
© 2018 IBM Corporation

What Is RCU?

Paul E. McKenney, IBM Distinguished Engineer, Linux Technology Center

Member, IBM Academy of Technology

Portland State University CS 533, November 21, 2018

© 2018 IBM Corporation2

What is RCU?

Overview

Mutual Exclusion

Example Application

Performance of Synchronization Mechanisms

Making Software Live With Current (and Future) Hardware

 Implementing RCU (Including Alternative Implementations)

RCU Grace Periods: Conceptual and Graphical Views

Forward Progress

Performance

RCU Area of Applicability

The Issaquah Challenge

Summary

© 2018 IBM Corporation3

What is RCU?

Mutual Exclusion

© 2018 IBM Corporation4

What is RCU?

Mutual Exclusion Challenge: Double-Ended Queue

Can you create a trivial lock-based deque allowing concurrent
pushes and pops at both ends?

–Coordination required if the deque contains only one or two elements
–But coordination is not required for three or more elements

Left
Head

Right
Head

A B C D

Left
Head

Right
Head

A B C

Left
Head

Right
Head

A B

Left
Head

Right
Head

A

© 2018 IBM Corporation5

What is RCU?

Mutual Exclusion Challenge: Double-Ended Queue

Can you create a trivial lock-based deque allowing concurrent
pushes and pops at both ends?

–Coordination required if the deque contains only one or two elements
–But coordination is not required for three or more elements

Left
Head

Right
Head

A B C D

Left
Head

Right
Head

A B C

Left
Head

Right
Head

A B

Left
Head

Right
Head

A Pointless problem, but
solution on later slide...

© 2018 IBM Corporation6

What is RCU?

Mutual Exclusion Question

What mechanisms can enforce mutual exclusion?

© 2018 IBM Corporation7

What is RCU?

Example Application

© 2018 IBM Corporation8

What is RCU?

Example Application

Schrödinger wants to construct an in-memory database for the
animals in his zoo (example in upcoming ACM Queue)

–Births result in insertions, deaths in deletions
–Queries from those interested in Schrödinger's animals
–Lots of short-lived animals such as mice: High update rate
–Great interest in Schrödinger's cat (perhaps queries from mice?)

© 2018 IBM Corporation9

What is RCU?

Example Application

Schrödinger wants to construct an in-memory database for the
animals in his zoo (example in upcoming ACM Queue)

–Births result in insertions, deaths in deletions
–Queries from those interested in Schrödinger's animals
–Lots of short-lived animals such as mice: High update rate
–Great interest in Schrödinger's cat (perhaps queries from mice?)

Simple approach: chained hash table with per-bucket locking

0: lock

1: lock

2: lock

3: lock

mouse zebra

boa cat gnu

© 2018 IBM Corporation10

What is RCU?

Example Application

Schrödinger wants to construct an in-memory database for the
animals in his zoo (example in upcoming ACM Queue)

–Births result in insertions, deaths in deletions
–Queries from those interested in Schrödinger's animals
–Lots of short-lived animals such as mice: High update rate
–Great interest in Schrödinger's cat (perhaps queries from mice?)

Simple approach: chained hash table with per-bucket locking

0: lock

1: lock

2: lock

3: lock

mouse zebra

boa cat gnu

Will holding this lock prevent the cat from dying?

© 2018 IBM Corporation11

What is RCU?

Read-Only Bucket-Locked Hash Table Performance

2GHz Intel Xeon Westmere-EX, 1024 hash buckets

Why the dropoff???

© 2018 IBM Corporation12

What is RCU?

Varying Number of Hash Buckets

2GHz Intel Xeon Westmere-EX

Still a dropoff...

S
o

m
e

im
p

ro
ve

m
en

t,
 b

u
t.

..

© 2018 IBM Corporation13

What is RCU?

NUMA Effects???

 /sys/devices/system/cpu/cpu0/cache/index0/shared_cpu_list:
–0,32

 /sys/devices/system/cpu/cpu0/cache/index1/shared_cpu_list:
–0,32

 /sys/devices/system/cpu/cpu0/cache/index2/shared_cpu_list:
–0,32

 /sys/devices/system/cpu/cpu0/cache/index3/shared_cpu_list:
–0-7,32-39

Two hardware threads per core, eight cores per socket

Try using only one CPU per socket: CPUs 0, 8, 16, and 24

© 2018 IBM Corporation14

What is RCU?

Bucket-Locked Hash Performance: 1 CPU/Socket

This is not the sort of scalability Schrödinger requires!!!

© 2018 IBM Corporation15

What is RCU?

Locking is BAD: Use Non-Blocking Synchronization!

© 2018 IBM Corporation16

What is RCU?

Use Non-Blocking Synchronization!

Big issue: Lookups run concurrently with deletions
–Bad form for a lookup to hand back a pointer to free memory

Hash Table
Lookup

Deletion

Deletion

Lookup

Lookup

Lookup

Lookup

Lookup

Deletion

Deletion
Lookup

Lookup

Lookup

Deletion

© 2018 IBM Corporation17

What is RCU?

Use Non-Blocking Synchronization!

Big issue: Lookups run concurrently with deletions
–Bad form for a lookup to hand back a pointer to free memory
–Results in lookups writing to shared memory, usually atomically

Hash Table
Lookup

Deletion

Deletion

Lookup

Lookup

Lookup

Lookup

Lookup

Deletion

Deletion
Lookup

Lookup

Lookup

Deletion

© 2018 IBM Corporation18

What is RCU?

Performance of Synchronization Mechanisms

© 2018 IBM Corporation19

What is RCU?

Performance of Synchronization Mechanisms

16-CPU 2.8GHz Intel X5550 (Nehalem) System16-CPU 2.8GHz Intel X5550 (Nehalem) System

Operation Cost (ns) Ratio
Clock period 0.4 1
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache miss 12.9 35.8
CAS cache miss 7.0 19.4

31.2 86.6
31.2 86.5
92.4 256.7
95.9 266.4

Single cache miss (off-core)
CAS cache miss (off-core)
Single cache miss (off-socket)
CAS cache miss (off-socket)

And these are best-case values!!! (Why?)And these are best-case values!!! (Why?)

© 2018 IBM Corporation20

What is RCU?

Why All These Low-Level Details???

© 2018 IBM Corporation21

What is RCU?

Why All These Low-Level Details???

Would you trust a bridge designed by someone who did not
understand strengths of materials?

–Or a ship designed by someone who did not understand the steel-alloy
transition temperatures?

–Or a house designed by someone who did not understand that
unfinished wood rots when wet?

–Or a car designed by someone who did not understand the corrosion
properties of the metals used in the exhaust system?

–Or a space shuttle designed by someone who did not understand the
temperature limitations of O-rings?

© 2018 IBM Corporation22

What is RCU?

Why All These Low-Level Details???

Would you trust a bridge designed by someone who did not
understand strengths of materials?

–Or a ship designed by someone who did not understand the steel-alloy
transition temperatures?

–Or a house designed by someone who did not understand that
unfinished wood rots when wet?

–Or a car designed by someone who did not understand the corrosion
properties of the metals used in the exhaust system?

–Or a space shuttle designed by someone who did not understand the
temperature limitations of O-rings?

So why trust algorithms from someone ignorant of the
properties of the underlying hardware???

© 2018 IBM Corporation23

What is RCU?

But What Do The Operation Timings Really Mean???

© 2018 IBM Corporation24

What is RCU?

But What Do The Operation Timings Really Mean???

Single-instruction critical sections protected by data locking

256.7 cycles

1
cycle

256.7 cycles

1
cycle

256.7 cycles

Uncontended

Contended,
No Spinning

So, what does this mean?

Acquire

Release

Critical
Section

© 2018 IBM Corporation25

What is RCU?

But What Do The Operation Timings Really Mean???

Single-instruction critical sections protected by data locking

256.7 cycles

1
cycle

256.7 cycles

1
cycle

256.7 cycles

Uncontended

Contended,
No Spinning

258 CPUs to
break even with
single CPU!

514 CPUs to
break even with
single CPU!!!

© 2018 IBM Corporation26

What is RCU?

But What Do The Operation Timings Really Mean???

Single-instruction critical sections protected by data locking

256.7 cycles

1
cycle

256.7 cycles

1
cycle

256.7 cycles

Uncontended

Contended,
No Spinning

256.7 cycles

1
cycle

256.7 cycles

Contended,
Spinning

??? cycles

258 CPUs to
break even with
single CPU!

514 CPUs to
break even with
single CPU!!!

A
rb

itr
a

ril
y

la
rg

e
nu

m
be

r
of

 C
P

U
s

to
 b

re
ak

 e
ve

n
w

ith
 s

in
gl

e
C

P
U

!!
!

© 2018 IBM Corporation27

What is RCU?

