUs to
break even with
a single CPU!!!Spin Critical

Section

Critical
Section

Wait for
Lock Data
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But What About Scaling With Atomic Operations?
Non-Blocking Synchronization For The Win!!!
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If You Think Single Atomic is Expensive, Try Lots!!!

2GHz Intel Xeon Westmere-EX 
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Why So Slow???
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System Hardware Structure and Laws of Physics

CPU CPU CPU CPU

$ $ $ $
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Electrons move at 0.03C to 0.3C in transistors and, so lots of waiting.  3D???Electrons move at 0.03C to 0.3C in transistors and, so lots of waiting.  3D???
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CPU CPU CPU CPU
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Atomic Increment of Global Variable

Lots and Lots of Latency!!!Lots and Lots of Latency!!!
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Atomic Increment of Per-CPU Counter
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Little Latency, Lots of Increments at Core Clock RateLittle Latency, Lots of Increments at Core Clock Rate
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Can't The Hardware Do Better Than This???
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CPU CPU CPU CPU
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HW-Assist Atomic Increment of Global Variable

SGI systems used this approach in the 1990s, expect modern CPUs to optimize.
Still not as good as per-CPU counters.
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CPU CPU CPU CPU
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HW-Assist Atomic Increment of Global Variable

Put an ALU near memory to avoid slowdowns due to latency.
Still not as good as per-CPU counters.
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Problem With Physics #1: Finite Speed of Light

(c) 2012 Melissa Broussard, Creative Commons Share-Alike
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Problem With Physics #2: Atomic Nature of Matter

(c) 2012 Melissa Broussard, Creative Commons Share-Alike
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How Can Software Live With This Hardware???
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Design Principle: Avoid Bottlenecks

Only one of something: bad for performance and scalability.Only one of something: bad for performance and scalability.
Also typically results in high complexity.Also typically results in high complexity.
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What is RCU?

Design Principle: Avoid Bottlenecks

Many instances of something good!Many instances of something good!
Avoiding tightly coupled interactions is an excellent way to avoid bugs.Avoiding tightly coupled interactions is an excellent way to avoid bugs.

Hazard pointers uses this trick with reference counting.Hazard pointers uses this trick with reference counting.
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What is RCU?

Design Principle: Avoid Bottlenecks

Many instances of something good!Many instances of something good!
Avoiding tightly coupled interactions is an excellent way to avoid bugs.Avoiding tightly coupled interactions is an excellent way to avoid bugs.

Hazard pointers uses this trick with reference counting.Hazard pointers uses this trick with reference counting.
But NUMA effects defeated this for per-bucket locking!!!But NUMA effects defeated this for per-bucket locking!!!
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16-CPU 2.8GHz Intel X5550 (Nehalem) System16-CPU 2.8GHz Intel X5550 (Nehalem) System

Operation Cost (ns) Ratio
Clock period 0.4 1
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache miss 12.9 35.8
CAS cache miss 7.0 19.4

31.2 86.6
31.2 86.5
92.4 256.7
95.9 266.4

Single cache miss (off-core)
CAS cache miss (off-core)
Single cache miss (off-socket)
CAS cache miss (off-socket)

Design Principle: Avoid Expensive Operations

Typical synchronization 
mechanisms do this a lot

Heavily 
optimized 

reader-writer 
lock might get 

here for readers 
(but too bad 
about those 

poor writers...)

Need to be here!
(Partitioning/RCU/hazptr)
But can't always!

Operation Cost (ns) Ratio
Clock period 0.4 1
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache miss 12.9 35.8
CAS cache miss 7.0 19.4

31.2 86.6
31.2 86.5
92.4 256.7
95.9 266.4

Single cache miss (off-core)
CAS cache miss (off-core)
Single cache miss (off-socket)
CAS cache miss (off-socket)
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Design Principle: Avoid Contention

Locking
Non-Blocking

Synchronization
Desired

State

Spin-wait

Release
contention

Acquire
contention

Preparation

Attempt

Preparation

Retry

Simple non-blocking synchronization does very well

Success

Preparation

Retry
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Design Principle: Get Your Money's Worth

 If synchronization is expensive, use large critical sections

On Nehalem, off-socket CAS costs about 260 cycles
–So instead of a single-cycle critical section, have a 26000-cycle critical 

section, reducing synchronization overhead to about 1%

256.7 cycles
1 cycle

99.6% overhead

256.7 cycles
25,670 cycles

0.99% overhead
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Design Principle: Get Your Money's Worth

 If synchronization is expensive, use large critical sections

On Nehalem, off-socket CAS costs about 260 cycles
–So instead of a single-cycle critical section, have a 26000-cycle critical 

section, reducing synchronization overhead to about 1%

Of course, we also need to keep contention low, which 
usually means we want short critical sections

–Resolve this by applying parallelism at as high a level as possible
–Parallelize entire applications rather than low-level algorithms!

This does not work for Schrödinger: The overhead of hash-
table operations is too low

–Which is precisely why we selected hash tables in the first place!!!
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Design Principle: Leverage Read-Mostly Situations
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Read-only data remains replicated in all cachesRead-only data remains replicated in all caches

Read-mostly access dodges the laws of physics!!!
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Updates Hit Hard By Unforgiving Laws of Physics
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Read-only data remains replicated in all caches,Read-only data remains replicated in all caches,
but each update destroys other replicas!but each update destroys other replicas!
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Design Principle: Leverage Locality!!!
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Each CPU operates on its own “shard” of the data,Each CPU operates on its own “shard” of the data,
preserving cache locality and performancepreserving cache locality and performance
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What is RCU?

Updates:  Just Say “No”???

 “Doing updates is slow and non-scalable!”

 “Then don't do updates!”
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Updates:  Just Say “No”???

 “Doing updates is slow and non-scalable!”

 “Then don't do updates!”

OK, OK, don't do unnecessary updates!!!
For example, read-only traversal to update location
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Spin

Design Principle: Avoid Mutual Exclusion!!!

CPU 0

CPU 1

CPU 2

CPU 3

Reader

Reader

Reader

Reader

Reader

Reader

Reader

UpdaterReader Reader

Dead
Time!!! Reader

Reader

Reader

Reader
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Design Principle: Avoiding Mutual Exclusion

CPU 0

CPU 1

CPU 2

CPU 3

Reader

Reader

Reader

Reader

Reader

Reader

Reader

UpdaterReader Reader

Reader

Reader

Reader

Reader

Reader

Reader

No Dead Time!No Dead Time!

Reader Reader

Reader

Reader

ReaderReader
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But How Can This Possibly Be Implemented???
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Implementing Read-Copy Update (RCU)

Lightest-weight conceivable read-side primitives
–/* Assume non-preemptible (run-to-block) environment. */
–#define rcu_read_lock()
–#define rcu_read_unlock()
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What is RCU?

Implementing Read-Copy Update (RCU)

Lightest-weight conceivable read-side primitives
–/* Assume non-preemptible (run-to-block) environment. */
–#define rcu_read_lock()
–#define rcu_read_unlock()

Advantages: Best possible performance, scalability, real-time 
response, wait-freedom, and energy efficiency

Disadvantage: How can something that does not affect 
machine state possibly be used as a synchronization 
primitive???
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Implementing Read-Copy Update (RCU)

Lightest-weight conceivable read-side primitives
–/* Assume non-preemptible (run-to-block) environment. */
–#define rcu_read_lock()
–#define rcu_read_unlock()

Advantages: Best possible performance, scalability, real-time 
response, wait-freedom, and energy efficiency

Disadvantage: How can something that does not affect 
machine state possibly be used as a synchronization 
primitive???
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What Is RCU?

Publishing of new data

Subscribing to the current version of data

Waiting for pre-existing RCU readers: Avoid disrupting 
readers by maintaining multiple versions of the data

–Each reader continues traversing its copy of the data while a new copy 
might be being created concurrently by each updater *

• Hence the name read-copy update, or RCU
–Once all pre-existing RCU readers are done with them, old versions of 

the data may be discarded

* This backronym expansion provided by Jonathan Walpole



© 2018 IBM Corporation60

What is RCU?

Publication of And Subscription to New Data

A cptr
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Key: Dangerous for updates: all readers can access
Still dangerous for updates: pre-existing readers can access (next slide)
Safe for updates: inaccessible to all readers

readertmp tmp tmp
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What is RCU?

Memory Ordering: Mischief From Compiler and CPU
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What is RCU?

Memory Ordering: Mischief From Compiler and CPU

Original updater code:
p = malloc(sizeof(*p));
p->a = 1;
p->b = 2;
p->c = 3;
cptr = p;

Original reader code:
p = cptr;
foo(p->a, p->b, p->c);

Mischievous updater code:
p = malloc(sizeof(*p));
cptr = p;
p->a = 1;
p->b = 2;
p->c = 3;

Mischievous reader code:
retry:
p = guess(cptr);
foo(p->a, p->b, p->c);
if (p != cptr)
    goto retry;
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What is RCU?

Memory Ordering: Mischief From Compiler and CPU

Original updater code:
p = malloc(sizeof(*p));
p->a = 1;
p->b = 2;
p->c = 3;
cptr = p;

Original reader code:
p = cptr;
foo(p->a, p->b, p->c);

Mischievous updater code:
p = malloc(sizeof(*p));
cptr = p;
p->a = 1;
p->b = 2;
p->c = 3;

Mischievous reader code:
retry:
p = guess(cptr);
foo(p->a, p->b, p->c);
if (p != cptr)
    goto retry;

But don't take my word for it on HW value speculation:
http://www.openvms.compaq.com/wizard/wiz_2637.html



© 2018 IBM Corporation64

What is RCU?

Preventing Memory-Order Mischief

Updater uses rcu_assign_pointer() to publish pointer:
#define rcu_assign_pointer(p, v) \
        smp_store_release((p), (v))

Reader uses rcu_dereference() to subscribe to pointer:
#define rcu_dereference(p) \
({ \
        typeof(*p) *__p1 = READ_ONCE(p); \
        __p1; \
})

The Linux-kernel definitions are more ornate
–Debug code: Static analysis and lock dependency checking
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Preventing Memory-Order Mischief

 “Memory-order-mischief proof” updater code:
p = malloc(sizeof(*p));
p->a = 1;
p->b = 2;
p->c = 3;
rcu_assign_pointer(cptr, p);

 “Memory-order-mischief proof” reader code:
p = rcu_dereference(cptr);
foo(p->a, p->b, p->c);
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Publication of And Subscription to New Data
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Key: Dangerous for updates: all readers can access
Still dangerous for updates: pre-existing readers can access (next slide)
Safe for updates: inaccessible to all readers

readertmp tmp tmp

But if all we do is add, we have a big memory leak!!!But if all we do is add, we have a big memory leak!!!
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RCU Removal From Linked List

 Combines waiting for readers and multiple versions:
– Writer removes the cat's element from the list (list_del_rcu())

– Writer waits for all readers to finish (synchronize_rcu())

– Writer can then free the cat's element (kfree())
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RCU Removal From Linked List

 Combines waiting for readers and multiple versions:
– Writer removes the cat's element from the list (list_del_rcu())

– Writer waits for all readers to finish (synchronize_rcu())

– Writer can then free the cat's element (kfree())

A

B

C

boa

cat

gnu

boa

cat

gnu

boa

cat

gnu

boa

gnu
sy

nc
hr

on
iz

e_
rc

u(
)

lis
t_

de
l_

rc
u(

)

One Version Two Versions One Version

Readers? Readers? Readers?X

One Version

kf
re

e(
)

But how can software deal with two different versions simultaneously???But how can software deal with two different versions simultaneously???
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Two Different Versions Simultaneously???
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RCU Removal From Linked List

 Combines waiting for readers and multiple versions:
– Writer removes the cat's element from the list (list_del_rcu())

– Writer waits for all readers to finish (synchronize_rcu())

– Writer can then free the cat's element (kfree())
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But if readers leave no trace in memory, how can we But if readers leave no trace in memory, how can we 
possibly tell when they are done???possibly tell when they are done???
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How Can RCU Tell When Readers Are Done???
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What is RCU?

How Can RCU Tell When Readers Are Done???

That is, without re-introducing all of the overhead and latency inherent to other That is, without re-introducing all of the overhead and latency inherent to other 
synchronization mechanisms...synchronization mechanisms...
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But First, Some RCU Nomenclature

RCU read-side critical section
– Begins with rcu_read_lock(), ends with rcu_read_unlock(), and may contain 

rcu_dereference()

Quiescent state
– Any code that is not in an RCU read-side critical section

Extended quiescent state
– Quiescent state that persists for a significant time period

RCU grace period
– Time period when every thread was in at least one quiescent state
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But First, Some RCU Nomenclature

RCU read-side critical section
– Begins with rcu_read_lock(), ends with rcu_read_unlock(), and may contain 

rcu_dereference()

Quiescent state
– Any code that is not in an RCU read-side critical section

Extended quiescent state
– Quiescent state that persists for a significant time period

RCU grace period
– Time period when every thread was in at least one quiescent state

OK, names are nice, but how can you possibly implement this???
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What is RCU?

Waiting for Pre-Existing Readers: QSBR

 Non-preemptive environment (CONFIG_PREEMPT=n)
– RCU readers are not permitted to block
– Same rule as for tasks holding spinlocks
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What is RCU?

Waiting for Pre-Existing Readers: QSBR

 Non-preemptive environment (CONFIG_PREEMPT=n)
– RCU readers are not permitted to block
– Same rule as for tasks holding spinlocks

 CPU context switch means all that CPU's readers are done

 Grace period ends after all CPUs execute a context switch

synchronize_rcu()

CPU 0

CPU 1

CPU 2

co
nt

ex
t  

sw
itc

h

Grace Period

RCU re
ad

er

remove cat free cat
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What is RCU?

Synchronization Without Changing Machine State???

But rcu_read_lock() does not need to change machine state
–Instead, it acts on the developer, who must avoid blocking within RCU 

read-side critical sections
–Or, more generally, avoid quiescent states within RCU read-side 

critical sections
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Synchronization Without Changing Machine State???

But rcu_read_lock() does not need to change machine state
–Instead, it acts on the developer, who must avoid blocking within RCU 

read-side critical sections
–Or, more generally, avoid quiescent states within RCU read-side 

critical sections

RCU is therefore synchronization via social engineering
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What is RCU?

Synchronization Without Changing Machine State???

But rcu_read_lock() does not need to change machine state
–Instead, it acts on the developer, who must avoid blocking within RCU 

read-side critical sections
–Or, more generally, avoid quiescent states within RCU read-side 

critical sections

RCU is therefore synchronization via social engineering

As are all other synchronization mechanisms:
–“Avoid data races”
–“Protect specified variables with the corresponding lock”
–“Access shared variables only within transactions”
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What is RCU?

Synchronization Without Changing Machine State???

But rcu_read_lock() does not need to change machine state
–Instead, it acts on the developer, who must avoid blocking within RCU 

read-side critical sections
–Or, more generally, avoid quiescent states within RCU read-side 

critical sections

RCU is therefore synchronization via social engineering

As are all other synchronization mechanisms:
–“Avoid data races”
–“Protect specified variables with the corresponding lock”
–“Access shared variables only within transactions”

RCU is unusual is being a purely social-engineering approach
–But RCU implementations for preemptive environments do use 

lightweight code in addition to social engineering

Userspace RCU: http://liburcu.org
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Toy Implementation of RCU: 15 Lines of Code

 Read-side primitives:
#define rcu_read_lock()
#define rcu_read_unlock()
#define rcu_dereference(p) \
({ \
        typeof(*p) *__p1 = READ_ONCE(p); \
        __p1; \
})

 Update-side primitives
#define rcu_assign_pointer(p, v) smp_store_release((p), (v))
void synchronize_rcu(void)
{
        int cpu;

        for_each_online_cpu(cpu)
                run_on(cpu);
}
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Toy Implementation of RCU: 15 Lines of Code,
Full Read-Side Performance!!!
 Read-side primitives:

#define rcu_read_lock()
#define rcu_read_unlock()
#define rcu_dereference(p) \
({ \
        typeof(*p) *__p1 = READ_ONCE(p); \
        __p1; \
})

 Update-side primitives
#define rcu_assign_pointer(p, v) smp_store_release((p), (v))
void synchronize_rcu(void)
{
        int cpu;

        for_each_online_cpu(cpu)
                run_on(cpu);
}

Only 9 of which are needed on sequentially consistent systems...
And some people still insist that RCU is complicated...  ;-)



© 2018 IBM Corporation83

What is RCU?