Reader-Writer Locks Are Even Worse!

© 2018 IBM Corporation28

What is RCU?

Reader-Writer Locks Are Even Worse!

266.4 cycles

1
cycle

266.4 cycles

1
cycle

200.0 cycles

266.4 cycles266.4 cycles

CPU 0

CPU 1

Acquire Release

Acquire

800 CPUs to
break even with
a single CPU!!!Spin Critical

Section

Critical
Section

Wait for
Lock Data

© 2018 IBM Corporation29

What is RCU?

But What About Scaling With Atomic Operations?
Non-Blocking Synchronization For The Win!!!

© 2018 IBM Corporation30

What is RCU?

If You Think Single Atomic is Expensive, Try Lots!!!

2GHz Intel Xeon Westmere-EX

© 2018 IBM Corporation31

What is RCU?

Why So Slow???

© 2018 IBM Corporation32

What is RCU?

System Hardware Structure and Laws of Physics

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Electrons move at 0.03C to 0.3C in transistors and, so lots of waiting. 3D???Electrons move at 0.03C to 0.3C in transistors and, so lots of waiting. 3D???

S
O

L
 R

T
 @

 2
G

H
z

S
O

L
 R

T
 @

 2
G

H
z

7.
5

ce
n

ti
m

et
er

s
7.

5
ce

n
ti

m
et

er
s

© 2018 IBM Corporation33

What is RCU?

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Atomic Increment of Global Variable

Lots and Lots of Latency!!!Lots and Lots of Latency!!!

© 2018 IBM Corporation34

What is RCU?

Atomic Increment of Per-CPU Counter

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Little Latency, Lots of Increments at Core Clock RateLittle Latency, Lots of Increments at Core Clock Rate

© 2018 IBM Corporation35

What is RCU?

Can't The Hardware Do Better Than This???

© 2018 IBM Corporation36

What is RCU?

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

HW-Assist Atomic Increment of Global Variable

SGI systems used this approach in the 1990s, expect modern CPUs to optimize.
Still not as good as per-CPU counters.

© 2018 IBM Corporation37

What is RCU?

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

HW-Assist Atomic Increment of Global Variable

Put an ALU near memory to avoid slowdowns due to latency.
Still not as good as per-CPU counters.

© 2018 IBM Corporation38

What is RCU?

Problem With Physics #1: Finite Speed of Light

(c) 2012 Melissa Broussard, Creative Commons Share-Alike

© 2018 IBM Corporation39

What is RCU?

Problem With Physics #2: Atomic Nature of Matter

(c) 2012 Melissa Broussard, Creative Commons Share-Alike

© 2018 IBM Corporation40

What is RCU?

How Can Software Live With This Hardware???

© 2018 IBM Corporation41

What is RCU?

Design Principle: Avoid Bottlenecks

Only one of something: bad for performance and scalability.Only one of something: bad for performance and scalability.
Also typically results in high complexity.Also typically results in high complexity.

© 2018 IBM Corporation42

What is RCU?

Design Principle: Avoid Bottlenecks

Many instances of something good!Many instances of something good!
Avoiding tightly coupled interactions is an excellent way to avoid bugs.Avoiding tightly coupled interactions is an excellent way to avoid bugs.

Hazard pointers uses this trick with reference counting.Hazard pointers uses this trick with reference counting.

© 2018 IBM Corporation43

What is RCU?

Design Principle: Avoid Bottlenecks

Many instances of something good!Many instances of something good!
Avoiding tightly coupled interactions is an excellent way to avoid bugs.Avoiding tightly coupled interactions is an excellent way to avoid bugs.

Hazard pointers uses this trick with reference counting.Hazard pointers uses this trick with reference counting.
But NUMA effects defeated this for per-bucket locking!!!But NUMA effects defeated this for per-bucket locking!!!

© 2018 IBM Corporation44

What is RCU?

16-CPU 2.8GHz Intel X5550 (Nehalem) System16-CPU 2.8GHz Intel X5550 (Nehalem) System

Operation Cost (ns) Ratio
Clock period 0.4 1
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache miss 12.9 35.8
CAS cache miss 7.0 19.4

31.2 86.6
31.2 86.5
92.4 256.7
95.9 266.4

Single cache miss (off-core)
CAS cache miss (off-core)
Single cache miss (off-socket)
CAS cache miss (off-socket)

Design Principle: Avoid Expensive Operations

Typical synchronization
mechanisms do this a lot

Heavily
optimized

reader-writer
lock might get

here for readers
(but too bad
about those

poor writers...)

Need to be here!
(Partitioning/RCU/hazptr)
But can't always!

Operation Cost (ns) Ratio
Clock period 0.4 1
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache miss 12.9 35.8
CAS cache miss 7.0 19.4

31.2 86.6
31.2 86.5
92.4 256.7
95.9 266.4

Single cache miss (off-core)
CAS cache miss (off-core)
Single cache miss (off-socket)
CAS cache miss (off-socket)

© 2018 IBM Corporation45

What is RCU?

Design Principle: Avoid Contention

Locking
Non-Blocking

Synchronization
Desired

State

Spin-wait

Release
contention

Acquire
contention

Preparation

Attempt

Preparation

Retry

Simple non-blocking synchronization does very well

Success

Preparation

Retry

© 2018 IBM Corporation46

What is RCU?

Design Principle: Get Your Money's Worth

 If synchronization is expensive, use large critical sections

On Nehalem, off-socket CAS costs about 260 cycles
–So instead of a single-cycle critical section, have a 26000-cycle critical

section, reducing synchronization overhead to about 1%

256.7 cycles
1 cycle

99.6% overhead

256.7 cycles
25,670 cycles

0.99% overhead

© 2018 IBM Corporation47

What is RCU?

Design Principle: Get Your Money's Worth

 If synchronization is expensive, use large critical sections

On Nehalem, off-socket CAS costs about 260 cycles
–So instead of a single-cycle critical section, have a 26000-cycle critical

section, reducing synchronization overhead to about 1%

Of course, we also need to keep contention low, which
usually means we want short critical sections

–Resolve this by applying parallelism at as high a level as possible
–Parallelize entire applications rather than low-level algorithms!

This does not work for Schrödinger: The overhead of hash-
table operations is too low

–Which is precisely why we selected hash tables in the first place!!!

© 2018 IBM Corporation48

What is RCU?

Design Principle: Leverage Read-Mostly Situations
S

O
L

 R
T

 @
 2

G
H

z
S

O
L

 R
T

 @
 2

G
H

z

7.
5

ce
n

ti
m

et
er

s
7.

5
ce

n
ti

m
et

er
s CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Read-only data remains replicated in all cachesRead-only data remains replicated in all caches

Read-mostly access dodges the laws of physics!!!

© 2018 IBM Corporation49

What is RCU?

Updates Hit Hard By Unforgiving Laws of Physics
S

O
L

 R
T

 @
 2

G
H

z
S

O
L

 R
T

 @
 2

G
H

z

7.
5

ce
n

ti
m

et
er

s
7.

5
ce

n
ti

m
et

er
s CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Read-only data remains replicated in all caches,Read-only data remains replicated in all caches,
but each update destroys other replicas!but each update destroys other replicas!

© 2018 IBM Corporation50

What is RCU?

Design Principle: Leverage Locality!!!
S

O
L

 R
T

 @
 2

G
H

z
S

O
L

 R
T

 @
 2

G
H

z

7.
5

ce
n

ti
m

et
er

s
7.

5
ce

n
ti

m
et

er
s CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Each CPU operates on its own “shard” of the data,Each CPU operates on its own “shard” of the data,
preserving cache locality and performancepreserving cache locality and performance

© 2018 IBM Corporation51

What is RCU?

Updates: Just Say “No”???

 “Doing updates is slow and non-scalable!”

 “Then don't do updates!”

© 2018 IBM Corporation52

What is RCU?

Updates: Just Say “No”???

 “Doing updates is slow and non-scalable!”

 “Then don't do updates!”

OK, OK, don't do unnecessary updates!!!
For example, read-only traversal to update location

© 2018 IBM Corporation53

What is RCU?

Spin

Design Principle: Avoid Mutual Exclusion!!!

CPU 0

CPU 1

CPU 2

CPU 3

Reader

Reader

Reader

Reader

Reader

Reader

Reader

UpdaterReader Reader

Dead
Time!!! Reader

Reader

Reader

Reader

© 2018 IBM Corporation54

What is RCU?

Design Principle: Avoiding Mutual Exclusion

CPU 0

CPU 1

CPU 2

CPU 3

Reader

Reader

Reader

Reader

Reader

Reader

Reader

UpdaterReader Reader

Reader

Reader

Reader

Reader

Reader

Reader

No Dead Time!No Dead Time!

Reader Reader

Reader

Reader

ReaderReader

© 2018 IBM Corporation55

What is RCU?