RCU Usage: Readers

Pointer to RCU-protected object guaranteed to exist 
throughout RCU read-side critical section

rcu_read_lock(); /* Start critical section. */
p = rcu_dereference(cptr);
/* *p guaranteed to exist. */
do_something_with(p);
rcu_read_unlock(); /* End critical section. */
/* *p might be freed!!! */

The rcu_read_lock(), rcu_dereference() and 
rcu_read_unlock() primitives are very light weight

However, updaters must take care...
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RCU Usage: Updaters

Updaters must wait for an RCU grace period to elapse 
between making something inaccessible to readers and 
freeing it

spin_lock(&updater_lock);
q = cptr;
rcu_assign_pointer(cptr, new_p);
spin_unlock(&updater_lock);
synchronize_rcu(); /* Wait for grace period. */
kfree(q);

RCU grace period waits for all pre-exiting readers to complete 
their RCU read-side critical sections
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What is RCU?

Alternative Implementations
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Alternative Implementations

QSBR: Blazing speed, needs non-preemptive environment

Disable preemption: Fast, OK for milliseconds realtime

Preemptible RCU: Fast, complex, fast response times
–Less than 20 microseconds interrupt response time—in guest OS

Tasks RCU: Store reader state in task
–Which means that updates must scan the task list

SRCU: Memory barriers for readers, much simpler
–Does not require idle and offline states to be specially handled
–Provides multiple domains (see later slide)

Other technologies can achieve similar effects:
–Garbage collectors, reference counting, hazard pointers
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SRCU and Multiple Domains

Linux kernel Sleepable RCU (SRCU)
–One SRCU domain's readers don't block other domains' updaters
–Grace-period overhead is amortized over fewer updaters
–Detecting forward-progress issues requires more state
–Not heavily used: >300 call_rcu, 11 call_srcu() – see next slide
–Gaining more attention in the Linux kernel now that KVM uses it
–Accepted into Linux kernel in 2006

• Four years after RCU was accepted into the Linux kernel
• More than a decade after “read-copy lock” was added to DYNIX/ptx 

Needed for efficient RCU implementations on GPGPUs?

Needed for portable libraries and object-oriented code?
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SRCU and Multiple Domains in the Linux Kernel

Global RCU:

 rcu_read_lock(): 2626

 rcu_read_unlock(): 3310

 rcu_dereference(): 1228

 rcu_read_lock_held(): 51

synchronize_rcu(): 285

call_rcu(): 324

 rcu_barrier(): 127

Total: 7951

Domain-Based SRCU:

srcu_read_lock(): 147

srcu_read_unlock(): 168

srcu_dereference(): 30

srcu_read_lock_held(): 6

synchronize_srcu(): 50

call_srcu(): 11

srcu_barrier(): 7

Total: 419

Summer 2018, probably different by now
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Complex Atomic-To-Reader Updates, Take 1
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RCU Replacement Of Item In Linked List
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What is RCU?

RCU Grace Periods: Conceptual and Graphical Views
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RCU Grace Periods: A Conceptual View

RCU read-side critical section  (AKA reader)
– Begins with rcu_read_lock(), ends with rcu_read_unlock(), and may contain rcu_dereference()

Quiescent state
– Any code that is not in an RCU read-side critical section

Extended quiescent state
– Quiescent state that persists for a significant time period

RCU grace period
– Time period when every thread is in at least one quiescent state
– Ends when all pre-existing readers complete
– Guaranteed to complete in finite time iff all RCU read-side critical sections are of finite 

duration

But what happens if you try to extend an RCU read-side critical section across a 
grace period?
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RCU Grace Periods: A Graphical View

Change Visible
to All Readers

Reader

Change Grace Period

Reader

Reader

Reader

Reader

Reader

Forbidden!

ReaderReader

So what happens if you try to extend an RCU read-side critical section across a grace period?

rcu_read_lock()

rcu_read_unlock()RCU readers 
concurrent with 

updates

synchronize_rcu()
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RCU Grace Period: A Self-Repairing Graphical View

Grace Period         Grace Period
Change Visible
to All Readers

Reader

Change

Reader

Reader

Reader

Reader

Reader

Grace period
extends as
needed.

ReaderReader

A grace period is not permitted to end until all pre-existing readers have completed.

synchronize_rcu()
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RCU Grace Period: A Lazy Graphical View

Grace Period                Grace Period
Change Visible
to All Readers

Reader

Change

Reader

Reader

Reader

Reader

Reader

ReaderReader

But it is OK for RCU to be lazy and allow a grace period to extend longer than necessary

synchronize_rcu()
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RCU Grace Period: A Really Lazy Graphical View

Change Visible
to All Readers

Reader

Change Grace Period

Reader

Reader

Reader
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ReaderReader

And it is also OK for RCU to be even more lazy and start a grace period later than necessary
But why is this useful?

synchronize_rcu()
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RCU Grace Period: A Usefully Lazy Graphical View

Change Visible
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Starting a grace period late can allow it to serve multiple updates, decreasing
the per-update RCU overhead. But...

synchronize_rcu()
Change

synchronize_rcu()
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The Costs and Benefits of Laziness

Starting the grace period later increases the number of 
updates per grace period, reducing the per-update overhead

Delaying the end of the grace period increases grace-period 
latency

 Increasing the number of updates per grace period increases 
the memory usage

–Therefore, starting grace periods late is a good tradeoff if memory is 
cheap and communication is expense, as is the case in modern 
multicore systems

• And if real-time threads avoid waiting for grace periods to complete
–However...
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RCU Grace Period: A Too-Lazy Graphical View
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Reader

Change Grace Period
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And it is OK for the system to complain (or even abort) if a grace period extends too long.
Too-long grace periods are likely to result in death by memory exhaustion anyway.

synchronize_rcu()

Reader

!!!
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RCU Asynchronous Grace-Period Detection
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RCU Asynchronous Grace-Period Detection

The call_rcu() function registers an RCU callback, which is invoked 
after a subsequent grace period elapses

API:
call_rcu(struct rcu_head head,
         void (*func)(struct rcu_head *rcu));

The rcu_head structure:
struct rcu_head {
        struct rcu_head *next;
        void (*func)(struct rcu_head *rcu);
};

The rcu_head structure is normally embedded within the RCU-
protected data structure
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RCU Grace Period: An Asynchronous Graphical View

Change Visible
to All Readers

Reader

Change Grace Period
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func(&p->rcu);func(&p->rcu);call_rcu(&p->rcu, func);call_rcu(&p->rcu, func);
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RCU Memory Ordering (1/2)

rcu_read_lock()

rcu_read_unlock()

rcu_barrier() call

rcu_barrier() return

call_rcu()

callback invocation
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RCU Memory Ordering (2/2)

rcu_read_lock()

rcu_read_unlock()

call_rcu()

callback invocation
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Forward Progress
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Forward Progress

 In the Linux kernel, a user can firehose callbacks as follows:
for (;;) close(open(...));

–This must be handled gracefully

Rate-limit close() – but not in the Linux kernel

Expedite grace periods when a given CPU's callback list 
becomes too long (10,000 by default in the Linux kernel)