But How Can This Possibly Be Implemented???

© 2018 IBM Corporation56

What is RCU?

Implementing Read-Copy Update (RCU)

Lightest-weight conceivable read-side primitives
–/* Assume non-preemptible (run-to-block) environment. */
–#define rcu_read_lock()
–#define rcu_read_unlock()

© 2018 IBM Corporation57

What is RCU?

Implementing Read-Copy Update (RCU)

Lightest-weight conceivable read-side primitives
–/* Assume non-preemptible (run-to-block) environment. */
–#define rcu_read_lock()
–#define rcu_read_unlock()

Advantages: Best possible performance, scalability, real-time
response, wait-freedom, and energy efficiency

Disadvantage: How can something that does not affect
machine state possibly be used as a synchronization
primitive???

© 2018 IBM Corporation58

What is RCU?

Implementing Read-Copy Update (RCU)

Lightest-weight conceivable read-side primitives
–/* Assume non-preemptible (run-to-block) environment. */
–#define rcu_read_lock()
–#define rcu_read_unlock()

Advantages: Best possible performance, scalability, real-time
response, wait-freedom, and energy efficiency

Disadvantage: How can something that does not affect
machine state possibly be used as a synchronization
primitive???

© 2018 IBM Corporation59

What is RCU?

What Is RCU?

Publishing of new data

Subscribing to the current version of data

Waiting for pre-existing RCU readers: Avoid disrupting
readers by maintaining multiple versions of the data

–Each reader continues traversing its copy of the data while a new copy
might be being created concurrently by each updater *

• Hence the name read-copy update, or RCU
–Once all pre-existing RCU readers are done with them, old versions of

the data may be discarded

* This backronym expansion provided by Jonathan Walpole

© 2018 IBM Corporation60

What is RCU?

Publication of And Subscription to New Data

A cptr

->a=?
->b=?
->c=?

cptrcptr cptr

in
iti

al
iz

at
io

n

km
al

lo
c(

)

cp
tr

 =
 t

m
p

->a=1
->b=2
->c=3

->a=1
->b=2
->c=3

p
=

 c
pt

r

Key: Dangerous for updates: all readers can access
Still dangerous for updates: pre-existing readers can access (next slide)
Safe for updates: inaccessible to all readers

readertmp tmp tmp

© 2018 IBM Corporation61

What is RCU?

Memory Ordering: Mischief From Compiler and CPU

© 2018 IBM Corporation62

What is RCU?

Memory Ordering: Mischief From Compiler and CPU

Original updater code:
p = malloc(sizeof(*p));
p->a = 1;
p->b = 2;
p->c = 3;
cptr = p;

Original reader code:
p = cptr;
foo(p->a, p->b, p->c);

Mischievous updater code:
p = malloc(sizeof(*p));
cptr = p;
p->a = 1;
p->b = 2;
p->c = 3;

Mischievous reader code:
retry:
p = guess(cptr);
foo(p->a, p->b, p->c);
if (p != cptr)
 goto retry;

© 2018 IBM Corporation63

What is RCU?

Memory Ordering: Mischief From Compiler and CPU

Original updater code:
p = malloc(sizeof(*p));
p->a = 1;
p->b = 2;
p->c = 3;
cptr = p;

Original reader code:
p = cptr;
foo(p->a, p->b, p->c);

Mischievous updater code:
p = malloc(sizeof(*p));
cptr = p;
p->a = 1;
p->b = 2;
p->c = 3;

Mischievous reader code:
retry:
p = guess(cptr);
foo(p->a, p->b, p->c);
if (p != cptr)
 goto retry;

But don't take my word for it on HW value speculation:
http://www.openvms.compaq.com/wizard/wiz_2637.html

© 2018 IBM Corporation64

What is RCU?

Preventing Memory-Order Mischief

Updater uses rcu_assign_pointer() to publish pointer:
#define rcu_assign_pointer(p, v) \
 smp_store_release((p), (v))

Reader uses rcu_dereference() to subscribe to pointer:
#define rcu_dereference(p) \
({ \
 typeof(*p) *__p1 = READ_ONCE(p); \
 __p1; \
})

The Linux-kernel definitions are more ornate
–Debug code: Static analysis and lock dependency checking

© 2018 IBM Corporation65

What is RCU?

Preventing Memory-Order Mischief

 “Memory-order-mischief proof” updater code:
p = malloc(sizeof(*p));
p->a = 1;
p->b = 2;
p->c = 3;
rcu_assign_pointer(cptr, p);

 “Memory-order-mischief proof” reader code:
p = rcu_dereference(cptr);
foo(p->a, p->b, p->c);

© 2018 IBM Corporation66

What is RCU?

Publication of And Subscription to New Data

A cptr

->a=?
->b=?
->c=?

cptrcptr cptr

in
iti

al
iz

at
io

n

km
al

lo
c(

)

rc
u_

as
si

gn
_p

oi
nt

er
(c

pt
r,p

)

->a=1
->b=2
->c=3

->a=1
->b=2
->c=3

p
=

 r
cu

_
de

re
fe

re
nc

e(
cp

tr
)

Key: Dangerous for updates: all readers can access
Still dangerous for updates: pre-existing readers can access (next slide)
Safe for updates: inaccessible to all readers

readertmp tmp tmp

But if all we do is add, we have a big memory leak!!!But if all we do is add, we have a big memory leak!!!

© 2018 IBM Corporation67

What is RCU?

RCU Removal From Linked List

 Combines waiting for readers and multiple versions:
– Writer removes the cat's element from the list (list_del_rcu())

– Writer waits for all readers to finish (synchronize_rcu())

– Writer can then free the cat's element (kfree())

A

B

C

boa

cat

gnu

boa

cat

gnu

boa

cat

gnu

boa

gnu
sy

nc
hr

on
iz

e_
rc

u(
)

lis
t_

de
l_

rc
u(

)

One Version Two Versions One Version

Readers? Readers? Readers?X

One Version

kf
re

e(
)

© 2018 IBM Corporation68

What is RCU?

RCU Removal From Linked List

 Combines waiting for readers and multiple versions:
– Writer removes the cat's element from the list (list_del_rcu())

– Writer waits for all readers to finish (synchronize_rcu())

– Writer can then free the cat's element (kfree())

A

B

C

boa

cat

gnu

boa

cat

gnu

boa

cat

gnu

boa

gnu
sy

nc
hr

on
iz

e_
rc

u(
)

lis
t_

de
l_

rc
u(

)

One Version Two Versions One Version

Readers? Readers? Readers?X

One Version

kf
re

e(
)

But how can software deal with two different versions simultaneously???But how can software deal with two different versions simultaneously???

© 2018 IBM Corporation69

What is RCU?

Two Different Versions Simultaneously???

© 2018 IBM Corporation70

What is RCU?

RCU Removal From Linked List

 Combines waiting for readers and multiple versions:
– Writer removes the cat's element from the list (list_del_rcu())

– Writer waits for all readers to finish (synchronize_rcu())

– Writer can then free the cat's element (kfree())

A

B

C

boa

cat

gnu

boa

cat

gnu

boa

cat

gnu

boa

gnu
sy

nc
hr

on
iz

e_
rc

u(
)

lis
t_

de
l_

rc
u(

)

One Version Two Versions One Version

Readers? Readers? Readers?X

One Version

kf
re

e(
)

But if readers leave no trace in memory, how can we But if readers leave no trace in memory, how can we
possibly tell when they are done???possibly tell when they are done???

© 2018 IBM Corporation71

What is RCU?

How Can RCU Tell When Readers Are Done???

© 2018 IBM Corporation72

What is RCU?

How Can RCU Tell When Readers Are Done???

That is, without re-introducing all of the overhead and latency inherent to other That is, without re-introducing all of the overhead and latency inherent to other
synchronization mechanisms...synchronization mechanisms...

© 2018 IBM Corporation73

What is RCU?

But First, Some RCU Nomenclature

RCU read-side critical section
– Begins with rcu_read_lock(), ends with rcu_read_unlock(), and may contain

rcu_dereference()

Quiescent state
– Any code that is not in an RCU read-side critical section

Extended quiescent state
– Quiescent state that persists for a significant time period

RCU grace period
– Time period when every thread was in at least one quiescent state

© 2018 IBM Corporation74

What is RCU?

But First, Some RCU Nomenclature

RCU read-side critical section
– Begins with rcu_read_lock(), ends with rcu_read_unlock(), and may contain

rcu_dereference()

Quiescent state
– Any code that is not in an RCU read-side critical section

Extended quiescent state
– Quiescent state that persists for a significant time period

RCU grace period
– Time period when every thread was in at least one quiescent state

OK, names are nice, but how can you possibly implement this???

© 2018 IBM Corporation75

What is RCU?

Waiting for Pre-Existing Readers: QSBR

 Non-preemptive environment (CONFIG_PREEMPT=n)
– RCU readers are not permitted to block
– Same rule as for tasks holding spinlocks

© 2018 IBM Corporation76

What is RCU?

Waiting for Pre-Existing Readers: QSBR

 Non-preemptive environment (CONFIG_PREEMPT=n)
– RCU readers are not permitted to block
– Same rule as for tasks holding spinlocks

 CPU context switch means all that CPU's readers are done

 Grace period ends after all CPUs execute a context switch

synchronize_rcu()

CPU 0

CPU 1

CPU 2

co
nt

ex
t

sw
itc

h

Grace Period

RCU re
ad

er

remove cat free cat

© 2018 IBM Corporation77

What is RCU?

Synchronization Without Changing Machine State???

But rcu_read_lock() does not need to change machine state
–Instead, it acts on the developer, who must avoid blocking within RCU

read-side critical sections
–Or, more generally, avoid quiescent states within RCU read-side

critical sections

© 2018 IBM Corporation78

What is RCU?

Synchronization Without Changing Machine State???

But rcu_read_lock() does not need to change machine state
–Instead, it acts on the developer, who must avoid blocking within RCU

read-side critical sections
–Or, more generally, avoid quiescent states within RCU read-side

critical sections

RCU is therefore synchronization via social engineering

© 2018 IBM Corporation79

What is RCU?

Synchronization Without Changing Machine State???

But rcu_read_lock() does not need to change machine state
–Instead, it acts on the developer, who must avoid blocking within RCU

read-side critical sections
–Or, more generally, avoid quiescent states within RCU read-side

critical sections

RCU is therefore synchronization via social engineering

As are all other synchronization mechanisms:
–“Avoid data races”
–“Protect specified variables with the corresponding lock”
–“Access shared variables only within transactions”

© 2018 IBM Corporation80

What is RCU?

Synchronization Without Changing Machine State???

But rcu_read_lock() does not need to change machine state
–Instead, it acts on the developer, who must avoid blocking within RCU

read-side critical sections
–Or, more generally, avoid quiescent states within RCU read-side

critical sections

RCU is therefore synchronization via social engineering

As are all other synchronization mechanisms:
–“Avoid data races”
–“Protect specified variables with the corresponding lock”
–“Access shared variables only within transactions”

RCU is unusual is being a purely social-engineering approach
–But RCU implementations for preemptive environments do use

lightweight code in addition to social engineering

Userspace RCU: http://liburcu.org

© 2018 IBM Corporation81

What is RCU?

Toy Implementation of RCU: 15 Lines of Code

 Read-side primitives:
#define rcu_read_lock()
#define rcu_read_unlock()
#define rcu_dereference(p) \
({ \
 typeof(*p) *__p1 = READ_ONCE(p); \
 __p1; \
})

 Update-side primitives
#define rcu_assign_pointer(p, v) smp_store_release((p), (v))
void synchronize_rcu(void)
{
 int cpu;

 for_each_online_cpu(cpu)
 run_on(cpu);
}

© 2018 IBM Corporation82

What is RCU?

Toy Implementation of RCU: 15 Lines of Code,
Full Read-Side Performance!!!
 Read-side primitives:

#define rcu_read_lock()
#define rcu_read_unlock()
#define rcu_dereference(p) \
({ \
 typeof(*p) *__p1 = READ_ONCE(p); \
 __p1; \
})

 Update-side primitives
#define rcu_assign_pointer(p, v) smp_store_release((p), (v))
void synchronize_rcu(void)
{
 int cpu;

 for_each_online_cpu(cpu)
 run_on(cpu);
}

Only 9 of which are needed on sequentially consistent systems...
And some people still insist that RCU is complicated... ;-)

© 2018 IBM Corporation83

What is RCU?

RCU Usage: Readers

Pointer to RCU-protected object guaranteed to exist
throughout RCU read-side critical section

rcu_read_lock(); /* Start critical section. */
p = rcu_dereference(cptr);
/* *p guaranteed to exist. */
do_something_with(p);
rcu_read_unlock(); /* End critical section. */
/* *p might be freed!!! */

The rcu_read_lock(), rcu_dereference() and
rcu_read_unlock() primitives are very light weight

However, updaters must take care...

© 2018 IBM Corporation84

What is RCU?

RCU Usage: Updaters

Updaters must wait for an RCU grace period to elapse
between making something inaccessible to readers and
freeing it

spin_lock(&updater_lock);
q = cptr;
rcu_assign_pointer(cptr, new_p);
spin_unlock(&updater_lock);
synchronize_rcu(); /* Wait for grace period. */
kfree(q);

RCU grace period waits for all pre-exiting readers to complete
their RCU read-side critical sections

© 2018 IBM Corporation85

What is RCU?

Alternative Implementations

© 2018 IBM Corporation86

What is RCU?

Alternative Implementations

QSBR: Blazing speed, needs non-preemptive environment

Disable preemption: Fast, OK for milliseconds realtime

Preemptible RCU: Fast, complex, fast response times
–Less than 20 microseconds interrupt response time—in guest OS

Tasks RCU: Store reader state in task
–Which means that updates must scan the task list

SRCU: Memory barriers for readers, much simpler
–Does not require idle and offline states to be specially handled
–Provides multiple domains (see later slide)

Other technologies can achieve similar effects:
–Garbage collectors, reference counting, hazard pointers

© 2018 IBM Corporation87

What is RCU?

SRCU and Multiple Domains

Linux kernel Sleepable RCU (SRCU)
–One SRCU domain's readers don't block other domains' updaters
–Grace-period overhead is amortized over fewer updaters
–Detecting forward-progress issues requires more state
–Not heavily used: >300 call_rcu, 11 call_srcu() – see next slide
–Gaining more attention in the Linux kernel now that KVM uses it
–Accepted into Linux kernel in 2006

• Four years after RCU was accepted into the Linux kernel
• More than a decade after “read-copy lock” was added to DYNIX/ptx

Needed for efficient RCU implementations on GPGPUs?

Needed for portable libraries and object-oriented code?

© 2018 IBM Corporation88

What is RCU?

SRCU and Multiple Domains in the Linux Kernel

Global RCU:

 rcu_read_lock(): 2626

 rcu_read_unlock(): 3310

 rcu_dereference(): 1228

 rcu_read_lock_held(): 51

synchronize_rcu(): 285

call_rcu(): 324

 rcu_barrier(): 127

Total: 7951

Domain-Based SRCU:

srcu_read_lock(): 147

srcu_read_unlock(): 168

srcu_dereference(): 30

srcu_read_lock_held(): 6

synchronize_srcu(): 50

call_srcu(): 11

srcu_barrier(): 7

Total: 419

Summer 2018, probably different by now

© 2018 IBM Corporation89

What is RCU?

Complex Atomic-To-Reader Updates, Take 1

© 2018 IBM Corporation90

What is RCU?

RCU Replacement Of Item In Linked List

Aboa

gnu

km
al

lo
c(

)

A

C

boa

cat

gnu

1 Version

co
py

A

C

boa

cat

gnu

1 Version

up
da

te

A

C

cat

gnu

1 Version

lis
t_

re
pl

ac
e_

rc
u(

)

A

C

boa

cat

gnu

2 Versions

sy
nc

h
ro

ni
ze

_r
cu

()

A

C

boa

cat

gnu

1 Version

A

B

boa

gnu

1 Version

boa

cat

? cat cat' cat' cat' cat'

Readers? Readers? Readers? Readers? Readers? Readers?X

1 Version

kf
re

e(
)

© 2018 IBM Corporation91

What is RCU?

RCU Grace Periods: Conceptual and Graphical Views

© 2018 IBM Corporation92

What is RCU?

RCU Grace Periods: A Conceptual View

RCU read-side critical section (AKA reader)
– Begins with rcu_read_lock(), ends with rcu_read_unlock(), and may contain rcu_dereference()

Quiescent state
– Any code that is not in an RCU read-side critical section

Extended quiescent state
– Quiescent state that persists for a significant time period

RCU grace period
– Time period when every thread is in at least one quiescent state
– Ends when all pre-existing readers complete
– Guaranteed to complete in finite time iff all RCU read-side critical sections are of finite

duration

But what happens if you try to extend an RCU read-side critical section across a
grace period?

© 2018 IBM Corporation93

What is RCU?

RCU Grace Periods: A Graphical View

Change Visible
to All Readers

Reader

Change Grace Period

Reader

Reader

Reader

Reader

Reader

Forbidden!

ReaderReader

So what happens if you try to extend an RCU read-side critical section across a grace period?

rcu_read_lock()

rcu_read_unlock()RCU readers
concurrent with

updates

synchronize_rcu()

© 2018 IBM Corporation94

What is RCU?