–Start grace period if one has not already started
–Force more frequent scans for idle CPUs
–Force reschedules of CPUs not yet seen in a quiescent state
–Take advantage of cond_resched() preemption points

Expedite grace periods that become too old
–As above, at about 100ms, 10.5s, and 21s by default
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Forward Progress: Limitations

Acquiring a lock and never releasing is a bad idea
–Especially if something else is trying to acquire that lock

Similarly, doing rcu_read_lock() without ever doing the 
matching rcu_read_unlock() is a bad idea

–Especially if your system doesn't have much extra memory
–Note that indefinitely preempting an RCU reader can have the effect of 

never doing the matching rcu_read_unlock()
• For preemptible RCU, the Linux kernel provides RCU priority boosting
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Why Way More Than 15 Lines of Code???
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Here is Your Elegant Synchronization Mechanism:

Photo by "Golden Trvs Gol twister", CC by SA 3.0
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Here is Your Elegant Synchronization Mechanism
Equipped To Survive In The Linux Kernel:

Photo by Луц Фишер-Лампрехт, CC by SA 3.0
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A Few of the Things That RCU Must Survive:

 Systems with 1000s of CPUs

 Sub-20-microsecond real-time response requirements

 CPUs can come and go (“CPU hotplug”)

 If you disturb idle CPUs. you enrage low-power embedded folks

 Forward progress requirements: callbacks, network DoS attacks

 RCU grace periods must provide extremely strong ordering

 RCU uses the scheduler, and the scheduler uses RCU

 Firmware sometimes lies about the number of CPUs

 RCU must work during early boot, even before initialization

 Preemption can happen, even when interrupts are disabled (vCPUs!)

 RCU should identify errors in client code (maintainer self-defense!)
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Performance
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Theoretical Performance
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Measured Performance
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Schrödinger's Zoo: Read-Only

RCU and hazard pointers scale quite well!!! 
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Schrödinger's Zoo: Read-Only Cat-Heavy Workload

RCU handles locality, hazard pointers not bad, bucket locking horrible!
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Schrödinger's Zoo: Reads and Updates
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Real-Time Response to Changes
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RCU vs. Reader-Writer-Lock Real-Time Latency

rwlock reader

rwlock reader

rwlock reader

spin

spin

rwlock writer

spin

spin

rwlock reader

rwlock reader

rwlock reader

rwlock reader

RCU reader

RCU reader

RCU reader

RCU reader

RCU reader

RCU reader

RCU updater

RCU reader

RCU reader

RCU reader

External Event

RCU Latency

rwlock Latency



© 2018 IBM Corporation120

What is RCU?

RCU Performance: “Free is a Very Good Price!!!”
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RCU Performance: “Free is a Very Good Price!!!”
And Nothing Is Faster Than Doing Nothing!!!
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RCU Area of Applicability Schrödinger's zoo!

Need fully fresh and consistent data

Stale and inconsistent data OK
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1. RCU provides ABA protection for update-friendly mechanisms
2. RCU provides bounded wait-free read-side primitives for real-time use
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Which to Choose?
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Existence Guarantees

Purpose: Avoid data being yanked from under reader

Reference counting (also non-blocking synchronization)
–Possible, but complex and error-prone

Hazard pointers: Yes

Sequence locks: No
–You just get told later that something might have been yanked

RCU: Yes
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Reader/Writer Concurrent Forward Progress

Purpose: Avoid starvation independent of workload

Reference counting: Yes

Hazard pointers; Yes

Sequence locks: No, updates roll back readers

RCU: Yes
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Avoid Read-Side Contention

Purpose: Scalability, performance, forward progress

Reference counting: No, high memory contention

Hazard pointers: Yes

Sequence locking: Yes

RCU: Yes
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Degree of Read-Side Critical-Section Overhead

Purpose: Low overhead means faster execution

Reference counting: None (no critical sections)

Hazard pointers: None (no critical sections)

Sequence locks: Two full memory barriers

RCU:
–Ranges from none (QSBR) to two full memory barriers (SRCU)
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Read-Side Per-Object Traversal Overhead

Purpose: Low overhead for faster execution

Reference counting: RMW atomic operations, memory-barrier 
instructions, and cache misses

Hazard pointers: smp_mb(), but can eliminate with operating-
system membarrier support

Sequence locking: Kernel panic!!!

RCU: None (except on DEC Alpha)
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Read-Side Forward Progress Guarantee

Purpose: Meet response-time commitments

Reference counting: Lock free

Hazard pointers: Lock free

Sequence locks: Blocking (can wait on updater)

RCU: Population-oblivious bounded wait-free
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Read-Side Reference Acquisition

Purpose: Must client code retry read-side traversals?

Reference counting: Traverals can fail, requiring retry

Hazard pointers: Traverals can fail, requiring retry

Sequence locking: Kernel can panic

RCU: Traverals guaranteed to succeed, no retry needed
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Memory Footprint

Purpose: Small memory footprints are good!
–Especially if you are as old as I am!!!

Reference counting: Bounded (number of active references)

Hazard pointers: Bounded (number of active references, 
though tight bound incurs CPU overhead)

Sequence locks: Bounded (especially given unsafe traversal)

RCU: Unbounded or updaters delayed
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Reclamation Forward Progress

Purpose: Tight memory footprint independent of workload

Reference counting: Lock free

Hazard pointers: Lock free

Sequence locking: N/A

RCU: Blocking: Single reader can block reclamation
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Automatic Reclamation

Purpose: Simplify memory management

Reference counting: Yes

Hazard pointers: No, but working on it

Sequence locking: N/A

RCU: No, but working on it
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Lines of Code for Pre-BSD Routing Table

Reference counting: 94 (but buggy)

Hazard pointers: 79

Sequence locks: 79 (but buggy)

RCU: 73
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Different Design Points!

Locking is still the workhorse for production software

Non-blocking synchronization where it works well

Reference counting OK on small systems or for rarely 
accessed portions of larger systems, and provide tight bounds 
on memory.  Traversals subject to retry.

Hazard pointers handle large systems, provide tight bounds on 
memory, excellent scalability, and decent traversal 
performance.  Traversals subject to retry.

Sequence locks need one of the other approaches

RCU handles huge systems, excellent scalability and traversal 
overhead, no-retry traversals.  Large memory footprint.
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RCU Applicability to the Linux Kernel



© 2018 IBM Corporation137

What is RCU?

Complex Atomic-To-Reader Updates, Take 2
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Complex Atomic-To-Reader Updates, Take 2
Atomic Multi-Structure Update: Issaquah Challenge
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Atomic Multi-Structure Update: Issaquah Challenge

1 2 3 4 1 2 3 4

Atomically move element 1 from left to right tree
Atomically move element 4 from right to left tree
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Atomic Multi-Structure Update: Issaquah Challenge

1 2 3 4 1 2 3 4

Atomically move element 1 from left to right tree
Atomically move element 4 from right to left tree
Without contention between the two move operations!
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Atomic Multi-Structure Update: Issaquah Challenge

1 2 3 4 1 2 3 4

Atomically move element 1 from left to right tree
Atomically move element 4 from right to left tree
Without contention between the two move operations!
Hence, most locking solutions “need not apply”
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Recall Applicable Laws of Physics...

The finite speed of light

The atomic nature of matter

We therefore avoid unnecessary updates!!!
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Update-Heavy Workloads Painful for Parallelism!!!
But There Are Some Special Cases...
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But There Are Some Special Cases

Per-CPU/thread processing (perfect partitioning)
–Huge number of examples, including the per-thread/CPU stack
–We will look at split counters

Read-only traversal to location being updated
–Key to solving the Issaquah Challenge

Trivial Lock-Based Concurrent Deque???
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Split Counters
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Split Counters Diagram

Counter 0

Counter 1

Counter 2

Counter 3

Counter 4

Counter 5

Increment only your own counter
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Split Counters Diagram

Counter 0

Counter 1

Counter 2

Counter 3

Counter 4

Counter 5

Sum all counters
While they continue changing
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Split Counters Lesson

Updates need not slow us down – if we maintain good locality

For the split counters example, in the common case, each 
thread only updates its own counter

–Reads of all counters should be rare
–If they are not rare, use some other counting algorithm
–There are a lot of them, see “Counting” chapter of “Is Parallel 

Programming Hard, And, If So, What Can You Do About It?”  
(http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html)
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Trivial Lock-Based Concurrent Dequeue
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Trivial Lock-Based Concurrent Dequeue

Use two lock-based dequeues
–Can always insert concurrently: grab dequeue's lock
–Can always remove concurrently unless one or both are empty

• If yours is empty, grab both locks in order!