RCU Grace Period: A Self-Repairing Graphical View

Grace Period Grace Period
Change Visible
to All Readers

Reader

Change

Reader

Reader

Reader

Reader

Reader

Grace period
extends as
needed.

ReaderReader

A grace period is not permitted to end until all pre-existing readers have completed.

synchronize_rcu()

© 2018 IBM Corporation95

What is RCU?

RCU Grace Period: A Lazy Graphical View

Grace Period Grace Period
Change Visible
to All Readers

Reader

Change

Reader

Reader

Reader

Reader

Reader

ReaderReader

But it is OK for RCU to be lazy and allow a grace period to extend longer than necessary

synchronize_rcu()

© 2018 IBM Corporation96

What is RCU?

RCU Grace Period: A Really Lazy Graphical View

Change Visible
to All Readers

Reader

Change Grace Period

Reader

Reader

Reader

Reader

Reader

ReaderReader

And it is also OK for RCU to be even more lazy and start a grace period later than necessary
But why is this useful?

synchronize_rcu()

© 2018 IBM Corporation97

What is RCU?

RCU Grace Period: A Usefully Lazy Graphical View

Change Visible
to All Readers

Change Visible
to All Readers

Reader

Change
Grace Period

Reader

Reader

Reader

Reader

Reader

ReaderReader

Starting a grace period late can allow it to serve multiple updates, decreasing
the per-update RCU overhead. But...

synchronize_rcu()
Change

synchronize_rcu()

© 2018 IBM Corporation98

What is RCU?

The Costs and Benefits of Laziness

Starting the grace period later increases the number of
updates per grace period, reducing the per-update overhead

Delaying the end of the grace period increases grace-period
latency

 Increasing the number of updates per grace period increases
the memory usage

–Therefore, starting grace periods late is a good tradeoff if memory is
cheap and communication is expense, as is the case in modern
multicore systems

• And if real-time threads avoid waiting for grace periods to complete
–However...

© 2018 IBM Corporation99

What is RCU?

RCU Grace Period: A Too-Lazy Graphical View

Change Visible
to All Readers

Reader

Change Grace Period

Reader

Reader

Reader

Reader

Reader

ReaderReader

And it is OK for the system to complain (or even abort) if a grace period extends too long.
Too-long grace periods are likely to result in death by memory exhaustion anyway.

synchronize_rcu()

Reader

!!!

© 2018 IBM Corporation100

What is RCU?

RCU Asynchronous Grace-Period Detection

© 2018 IBM Corporation101

What is RCU?

RCU Asynchronous Grace-Period Detection

The call_rcu() function registers an RCU callback, which is invoked
after a subsequent grace period elapses

API:
call_rcu(struct rcu_head head,
 void (*func)(struct rcu_head *rcu));

The rcu_head structure:
struct rcu_head {
 struct rcu_head *next;
 void (*func)(struct rcu_head *rcu);
};

The rcu_head structure is normally embedded within the RCU-
protected data structure

© 2018 IBM Corporation102

What is RCU?

RCU Grace Period: An Asynchronous Graphical View

Change Visible
to All Readers

Reader

Change Grace Period

Reader

Reader

Reader

Reader

Reader

ReaderReader

func(&p->rcu);func(&p->rcu);call_rcu(&p->rcu, func);call_rcu(&p->rcu, func);

© 2018 IBM Corporation103

What is RCU?

RCU Memory Ordering (1/2)

rcu_read_lock()

rcu_read_unlock()

rcu_barrier() call

rcu_barrier() return

call_rcu()

callback invocation

If happens before...

If
 h

ap
pe

ns
 b

ef
or

e.
..

…
 t

he
n

ha
pp

en
s

be
fo

re

… then happens before

© 2018 IBM Corporation104

What is RCU?

RCU Memory Ordering (2/2)

rcu_read_lock()

rcu_read_unlock()

call_rcu()

callback invocation

…
 t

he
n

ha
pp

en
s

be
fo

re

If happens before ...

© 2018 IBM Corporation105

What is RCU?

Forward Progress

© 2018 IBM Corporation106

What is RCU?

Forward Progress

 In the Linux kernel, a user can firehose callbacks as follows:
for (;;) close(open(...));

–This must be handled gracefully

Rate-limit close() – but not in the Linux kernel

Expedite grace periods when a given CPU's callback list
becomes too long (10,000 by default in the Linux kernel)

–Start grace period if one has not already started
–Force more frequent scans for idle CPUs
–Force reschedules of CPUs not yet seen in a quiescent state
–Take advantage of cond_resched() preemption points

Expedite grace periods that become too old
–As above, at about 100ms, 10.5s, and 21s by default

© 2018 IBM Corporation107

What is RCU?

Forward Progress: Limitations

Acquiring a lock and never releasing is a bad idea
–Especially if something else is trying to acquire that lock

Similarly, doing rcu_read_lock() without ever doing the
matching rcu_read_unlock() is a bad idea

–Especially if your system doesn't have much extra memory
–Note that indefinitely preempting an RCU reader can have the effect of

never doing the matching rcu_read_unlock()
• For preemptible RCU, the Linux kernel provides RCU priority boosting

© 2018 IBM Corporation108

What is RCU?

Why Way More Than 15 Lines of Code???

© 2018 IBM Corporation109

What is RCU?

Here is Your Elegant Synchronization Mechanism:

Photo by "Golden Trvs Gol twister", CC by SA 3.0

© 2018 IBM Corporation110

What is RCU?

Here is Your Elegant Synchronization Mechanism
Equipped To Survive In The Linux Kernel:

Photo by Луц Фишер-Лампрехт, CC by SA 3.0

© 2018 IBM Corporation111

What is RCU?

A Few of the Things That RCU Must Survive:

 Systems with 1000s of CPUs

 Sub-20-microsecond real-time response requirements

 CPUs can come and go (“CPU hotplug”)

 If you disturb idle CPUs. you enrage low-power embedded folks

 Forward progress requirements: callbacks, network DoS attacks

 RCU grace periods must provide extremely strong ordering

 RCU uses the scheduler, and the scheduler uses RCU

 Firmware sometimes lies about the number of CPUs

 RCU must work during early boot, even before initialization

 Preemption can happen, even when interrupts are disabled (vCPUs!)

 RCU should identify errors in client code (maintainer self-defense!)

© 2018 IBM Corporation112

What is RCU?

Performance

© 2018 IBM Corporation113

What is RCU?

Theoretical Performance

71.2 cycles

1
cycle

Uncontended

73 CPUs to
break even with
a single CPU!

144 CPUs to
break even with
a single CPU!!!

71.2 cycles

1
cycle

71.2 cycles

Contended,
No Spinning

1
cycle

RCU (wait-free)

Full performance,
linear scaling,
real-time response

Lo
ck

in
g

(b
lo

ck
in

g)

© 2018 IBM Corporation114

What is RCU?

Measured Performance

© 2018 IBM Corporation115

What is RCU?

Schrödinger's Zoo: Read-Only

RCU and hazard pointers scale quite well!!!

© 2018 IBM Corporation116

What is RCU?

Schrödinger's Zoo: Read-Only Cat-Heavy Workload

RCU handles locality, hazard pointers not bad, bucket locking horrible!

© 2018 IBM Corporation117

What is RCU?

Schrödinger's Zoo: Reads and Updates

© 2018 IBM Corporation118

What is RCU?

Real-Time Response to Changes

© 2018 IBM Corporation119

What is RCU?

RCU vs. Reader-Writer-Lock Real-Time Latency

rwlock reader

rwlock reader

rwlock reader

spin

spin

rwlock writer

spin

spin

rwlock reader

rwlock reader

rwlock reader

rwlock reader

RCU reader

RCU reader

RCU reader

RCU reader

RCU reader

RCU reader

RCU updater

RCU reader

RCU reader

RCU reader

External Event

RCU Latency

rwlock Latency

© 2018 IBM Corporation120

What is RCU?

RCU Performance: “Free is a Very Good Price!!!”

© 2018 IBM Corporation121

What is RCU?

RCU Performance: “Free is a Very Good Price!!!”
And Nothing Is Faster Than Doing Nothing!!!

© 2018 IBM Corporation122

What is RCU?

RCU Area of Applicability Schrödinger's zoo!

Need fully fresh and consistent data

Stale and inconsistent data OK

10
0%

 U
pd

at
es

10
0%

 R
ea

ds

R
ea

d-
M

os
tly

,
S

ta
le

&
 I

nc
on

si
st

en
t

D
at

a
O

K
(R

C
U

 W
or

ks
 G

re
at

!!!
)

R
ea

d-
M

os
tly

,
N

ee
d

C
on

si
st

en
t

D
at

a
(R

C
U

 W
or

ks
 O

K
)

R
ea

d-
W

rit
e,

N
ee

d
C

on
si

st
en

t
D

at
a

(R
C

U
 M

ig
ht

 B
e

O
K

)

U
pd

at
e-

M
os

tly
,

N
ee

d
F

re
sh

 C
on

si
st

en
t D

at
a

(R
C

U
 N

ot
 S

o
G

oo
d)

1,
2

1. RCU provides ABA protection for update-friendly mechanisms
2. RCU provides bounded wait-free read-side primitives for real-time use

© 2018 IBM Corporation123

What is RCU?

Which to Choose?

© 2018 IBM Corporation124

What is RCU?

Existence Guarantees

Purpose: Avoid data being yanked from under reader

Reference counting (also non-blocking synchronization)
–Possible, but complex and error-prone

Hazard pointers: Yes

Sequence locks: No
–You just get told later that something might have been yanked

RCU: Yes

© 2018 IBM Corporation125

What is RCU?

Reader/Writer Concurrent Forward Progress

Purpose: Avoid starvation independent of workload

Reference counting: Yes

Hazard pointers; Yes

Sequence locks: No, updates roll back readers

RCU: Yes

© 2018 IBM Corporation126

What is RCU?

Avoid Read-Side Contention

Purpose: Scalability, performance, forward progress

Reference counting: No, high memory contention

Hazard pointers: Yes

Sequence locking: Yes

RCU: Yes

© 2018 IBM Corporation127

What is RCU?

Degree of Read-Side Critical-Section Overhead

Purpose: Low overhead means faster execution

Reference counting: None (no critical sections)

Hazard pointers: None (no critical sections)

Sequence locks: Two full memory barriers

RCU:
–Ranges from none (QSBR) to two full memory barriers (SRCU)

© 2018 IBM Corporation128

What is RCU?

Read-Side Per-Object Traversal Overhead

Purpose: Low overhead for faster execution

Reference counting: RMW atomic operations, memory-barrier
instructions, and cache misses

Hazard pointers: smp_mb(), but can eliminate with operating-
system membarrier support

Sequence locking: Kernel panic!!!

RCU: None (except on DEC Alpha)

© 2018 IBM Corporation129

What is RCU?

Read-Side Forward Progress Guarantee

Purpose: Meet response-time commitments

Reference counting: Lock free

Hazard pointers: Lock free

Sequence locks: Blocking (can wait on updater)

RCU: Population-oblivious bounded wait-free

© 2018 IBM Corporation130

What is RCU?

Read-Side Reference Acquisition

Purpose: Must client code retry read-side traversals?

Reference counting: Traverals can fail, requiring retry

Hazard pointers: Traverals can fail, requiring retry

Sequence locking: Kernel can panic

RCU: Traverals guaranteed to succeed, no retry needed

© 2018 IBM Corporation131

What is RCU?

Memory Footprint

Purpose: Small memory footprints are good!
–Especially if you are as old as I am!!!

Reference counting: Bounded (number of active references)

Hazard pointers: Bounded (number of active references,
though tight bound incurs CPU overhead)

Sequence locks: Bounded (especially given unsafe traversal)

RCU: Unbounded or updaters delayed

© 2018 IBM Corporation132

What is RCU?

Reclamation Forward Progress

Purpose: Tight memory footprint independent of workload

Reference counting: Lock free

Hazard pointers: Lock free

Sequence locking: N/A

RCU: Blocking: Single reader can block reclamation

© 2018 IBM Corporation133

What is RCU?

Automatic Reclamation

Purpose: Simplify memory management

Reference counting: Yes

Hazard pointers: No, but working on it

Sequence locking: N/A

RCU: No, but working on it

© 2018 IBM Corporation134

What is RCU?

Lines of Code for Pre-BSD Routing Table

Reference counting: 94 (but buggy)

Hazard pointers: 79

Sequence locks: 79 (but buggy)

RCU: 73

© 2018 IBM Corporation135

What is RCU?

Different Design Points!

Locking is still the workhorse for production software

Non-blocking synchronization where it works well

Reference counting OK on small systems or for rarely
accessed portions of larger systems, and provide tight bounds
on memory. Traversals subject to retry.

Hazard pointers handle large systems, provide tight bounds on
memory, excellent scalability, and decent traversal
performance. Traversals subject to retry.

Sequence locks need one of the other approaches

RCU handles huge systems, excellent scalability and traversal
overhead, no-retry traversals. Large memory footprint.

© 2018 IBM Corporation136

What is RCU?

RCU Applicability to the Linux Kernel

© 2018 IBM Corporation137

What is RCU?

Complex Atomic-To-Reader Updates, Take 2

© 2018 IBM Corporation138

What is RCU?

Complex Atomic-To-Reader Updates, Take 2
Atomic Multi-Structure Update: Issaquah Challenge

© 2018 IBM Corporation139

What is RCU?

Atomic Multi-Structure Update: Issaquah Challenge

1 2 3 4 1 2 3 4

Atomically move element 1 from left to right tree
Atomically move element 4 from right to left tree

© 2018 IBM Corporation140

What is RCU?

Atomic Multi-Structure Update: Issaquah Challenge

1 2 3 4 1 2 3 4

Atomically move element 1 from left to right tree
Atomically move element 4 from right to left tree
Without contention between the two move operations!

© 2018 IBM Corporation141

What is RCU?

Atomic Multi-Structure Update: Issaquah Challenge

1 2 3 4 1 2 3 4

Atomically move element 1 from left to right tree
Atomically move element 4 from right to left tree
Without contention between the two move operations!
Hence, most locking solutions “need not apply”

© 2018 IBM Corporation142

What is RCU?

Recall Applicable Laws of Physics...

The finite speed of light

The atomic nature of matter

We therefore avoid unnecessary updates!!!

© 2018 IBM Corporation143

What is RCU?

Update-Heavy Workloads Painful for Parallelism!!!
But There Are Some Special Cases...

© 2018 IBM Corporation144

What is RCU?

But There Are Some Special Cases

Per-CPU/thread processing (perfect partitioning)
–Huge number of examples, including the per-thread/CPU stack
–We will look at split counters

Read-only traversal to location being updated
–Key to solving the Issaquah Challenge

Trivial Lock-Based Concurrent Deque???

© 2018 IBM Corporation145

What is RCU?

Split Counters

© 2018 IBM Corporation146

What is RCU?

Split Counters Diagram

Counter 0

Counter 1

Counter 2

Counter 3

Counter 4

Counter 5

Increment only your own counter

© 2018 IBM Corporation147

What is RCU?

Split Counters Diagram

Counter 0

Counter 1

Counter 2

Counter 3

Counter 4

Counter 5

Sum all counters
While they continue changing

© 2018 IBM Corporation148

What is RCU?

Split Counters Lesson

Updates need not slow us down – if we maintain good locality

For the split counters example, in the common case, each
thread only updates its own counter

–Reads of all counters should be rare
–If they are not rare, use some other counting algorithm
–There are a lot of them, see “Counting” chapter of “Is Parallel

Programming Hard, And, If So, What Can You Do About It?”
(http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html)

© 2018 IBM Corporation149

What is RCU?

Trivial Lock-Based Concurrent Dequeue

© 2018 IBM Corporation150

What is RCU?

Trivial Lock-Based Concurrent Dequeue

Use two lock-based dequeues
–Can always insert concurrently: grab dequeue's lock
–Can always remove concurrently unless one or both are empty

• If yours is empty, grab both locks in order!

Left
Head

Right
Head

A B C D

Left
Head

Right
Head

A

© 2018 IBM Corporation151

What is RCU?

Trivial Lock-Based Concurrent Dequeue

Use two lock-based dequeues
–Can always insert concurrently: grab dequeue's lock
–Can always remove concurrently unless one or both are empty

• If yours is empty, grab both locks in order!

But why push all your data through one dequeue???

Left
Head

Right
Head

A B C D

Left
Head

Right
Head

A

© 2018 IBM Corporation152

What is RCU?

Trivial Lock-Based Concurrent Dequeue Performance

Dalessandro et al., “Hybrid NOrec: A Case Study in the
Effectiveness of Best Effort Hardware Transactional Memory”,
ASPLOS'11, March 5-11, Newport Beach, California, USA

–See "Deque benchmark" subsection of section 4.2 on page 6,
especially Figure 7a (next slide)

–Lock-based dequeue beats all STM algorithms

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. (Applies only to next slide.)

© 2018 IBM Corporation153

What is RCU?

Dalessandro et al. Figure 7a:

© 2018 IBM Corporation154

What is RCU?

Trivial Lock-Based Concurrent Dequeue Performance

Dice et al., “Simplifying concurrent algorithms by exploiting
hardware transactional memory”, SPAA'10, June 13-15,
2010, Thira, Santorini, Greece.