Left
Head

Right
Head

A B C D

Left
Head

Right
Head

A
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What is RCU?

Trivial Lock-Based Concurrent Dequeue

Use two lock-based dequeues
–Can always insert concurrently: grab dequeue's lock
–Can always remove concurrently unless one or both are empty

• If yours is empty, grab both locks in order!

But why push all your data through one dequeue???

Left
Head

Right
Head

A B C D

Left
Head

Right
Head

A
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Trivial Lock-Based Concurrent Dequeue Performance

Dalessandro et al., “Hybrid NOrec: A Case Study in the 
Effectiveness of Best Effort Hardware Transactional Memory”, 
ASPLOS'11, March 5-11, Newport Beach, California, USA

–See "Deque benchmark" subsection of section 4.2 on page 6, 
especially Figure 7a (next slide)

–Lock-based dequeue beats all STM algorithms

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided 
that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation 
on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission 
and/or a fee.  (Applies only to next slide.)
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Dalessandro et al. Figure 7a:
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Trivial Lock-Based Concurrent Dequeue Performance

Dice et al., “Simplifying concurrent algorithms by exploiting 
hardware transactional memory”, SPAA'10, June 13-15, 
2010, Thira, Santorini, Greece.

–See Figure 1 and discussion in Section 3 on page 2
–Lock-based dequeue beats all HTM algorithms at some point

Both sets of authors were exceedingly gracious, without the 
need for a Code of Conflict

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided 
that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation 
on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission 
and/or a fee.  (Applies only to next slide.)
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Dice et al., Figure 1
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Read-Only Traversal To Location Being Updated
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Why Read-Only Traversal To Update Location?

Lock contention despite read-only accesses!

. . .

. . .

Lock root

Lock child, unlock root

Lock child, unlock parent

Lock child, unlock parent

Lock child, retain parent's lock
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And This Is Another Reason Why We Have RCU!

 (You can also use garbage collectors, hazard pointers, reference 
counters, etc.)

 Design principle: Avoid expensive operations in read-side code

 As noted earlier, lightest-weight conceivable read-side primitives
/* Assume non-preemptible (run-to-block) environment. */
#define rcu_read_lock()
#define rcu_read_unlock()
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Better Read-Only Traversal To Update Location
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Deletion-Flagged Read-Only Traversal

. . .

. . .

RCU

Locking

Lockless RCU-protected traversal

Acquire locks, recheck state,
retry if concurrent update

Marked deleted
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Read-Only Traversal To Location Being Updated

Focus contention on portion of structure being updated
–And preserve locality of reference to different parts of structure

Of course, full partitioning is better!

Read-only traversal technique citations:
–Arbel & Attiya, “Concurrent Updates with RCU: Search Tree as an 

Example”, PODC'14 (very similar lookup, insert, and delete)
–McKenney, Sarma, & Soni, “Scaling dcache with RCU”, Linux Journal, 

January 2004
–And possibly: Pugh, “Concurrent Maintenance of Skip Lists”, University 

of Maryland Technical Report CS-TR-2222.1, June 1990
–And maybe also: Kung & Lehman, “Concurrent Manipulation of Binary 

Search Trees”, ACM TODS, September, 1980
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Issaquah Challenge: One Solution
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Locking Regions for Binary Search Tree

In many cases, can implement existence as simple wrapper!

. . . . . .

. . .. . . . . .

RCU RCU

Locking Locking

Existence
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Possible Upsets While Acquiring Locks...

1

1

Before

After

1

1

1

1

1

1

What to do?
Drop locks and retry!!!
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Existence Structures
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Existence Structures

Solving yet another computer-science problem by adding an 
additional level of indirection...
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Example Existence Structure Before Switch

Data
Structure A

Existence

Data
Structure B

Existence

Existence

Offset=0

Existence

Offset=1

Existence
Switch

1

0

0

1
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Example Existence Structure After Switch

Existence

Existence

Existence

Offset=0

Existence

Offset=1

Existence
Switch

1

0

0

1

Data
Structure A

Data
Structure B
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But Levels of Indirection Are Expensive!

And I didn't just add one level of indirection, I added three!

But most of the time, elements exist and are not being moved

So represent this common case with a NULL pointer
–If the existence pointer is NULL, element exists: No indirection needed
–Backwards of the usual use of a NULL pointer, but so it goes!

 In the uncommon case, traverse existence structure as shown 
on the preceding slides

–Expensive, multiple cache misses, but that is OK in the uncommon case

There is no free lunch:
–With this optimization, loads need smp_load_acquire() rather than 

READ_ONCE(), ACCESS_ONCE(), or rcu_dereference()

Can use low-order pointer bits to remove two levels of indirection
–Kudos to Dmitry Vyukov for this trick
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Example Existence Structure: Dmitry's Approach

0

1

Existence | 0

Existence | 1

Existence
Switch 0/1

Data
Structure A

Data
Structure B
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Example Existence Structure: Dmitry's Approach

0

1

Existence | 0

Existence | 1

Existence

Switch 0

Data
Structure A

Data
Structure B
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Example Existence Structure: Dmitry's Approach

0

1

Existence | 0

Existence | 1

Existence

Switch 1

Data
Structure A

Data
Structure B
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Abbreviated Existence Switch Operation (1/6)

1 2 3 2 3 4

Initial state: First tree contains 1,2,3, second tree contains 2,3,4.
All existence pointers are NULL.
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Abbreviated Existence Switch Operation (2/6)

1 2 3

4 1

2 3 4

First tree contains 1,2,3, second tree contains 2,3,4.

1

0
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Abbreviated Existence Switch Operation (3/6)

1 2 3 4 1 2 3 4

After insertion, same: First tree contains 1,2,3, second tree contains 2,3,4.

1

0
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Abbreviated Existence Switch Operation (4/6)

1 2 3 4 1 2 3 4

After existence switch: First tree contains 2,3,4, second tree contains 1,2,3.
Transition is single store, thus atomic!  (But lookups need barriers in this case.)

1

0
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Abbreviated Existence Switch Operation (5/6)

1 2 3 4 1 2 3 4

Unlink old nodes and allegiance structure

0

0

1
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Abbreviated Existence Switch Operation (6/6)

2 3 4 1 2 3

After waiting a grace period, can free up existence structures and old nodes
And data structure preserves locality of reference!
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Existence Structures

Existence-structure reprise:
–Each data element has an existence pointer
–NULL pointer says “member of current structure”
–Non-NULL pointer references an existence structure

• Existence of multiple data elements can be switched atomically

But this needs a good API to have a chance of getting it right!
–Especially given that a NULL pointer means that the element exists!!!
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Existence Data Structures

struct existence_group {

        uintptr_t eg_state;

        struct cds_list_head eg_outgoing;

        struct cds_list_head eg_incoming;

        struct rcu_head eg_rh;

};

struct existence_head {

        uintptr_t eh_egi;

        struct cds_list_head eh_list;

        int (*eh_add)(struct existence_head *ehp);

        void (*eh_remove)(struct existence_head *ehp);

        void (*eh_free)(struct existence_head *ehp);

        int eh_gone;

        spinlock_t eh_lock;

        struct rcu_head eh_rh;