–See Figure 1 and discussion in Section 3 on page 2
–Lock-based dequeue beats all HTM algorithms at some point

Both sets of authors were exceedingly gracious, without the
need for a Code of Conflict

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. (Applies only to next slide.)

© 2018 IBM Corporation155

What is RCU?

Dice et al., Figure 1

© 2018 IBM Corporation156

What is RCU?

Read-Only Traversal To Location Being Updated

© 2018 IBM Corporation157

What is RCU?

Why Read-Only Traversal To Update Location?

Lock contention despite read-only accesses!

. . .

. . .

Lock root

Lock child, unlock root

Lock child, unlock parent

Lock child, unlock parent

Lock child, retain parent's lock

© 2018 IBM Corporation158

What is RCU?

And This Is Another Reason Why We Have RCU!

 (You can also use garbage collectors, hazard pointers, reference
counters, etc.)

 Design principle: Avoid expensive operations in read-side code

 As noted earlier, lightest-weight conceivable read-side primitives
/* Assume non-preemptible (run-to-block) environment. */
#define rcu_read_lock()
#define rcu_read_unlock()

© 2018 IBM Corporation159

What is RCU?

Better Read-Only Traversal To Update Location

© 2018 IBM Corporation160

What is RCU?

Deletion-Flagged Read-Only Traversal

. . .

. . .

RCU

Locking

Lockless RCU-protected traversal

Acquire locks, recheck state,
retry if concurrent update

Marked deleted

© 2018 IBM Corporation161

What is RCU?

Read-Only Traversal To Location Being Updated

Focus contention on portion of structure being updated
–And preserve locality of reference to different parts of structure

Of course, full partitioning is better!

Read-only traversal technique citations:
–Arbel & Attiya, “Concurrent Updates with RCU: Search Tree as an

Example”, PODC'14 (very similar lookup, insert, and delete)
–McKenney, Sarma, & Soni, “Scaling dcache with RCU”, Linux Journal,

January 2004
–And possibly: Pugh, “Concurrent Maintenance of Skip Lists”, University

of Maryland Technical Report CS-TR-2222.1, June 1990
–And maybe also: Kung & Lehman, “Concurrent Manipulation of Binary

Search Trees”, ACM TODS, September, 1980

© 2018 IBM Corporation162

What is RCU?

Issaquah Challenge: One Solution

© 2018 IBM Corporation163

What is RCU?

Locking Regions for Binary Search Tree

In many cases, can implement existence as simple wrapper!

.

.

RCU RCU

Locking Locking

Existence

© 2018 IBM Corporation164

What is RCU?

Possible Upsets While Acquiring Locks...

1

1

Before

After

1

1

1

1

1

1

What to do?
Drop locks and retry!!!

© 2018 IBM Corporation165

What is RCU?

Existence Structures

© 2018 IBM Corporation166

What is RCU?

Existence Structures

Solving yet another computer-science problem by adding an
additional level of indirection...

© 2018 IBM Corporation167

What is RCU?

Example Existence Structure Before Switch

Data
Structure A

Existence

Data
Structure B

Existence

Existence

Offset=0

Existence

Offset=1

Existence
Switch

1

0

0

1

© 2018 IBM Corporation168

What is RCU?

Example Existence Structure After Switch

Existence

Existence

Existence

Offset=0

Existence

Offset=1

Existence
Switch

1

0

0

1

Data
Structure A

Data
Structure B

© 2018 IBM Corporation169

What is RCU?

But Levels of Indirection Are Expensive!

And I didn't just add one level of indirection, I added three!

But most of the time, elements exist and are not being moved

So represent this common case with a NULL pointer
–If the existence pointer is NULL, element exists: No indirection needed
–Backwards of the usual use of a NULL pointer, but so it goes!

 In the uncommon case, traverse existence structure as shown
on the preceding slides

–Expensive, multiple cache misses, but that is OK in the uncommon case

There is no free lunch:
–With this optimization, loads need smp_load_acquire() rather than

READ_ONCE(), ACCESS_ONCE(), or rcu_dereference()

Can use low-order pointer bits to remove two levels of indirection
–Kudos to Dmitry Vyukov for this trick

© 2018 IBM Corporation170

What is RCU?

Example Existence Structure: Dmitry's Approach

0

1

Existence | 0

Existence | 1

Existence
Switch 0/1

Data
Structure A

Data
Structure B

© 2018 IBM Corporation171

What is RCU?

Example Existence Structure: Dmitry's Approach

0

1

Existence | 0

Existence | 1

Existence

Switch 0

Data
Structure A

Data
Structure B

© 2018 IBM Corporation172

What is RCU?

Example Existence Structure: Dmitry's Approach

0

1

Existence | 0

Existence | 1

Existence

Switch 1

Data
Structure A

Data
Structure B

© 2018 IBM Corporation173

What is RCU?

Abbreviated Existence Switch Operation (1/6)

1 2 3 2 3 4

Initial state: First tree contains 1,2,3, second tree contains 2,3,4.
All existence pointers are NULL.

© 2018 IBM Corporation174

What is RCU?

Abbreviated Existence Switch Operation (2/6)

1 2 3

4 1

2 3 4

First tree contains 1,2,3, second tree contains 2,3,4.

1

0

© 2018 IBM Corporation175

What is RCU?

Abbreviated Existence Switch Operation (3/6)

1 2 3 4 1 2 3 4

After insertion, same: First tree contains 1,2,3, second tree contains 2,3,4.

1

0

© 2018 IBM Corporation176

What is RCU?

Abbreviated Existence Switch Operation (4/6)

1 2 3 4 1 2 3 4

After existence switch: First tree contains 2,3,4, second tree contains 1,2,3.
Transition is single store, thus atomic! (But lookups need barriers in this case.)

1

0

© 2018 IBM Corporation177

What is RCU?

Abbreviated Existence Switch Operation (5/6)

1 2 3 4 1 2 3 4

Unlink old nodes and allegiance structure

0

0

1

© 2018 IBM Corporation178

What is RCU?

Abbreviated Existence Switch Operation (6/6)

2 3 4 1 2 3

After waiting a grace period, can free up existence structures and old nodes
And data structure preserves locality of reference!

© 2018 IBM Corporation179

What is RCU?

Existence Structures

Existence-structure reprise:
–Each data element has an existence pointer
–NULL pointer says “member of current structure”
–Non-NULL pointer references an existence structure

• Existence of multiple data elements can be switched atomically

But this needs a good API to have a chance of getting it right!
–Especially given that a NULL pointer means that the element exists!!!

© 2018 IBM Corporation180

What is RCU?

Existence Data Structures

struct existence_group {

 uintptr_t eg_state;

 struct cds_list_head eg_outgoing;

 struct cds_list_head eg_incoming;

 struct rcu_head eg_rh;

};

struct existence_head {

 uintptr_t eh_egi;

 struct cds_list_head eh_list;

 int (*eh_add)(struct existence_head *ehp);

 void (*eh_remove)(struct existence_head *ehp);

 void (*eh_free)(struct existence_head *ehp);

 int eh_gone;

 spinlock_t eh_lock;

 struct rcu_head eh_rh;

};

© 2018 IBM Corporation181

What is RCU?

Existence APIs

 void existence_init(struct existence_group *egp);

 uintptr_t existence_group_outgoing(struct existence_group *egp);

 uintptr_t existence_group_incoming(struct existence_group *egp);

 void existence_set(struct existence **epp, struct existence *ep);

 void existence_clear(struct existence **epp);

 int existence_exists(struct existence_head *ehp);

 int existence_exists_relaxed(struct existence_head *ehp);

 int existence_head_init_incoming(struct existence_head *ehp,

 struct existence_group *egp,

 int (*eh_add)(struct existence_head *ehp),

 void (*eh_remove)(struct existence_head *ehp),

 void (*eh_free)(struct existence_head *ehp))

 int existence_head_set_outgoing(struct existence_head *ehp,

 struct existence_group *egp)

 void existence_flip(struct existence_group *egp);

 void existence_backout(struct existence_group *egp)

© 2018 IBM Corporation182

What is RCU?

Existence Data Structures: Multiple Membership

Data Structure
Header

existence_head
structure

User Pointer

existence_group
structure

Data Structure
Header

existence_head
structure

User Pointer

Data Structure 1 Data Structure 2

User Data
Element

User data element atomically moving from data structure 1 to 2,
which can be different types of data structures

© 2018 IBM Corporation183

What is RCU?

Pseudo-Code for Atomic Move

 Allocate and initialize existence_group structure (existence_group_init())

 Add outgoing existence structure to item in source tree
(existence_head_set_outgoing())

–If operation fails, existence_backout() and report error to caller
–Or maybe retry later

 Insert new element (with source item's data pointer) to destination tree
existence_head_init_incoming())

–If operation fails, existence_backout() and error to caller
–Or maybe retry later

 Invoke existence_flip() to flip incoming and outgoing
–And existence_flip() automatically cleans up after the operation
–Just as existence_backout() does after a failed operation

© 2018 IBM Corporation184

What is RCU?