};
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Existence APIs

 void existence_init(struct existence_group *egp);

 uintptr_t existence_group_outgoing(struct existence_group *egp);

 uintptr_t existence_group_incoming(struct existence_group *egp);

 void existence_set(struct existence **epp, struct existence *ep);

 void existence_clear(struct existence **epp);

 int existence_exists(struct existence_head *ehp);

 int existence_exists_relaxed(struct existence_head *ehp);

 int existence_head_init_incoming(struct existence_head *ehp,

                                 struct existence_group *egp,

                                 int (*eh_add)(struct existence_head *ehp),

                                 void (*eh_remove)(struct existence_head *ehp),

                                 void (*eh_free)(struct existence_head *ehp))

 int existence_head_set_outgoing(struct existence_head *ehp,

                                struct existence_group *egp)

 void existence_flip(struct existence_group *egp);

 void existence_backout(struct existence_group *egp)
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Existence Data Structures: Multiple Membership

Data Structure
Header

existence_head
structure

User Pointer

existence_group
structure

Data Structure
Header

existence_head
structure

User Pointer

Data Structure 1 Data Structure 2

User Data
Element

User data element atomically moving from data structure 1 to 2,
which can be different types of data structures
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Pseudo-Code for Atomic Move

 Allocate and initialize existence_group structure (existence_group_init())

 Add outgoing existence structure to item in source tree 
(existence_head_set_outgoing())

–If operation fails, existence_backout() and report error to caller
–Or maybe retry later

 Insert new element (with source item's data pointer) to destination tree 
existence_head_init_incoming())

–If operation fails, existence_backout() and error to caller
–Or maybe retry later

 Invoke existence_flip() to flip incoming and outgoing
–And existence_flip() automatically cleans up after the operation
–Just as existence_backout() does after a failed operation
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Existence Structures: Performance and Scalability

100% lookups
Super-linear as expected based on range partitioning

(Hash tables about 3x faster)

80.5x

89.8x

CPPCON

LCA
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Existence Structures: Performance and Scalability

90% lookups, 3% insertions, 3% deletions, 3% full tree scans, 1% moves
(Workload approximates Gramoli et al. CACM Jan. 2014)

39.9x

40.0x

CPPCON

LCA
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Existence Structures: Performance and Scalability

100% moves (worst case)

7.1x
6.4x

3.7x

CPPCON

LCA

N4037
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Existence Structures: Performance and Scalability

100% moves: Still room for improvement!

12.7x

29.2x

CPPCON

LCA
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What is RCU?

But Requires Modifications to Existing Algorithms
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What is RCU?

But Requires Modifications to Existing Algorithms
New Goal: Use RCU Algorithms Unchanged!!!
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Rotate 3 Elements Through 3 Hash Tables (1/4)

HT 1 HT 2 HT 3

permanent permanent permanent

EL 1 EL 2 EL 3
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Rotate 3 Elements Through 3 Hash Tables (2/4)

HT 1 HT 2 HT 3

outgoing outgoing outgoing

incoming incoming  incoming

EL 1 EL 2 EL 3

Existence Structure 0
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Rotate 3 Elements Through 3 Hash Tables (3/4)

HT 1 HT 2 HT 3

outgoing outgoing outgoing

incoming incoming  incoming

EL 1 EL 2 EL 3

Existence Structure 1
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Rotate 3 Elements Through 3 Hash Tables (4/4)

HT 1 HT 2 HT 3

permanent permanent permanent

EL 1 EL 2 EL 3
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Data to Rotate 3 Elements Through 3 Hash Tables

struct keyvalue {

        unsigned long key;

        unsigned long value;

        atomic_t refcnt;

};

struct hash_exists {

        struct ht_elem he_hte;

        struct hashtab *he_htp;

        struct existence_head he_eh;

        struct keyvalue *he_kv;

};
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Code to Rotate 3 Elements Through 3 Hash Tables

egp = malloc(sizeof(*egp));

BUG_ON(!egp);

existence_group_init(egp);

rcu_read_lock();

heo[0] = hash_exists_alloc(egp, htp[0], hei[2]->he_kv, ~0, ~0);

heo[1] = hash_exists_alloc(egp, htp[1], hei[0]->he_kv, ~0, ~0);

heo[2] = hash_exists_alloc(egp, htp[2], hei[1]->he_kv, ~0, ~0);

BUG_ON(existence_head_set_outgoing(&hei[0]->he_eh, egp));

BUG_ON(existence_head_set_outgoing(&hei[1]->he_eh, egp));

BUG_ON(existence_head_set_outgoing(&hei[2]->he_eh, egp));

rcu_read_unlock();

existence_flip(egp);

call_rcu(&egp->eg_rh, existence_group_rcu_cb);

BUG_ON()s become checks with calls to existence_backout() if contention possible
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Code to Rotate 3 Elements Through 3 Hash Tables

egp = malloc(sizeof(*egp));

BUG_ON(!egp);

existence_group_init(egp);

rcu_read_lock();

heo[0] = hash_exists_alloc(egp, htp[0], hei[2]->he_kv, ~0, ~0);

heo[1] = hash_exists_alloc(egp, htp[1], hei[0]->he_kv, ~0, ~0);

heo[2] = hash_exists_alloc(egp, htp[2], hei[1]->he_kv, ~0, ~0);

BUG_ON(existence_head_set_outgoing(&hei[0]->he_eh, egp));

BUG_ON(existence_head_set_outgoing(&hei[1]->he_eh, egp));

BUG_ON(existence_head_set_outgoing(&hei[2]->he_eh, egp));

rcu_read_unlock();

existence_flip(egp);

call_rcu(&egp->eg_rh, existence_group_rcu_cb);

BUG_ON()s become checks with calls to existence_backout() if contention possible
Works with an RCU-protected hash table that knows nothing of atomic move!!!
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Performance and Scalability of New-Age Existence 
Structures?
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Performance and Scalability of New-Age Existence 
Structures?

For readers, as good as ever

For update-only triple-hash rotations, not so good!
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Triple-Hash Rotations are Pure Updates: Red Zone!

Opportunity to improve the infrastructure!

Need fully fresh and consistent data

Stale and inconsistent data OK
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Existence Structures: Towards Update Scalability

 “Providing perfect performance and scalability is like committing the perfect crime.  
There are 50 things that might go wrong, and if you are a genius, you might be 
able to foresee and forestall 25 of them.” – Paraphrased from Body Heat, w/apologies to 
Kathleen Turner fans

 Issues thus far:
– Data structure alignment (false sharing) – easy fix
– User-space RCU configuration (need per-thread call_rcu() handling, also easy fix)
– The “perf” tool shows massive futex contention, checking locking design finds nothing

• And replacing all lock acquisitions with “if (!trylock()) abort” never aborts
• Other “perf” entries shift suspicion to memory allocators

– Non-scalable memory allocators: More complex operations means more allocations!!!
• The glibc allocator need not apply for this job
• The jemalloc allocator bloats the per-thread lists, resulting in ever-growing RSS
• The tcmalloc allocator suffers from lock contention moving to/from global pool
• A tcmalloc that is better able to handle producer-consumer relations in the works, but 

I first heard of this a few years back and it still has not made its appearance
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What is RCU?

Existence Structures: Towards Update Scalability

 “Providing perfect performance and scalability is like committing the perfect crime.  
There are 50 things that might go wrong, and if you are a genius, you might be 
able to foresee and forestall 25 of them.” – Paraphrased from Body Heat, w/apologies to 
Kathleen Turner fans

 Issues thus far:
– Data structure alignment (false sharing) – easy fix
– User-space RCU configuration (need per-thread call_rcu() handling, also easy fix)
– The “perf” tool shows massive futex contention, checking locking design finds nothing

• And replacing all lock acquisitions with “if (!trylock()) abort” never aborts
• Other “perf” entries shift suspicion to memory allocators

– Non-scalable memory allocators: More complex operations means more allocations!!!
• The glibc allocator need not apply for this job
• The jemalloc allocator bloats the per-thread lists, resulting in ever-growing RSS
• The tcmalloc allocator suffers from lock contention moving to/from global pool
• A tcmalloc that is better able to handle producer-consumer relations in the works, but 

I first heard of this a few years back and it still has not made its appearance

 Fortunately, I have long experience with memory allocators
– McKenney & Slingwine, “Efficient Kernel Memory Allocation on Shared-Memory 

Multiprocessors”, 1993 USENIX
– But needed to complete implementation in one day, so chose quick hack
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Specialized Producer/Consumer Allocator

RCU Callbacks

Worker Threads

Lockless
Memory Queue

Lockless
Memory Queue

Lockless
Memory Queue
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New Age Existence Structures: Towards Scalability

 “Providing perfect performance and scalability is like committing the perfect crime.  
There are 50 things that might go wrong, and if you are a genius, you might be 
able to foresee and forestall 25 of them.” – Paraphrased from Body Heat, with apologies to 
Kathleen Turner fans

 Issues thus far:
– Data structure alignment (false sharing) – easy fix
– User-space RCU configuration (need per-thread call_rcu() handling, also easy fix)
– The “perf” tool shows massive futex contention, checking locking design finds nothing

• And replacing all lock acquisitions with “if (!trylock()) abort” never aborts
• Other “perf” entries shift suspicion to memory allocators

– Non-scalable memory allocators: More complex operations means more allocations!!!
• Lockless memory queue greatly reduces memory-allocator lock contention

– Profiling shows increased memory footprint is an issue: caches and TLBs!
– Userspace RCU callback handling appears to be the next bottleneck

• Perhaps some of techniques from the Linux kernel are needed in userspace
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Performance and Scalability of New-Age Existence 
Structures for Triple Hash Rotation?

CPPCON

ACM App.

Some improvement, but still not spectacular
But note that each thread is rotating concurrently
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But What About Skiplists?
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Rotate 3 Elements Through 3 Skiplists (1/4)

SL 1 SL 2 SL 3

permanent permanent permanent

EL 1 EL 2 EL 3
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Rotate 3 Elements Through 3 Skiplists (2/4)

outgoing outgoing outgoing

incoming incoming  incoming

EL 1 EL 2 EL 3

Existence Structure 0

SL 1 SL 2 SL 3
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What is RCU?

Rotate 3 Elements Through 3 Skiplists (3/4)

outgoing outgoing outgoing

incoming incoming  incoming

EL 1 EL 2 EL 3

Existence Structure 1

SL 1 SL 2 SL 3
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Rotate 3 Elements Through 3 Skiplists (4/4)

permanent permanent permanent

EL 1 EL 2 EL 3

SL 1 SL 2 SL 3
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Data to Rotate 3 Elements Through 3 Skiplists

struct keyvalue {

        unsigned long key;

        unsigned long value;

        atomic_t refcnt;

};

struct hash_exists {

        struct skiplist se_sle;

        struct skiplist *se_slh;

        struct existence_head se_eh;

        struct keyvalue *se_kv;

};
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Code to Rotate 3 Elements Through 3 Skiplists

egp = malloc(sizeof(*egp));

BUG_ON(!egp);

existence_group_init(egp);

rcu_read_lock();

seo[0] = skiplist_exists_alloc(egp, &slp[0], sei[2]->se_kv, ~0, ~0);

seo[1] = skiplist_exists_alloc(egp, &slp[1], sei[0]->se_kv, ~0, ~0);

seo[2] = skiplist_exists_alloc(egp, &slp[2], sei[1]->se_kv, ~0, ~0);

BUG_ON(existence_head_set_outgoing(&sei[0]->se_eh, egp));

BUG_ON(existence_head_set_outgoing(&sei[1]->se_eh, egp));

BUG_ON(existence_head_set_outgoing(&sei[2]->se_eh, egp));

rcu_read_unlock();

existence_flip(egp);

call_rcu(&egp->eg_rh, existence_group_rcu_cb);

As with hash table:RCU-protected skiplist that knows nothing of atomic move
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Performance and Scalability of New-Age Existence 
Structures for Triple Skiplist Rotation?

Hash table

Skiplist

This skiplist is a random tree, so we have lock contention
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But Can We Atomically Rotate More Elements?

Apply batching optimization!

 Instead of rotating three elements through three hash tables, 
rotate three pairs of elements

Then three triplets of elements

And so on, rotating ever larger sets through the three tables
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What is RCU?

But Can We Atomically Rotate More Elements?

Apply batching optimization!

 Instead of rotating three elements through three hash tables, 
rotate three pairs of elements

Then three triplets of elements

And so on, rotating ever larger sets through the three tables

 It can be done, but there is a performance mystery
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What is RCU?

Large-Hash-Rotation Performance Mystery

Many additional optimizations are possible, but...
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What is RCU?

Even Bigger Mystery: Why Rotate This Way???
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What is RCU?

Even Bigger Mystery: Why Rotate This Way???

Every third rotation brings us back to the original state

So why bother with allocation, freeing, and grace periods?
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Even Bigger Mystery: Why Rotate This Way???

Every third rotation brings us back to the original state

So why bother with allocation, freeing, and grace periods?

Just change the existence state variable!!!
–But we need not be limited to two states
–Define kaleidoscopic data structure as one updated by state change
–Data structures and algorithms are very similar to those for existence
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Rotate Through Hash Table & Skiplist (1/3)

Hash
Table

Skiplist

permanent permanent

EL 1 EL 2
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Rotate Through Hash Table & Skiplist (2/3)

State 0 State 0

State 1 State 1

EL 1 EL 2

Kaleidoscope Structure 0

Hash
Table

Skiplist
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Rotate Through Hash Table & Skiplist (3/3)
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Rotate Through Hash Table & Skiplist (3/3)
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Very Tight Loop...

while (ACCESS_ONCE(goflag) == GOFLAG_RUN) {

        kaleidoscope_set_state(kgp, nrotations % 2);

        nrotations++;

}
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Kaleidoscopic Rotation Performance Results

This is more like it!!!  Too bad about the specificity...
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Kaleidoscopic Rotation Performance Results

This is more like it!!!  Too bad about the specificity...
As always, be wary of benchmarks!!!
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Existence Advantages and Disadvantages

 Existence requires focused developer effort

 Existence specialized to linked structures (for now, anyway)

 Existence requires explicit memory management

 Existence-based exchange operations require linked structures that 
accommodate duplicate elements

– Current prototypes disallow duplicates, explicit check for hash tables

 Existence permits irrevocable operations

 Existence can exploit locking hierarchies, reducing the need for contention 
management

 Existence achieves semi-decent performance and scalability

 Flip/backout automation significantly eases memory management

 Existence's use of synchronization primitives preserves locality of reference

 Existence is compatible with old hardware

 Existence is a downright mean memory-allocator and RCU test case!!!
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When Might You Use Existence-Based Update?

We really don't know yet
–But similar techniques are used by Linux-kernel filesystems

Best guess is when one or more of the following holds and 
you are willing to invest significant developer effort to gain 
performance and scalability:

–Many small updates to large linked data structure
–Complex updates that cannot be efficiently implemented with single 

pointer update
–Read-mostly to amortize higher overhead of complex updates
–Need compatibility with hardware not supporting transactional memory

• Side benefit: Dispense with the need for software fallbacks!
–Need to be able to do irrevocable operations (e.g., I/O) as part of data-

structure update
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Existence Structures: Production Readiness

No, it is not production ready (but was getting there)

Limping

Builds

Benchmark Special

Production: 1K Instances

Production: 1M Instances

Production: 1G Instances

LCA'15R&D Prototype

N4037

RCU

ACM'16

Current
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Existence Structures: Production Readiness

No, it is not production ready (but was getting there)

Limping

Builds

Benchmark Special

Production: 1K Instances

Production: 1M Instances

Production: 1G Instances

Production: 1T Instances

R&D Prototype LCA'15

N4037 ACM'16

RCU

Current

Need this for Internet of Things,
Validation is a big unsolved problem
Formal verification for RCU!!!
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Existence Structures: Known Antecedents

 Fraser: “Practical Lock-Freedom”, Feb 2004
– Insistence on lock freedom: High complexity, poor performance
– Similarity between Fraser's OSTM commit and existence switch

 McKenney, Krieger, Sarma, & Soni: “Atomically Moving List Elements 
Between Lists Using Read-Copy Update”, Apr 2006

– Block concurrent operations while large update is carried out

 Triplett: “Scalable concurrent hash tables via relativistic programming”, 
Sept 2009

 Triplett: “Relativistic Causal Ordering: A Memory Model for Scalable 
Concurrent Data Structures”, Feb 2012

– Similarity between Triplett's key switch and allegiance switch
– Could share nodes between trees like Triplett does between hash chains, but would 

impose restrictions and API complexity

 Some filesystem algorithms in Linux kernel



© 2018 IBM Corporation233

What is RCU?

Summary



© 2018 IBM Corporation234

What is RCU?

Summary

Complex atomic updates can be applied to unmodified RCU-
aware concurrent data structures

–Need functions to add, remove, and free elements
–Free to use any synchronization mechanism
–Free to use any memory allocator

Flip/backout processing can be automated

High update rates encounter interesting bottlenecks in the 
infrastructure: Memory allocation and userspace RCU

–Read-mostly workloads continue to perform and scale well
–As do kaleidoscopic updates

Lots of opportunity for collaboration and innovation!
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Graphical Summary
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To Probe Deeper (1/4)
 Hash tables:

– http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Chapter 10

 Split counters:
– http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Chapter 5
– http://events.linuxfoundation.org/sites/events/files/slides/BareMetal.2014.03.09a.pdf 

 Perfect partitioning
– Candide et al: “Dynamo: Amazon's highly available key-value store”

• http://doi.acm.org/10.1145/1323293.1294281 
– McKenney: “Is Parallel Programming Hard, And, If So, What Can You Do About It?”

• http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Section 6.5 
– McKenney: “Retrofitted Parallelism Considered Grossly Suboptimal”

• Embarrassing parallelism vs. humiliating parallelism
• https://www.usenix.org/conference/hotpar12/retro%EF%AC%81tted-parallelism-considered-

grossly-sub-optimal  
– McKenney et al: “Experience With an Efficient Parallel Kernel Memory Allocator”

• http://www.rdrop.com/users/paulmck/scalability/paper/mpalloc.pdf 
– Bonwick et al: “Magazines and Vmem: Extending the Slab Allocator to Many CPUs and Arbitrary 

Resources”
• http://static.usenix.org/event/usenix01/full_papers/bonwick/bonwick_html/ 

– Turner et al: “PerCPU Atomics”
•  http://www.linuxplumbersconf.org/2013/ocw//system/presentations/1695/original/LPC%20-

%20PerCpu%20Atomics.pdf
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To Probe Deeper (2/4)

 Stream-based applications:
– Sutton: “Concurrent Programming With The Disruptor”

• http://www.youtube.com/watch?v=UvE389P6Er4 
• http://lca2013.linux.org.au/schedule/30168/view_talk 

– Thompson: “Mechanical Sympathy”
• http://mechanical-sympathy.blogspot.com/

 Read-only traversal to update location
– Arcangeli et al: “Using Read-Copy-Update Techniques for System V IPC in the Linux 2.5 

Kernel”
• https://www.usenix.org/legacy/events/usenix03/tech/freenix03/full_papers/arcangeli/arcang

eli_html/index.html 
– Corbet: “Dcache scalability and RCU-walk”

• https://lwn.net/Articles/419811/ 
– Xu: “bridge: Add core IGMP snooping support”

• http://kerneltrap.com/mailarchive/linux-netdev/2010/2/26/6270589 
– Triplett et al., “Resizable, Scalable, Concurrent Hash Tables via Relativistic Programming”

• http://www.usenix.org/event/atc11/tech/final_files/Triplett.pdf 
– Howard: “A Relativistic Enhancement to Software Transactional Memory”

• http://www.usenix.org/event/hotpar11/tech/final_files/Howard.pdf 
– McKenney et al: “URCU-Protected Hash Tables”

• http://lwn.net/Articles/573431/
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To Probe Deeper (3/4)

 Hardware lock elision: Overviews
– Kleen: “Scaling Existing Lock-based Applications with Lock Elision”

• http://queue.acm.org/detail.cfm?id=2579227 

 Hardware lock elision: Hardware description
– POWER ISA Version 2.07

• http://www.power.org/documentation/power-isa-version-2-07/ 
– Intel® 64 and IA-32 Architectures Software Developer Manuals

• http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html 
– Jacobi et al: “Transactional Memory Architecture and Implementation for IBM System z”

• http://www.microsymposia.org/micro45/talks-posters/3-jacobi-presentation.pdf 

 Hardware lock elision: Evaluations
– http://pcl.intel-research.net/publications/SC13-TSX.pdf 
– http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Section 16.3

 Hardware lock elision: Need for weak atomicity
– Herlihy et al: “Software Transactional Memory for Dynamic-Sized Data Structures”

• http://research.sun.com/scalable/pubs/PODC03.pdf 
– Shavit et al: “Data structures in the multicore age”

• http://doi.acm.org/10.1145/1897852.1897873 
– Haas et al: “How FIFO is your FIFO queue?”

• http://dl.acm.org/citation.cfm?id=2414731 
– Gramoli et al: “Democratizing transactional programming”

• http://doi.acm.org/10.1145/2541883.2541900 
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To Probe Deeper (4/4)

 RCU
– Desnoyers et al.: “User-Level Implementations of Read-Copy Update”

• http://www.rdrop.com/users/paulmck/RCU/urcu-main-accepted.2011.08.30a.pdf 
• http://www.computer.org/cms/Computer.org/dl/trans/td/2012/02/extras/ttd2012020375s.pdf 

– McKenney et al.: “RCU Usage In the Linux Kernel: One Decade Later”
• http://rdrop.com/users/paulmck/techreports/survey.2012.09.17a.pdf 
• http://rdrop.com/users/paulmck/techreports/RCUUsage.2013.02.24a.pdf 

– McKenney: “Structured deferral: synchronization via procrastination”
• http://doi.acm.org/10.1145/2483852.2483867 

– McKenney et al.: “User-space RCU” https://lwn.net/Articles/573424/ 

 Possible future additions
– Boyd-Wickizer: “Optimizing Communications Bottlenecks in Multiprocessor Operating 

Systems Kernels”
• http://pdos.csail.mit.edu/papers/sbw-phd-thesis.pdf 

– Clements et al: “The Scalable Commutativity Rule: Designing Scalable Software for 
Multicore Processors”

• http://www.read.seas.harvard.edu/~kohler/pubs/clements13scalable.pdf 
– McKenney: “N4037: Non-Transactional Implementation of Atomic Tree Move”

• http://www.rdrop.com/users/paulmck/scalability/paper/AtomicTreeMove.2014.05.26a.pdf 
– McKenney: “C++ Memory Model Meets High-Update-Rate Data Structures”

• http://www2.rdrop.com/users/paulmck/RCU/C++Updates.2014.09.11a.pdf
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Legal Statement

 This work represents the view of the author and does not necessarily represent 
the view of IBM.

 IBM and IBM (logo) are trademarks or registered trademarks of International 
Business Machines Corporation in the United States and/or other countries.

 Linux is a registered trademark of Linus Torvalds.

 Other company, product, and service names may be trademarks or service marks 
of others.

 Credits:
– This material is based upon work supported by the National Science Foundation under Grant 

No. CNS-0719851.
– Joint work with Mathieu Desnoyers, Alan Stern, Michel Dagenais, Manish Gupta, Maged 

Michael, Phil Howard, Joshua Triplett, Jonathan Walpole, and the Linux kernel community.
– Additional reviewers: Carsten Weinhold and Mingming Cao.



© 2018 IBM Corporation241

What is RCU?

Questions?
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