Existence Structures: Performance and Scalability

100% lookups
Super-linear as expected based on range partitioning

(Hash tables about 3x faster)

80.5x

89.8x

CPPCON

LCA

© 2018 IBM Corporation185

What is RCU?

Existence Structures: Performance and Scalability

90% lookups, 3% insertions, 3% deletions, 3% full tree scans, 1% moves
(Workload approximates Gramoli et al. CACM Jan. 2014)

39.9x

40.0x

CPPCON

LCA

© 2018 IBM Corporation186

What is RCU?

Existence Structures: Performance and Scalability

100% moves (worst case)

7.1x
6.4x

3.7x

CPPCON

LCA

N4037

© 2018 IBM Corporation187

What is RCU?

Existence Structures: Performance and Scalability

100% moves: Still room for improvement!

12.7x

29.2x

CPPCON

LCA

© 2018 IBM Corporation188

What is RCU?

But Requires Modifications to Existing Algorithms

© 2018 IBM Corporation189

What is RCU?

But Requires Modifications to Existing Algorithms
New Goal: Use RCU Algorithms Unchanged!!!

© 2018 IBM Corporation190

What is RCU?

Rotate 3 Elements Through 3 Hash Tables (1/4)

HT 1 HT 2 HT 3

permanent permanent permanent

EL 1 EL 2 EL 3

© 2018 IBM Corporation191

What is RCU?

Rotate 3 Elements Through 3 Hash Tables (2/4)

HT 1 HT 2 HT 3

outgoing outgoing outgoing

incoming incoming incoming

EL 1 EL 2 EL 3

Existence Structure 0

© 2018 IBM Corporation192

What is RCU?

Rotate 3 Elements Through 3 Hash Tables (3/4)

HT 1 HT 2 HT 3

outgoing outgoing outgoing

incoming incoming incoming

EL 1 EL 2 EL 3

Existence Structure 1

© 2018 IBM Corporation193

What is RCU?

Rotate 3 Elements Through 3 Hash Tables (4/4)

HT 1 HT 2 HT 3

permanent permanent permanent

EL 1 EL 2 EL 3

© 2018 IBM Corporation194

What is RCU?

Data to Rotate 3 Elements Through 3 Hash Tables

struct keyvalue {

 unsigned long key;

 unsigned long value;

 atomic_t refcnt;

};

struct hash_exists {

 struct ht_elem he_hte;

 struct hashtab *he_htp;

 struct existence_head he_eh;

 struct keyvalue *he_kv;

};

© 2018 IBM Corporation195

What is RCU?

Code to Rotate 3 Elements Through 3 Hash Tables

egp = malloc(sizeof(*egp));

BUG_ON(!egp);

existence_group_init(egp);

rcu_read_lock();

heo[0] = hash_exists_alloc(egp, htp[0], hei[2]->he_kv, ~0, ~0);

heo[1] = hash_exists_alloc(egp, htp[1], hei[0]->he_kv, ~0, ~0);

heo[2] = hash_exists_alloc(egp, htp[2], hei[1]->he_kv, ~0, ~0);

BUG_ON(existence_head_set_outgoing(&hei[0]->he_eh, egp));

BUG_ON(existence_head_set_outgoing(&hei[1]->he_eh, egp));

BUG_ON(existence_head_set_outgoing(&hei[2]->he_eh, egp));

rcu_read_unlock();

existence_flip(egp);

call_rcu(&egp->eg_rh, existence_group_rcu_cb);

BUG_ON()s become checks with calls to existence_backout() if contention possible

© 2018 IBM Corporation196

What is RCU?

Code to Rotate 3 Elements Through 3 Hash Tables

egp = malloc(sizeof(*egp));

BUG_ON(!egp);

existence_group_init(egp);

rcu_read_lock();

heo[0] = hash_exists_alloc(egp, htp[0], hei[2]->he_kv, ~0, ~0);

heo[1] = hash_exists_alloc(egp, htp[1], hei[0]->he_kv, ~0, ~0);

heo[2] = hash_exists_alloc(egp, htp[2], hei[1]->he_kv, ~0, ~0);

BUG_ON(existence_head_set_outgoing(&hei[0]->he_eh, egp));

BUG_ON(existence_head_set_outgoing(&hei[1]->he_eh, egp));

BUG_ON(existence_head_set_outgoing(&hei[2]->he_eh, egp));

rcu_read_unlock();

existence_flip(egp);

call_rcu(&egp->eg_rh, existence_group_rcu_cb);

BUG_ON()s become checks with calls to existence_backout() if contention possible
Works with an RCU-protected hash table that knows nothing of atomic move!!!

© 2018 IBM Corporation197

What is RCU?

Performance and Scalability of New-Age Existence
Structures?

© 2018 IBM Corporation198

What is RCU?

Performance and Scalability of New-Age Existence
Structures?

For readers, as good as ever

For update-only triple-hash rotations, not so good!

© 2018 IBM Corporation199

What is RCU?

Triple-Hash Rotations are Pure Updates: Red Zone!

Opportunity to improve the infrastructure!

Need fully fresh and consistent data

Stale and inconsistent data OK

10
0%

 U
pd

at
es

10
0%

 R
ea

ds

R
ea

d-
M

os
tly

,
S

ta
le

&
 I

nc
on

si
st

en
t

D
at

a
O

K
(R

C
U

 W
or

ks
 G

re
at

!!!
)

R
ea

d-
M

os
tly

,
N

ee
d

C
on

si
st

en
t

D
at

a
(R

C
U

 W
or

ks
 O

K
)

R
ea

d-
W

rit
e,

N
ee

d
C

on
si

st
en

t
D

at
a

(R
C

U
 M

ig
ht

 B
e

O
K

)

U
pd

at
e-

M
os

tly
,

N
ee

d
F

re
sh

 C
on

si
st

en
t D

at
a

(R
C

U
 N

ot
 S

o
G

oo
d)

1,
2

© 2018 IBM Corporation200

What is RCU?

Existence Structures: Towards Update Scalability

 “Providing perfect performance and scalability is like committing the perfect crime.
There are 50 things that might go wrong, and if you are a genius, you might be
able to foresee and forestall 25 of them.” – Paraphrased from Body Heat, w/apologies to
Kathleen Turner fans

 Issues thus far:
– Data structure alignment (false sharing) – easy fix
– User-space RCU configuration (need per-thread call_rcu() handling, also easy fix)
– The “perf” tool shows massive futex contention, checking locking design finds nothing

• And replacing all lock acquisitions with “if (!trylock()) abort” never aborts
• Other “perf” entries shift suspicion to memory allocators

– Non-scalable memory allocators: More complex operations means more allocations!!!
• The glibc allocator need not apply for this job
• The jemalloc allocator bloats the per-thread lists, resulting in ever-growing RSS
• The tcmalloc allocator suffers from lock contention moving to/from global pool
• A tcmalloc that is better able to handle producer-consumer relations in the works, but

I first heard of this a few years back and it still has not made its appearance

© 2018 IBM Corporation201

What is RCU?

Existence Structures: Towards Update Scalability

 “Providing perfect performance and scalability is like committing the perfect crime.
There are 50 things that might go wrong, and if you are a genius, you might be
able to foresee and forestall 25 of them.” – Paraphrased from Body Heat, w/apologies to
Kathleen Turner fans

 Issues thus far:
– Data structure alignment (false sharing) – easy fix
– User-space RCU configuration (need per-thread call_rcu() handling, also easy fix)
– The “perf” tool shows massive futex contention, checking locking design finds nothing

• And replacing all lock acquisitions with “if (!trylock()) abort” never aborts
• Other “perf” entries shift suspicion to memory allocators

– Non-scalable memory allocators: More complex operations means more allocations!!!
• The glibc allocator need not apply for this job
• The jemalloc allocator bloats the per-thread lists, resulting in ever-growing RSS
• The tcmalloc allocator suffers from lock contention moving to/from global pool
• A tcmalloc that is better able to handle producer-consumer relations in the works, but

I first heard of this a few years back and it still has not made its appearance

 Fortunately, I have long experience with memory allocators
– McKenney & Slingwine, “Efficient Kernel Memory Allocation on Shared-Memory

Multiprocessors”, 1993 USENIX
– But needed to complete implementation in one day, so chose quick hack

© 2018 IBM Corporation202

What is RCU?

Specialized Producer/Consumer Allocator

RCU Callbacks

Worker Threads

Lockless
Memory Queue

Lockless
Memory Queue

Lockless
Memory Queue

© 2018 IBM Corporation203

What is RCU?

New Age Existence Structures: Towards Scalability

 “Providing perfect performance and scalability is like committing the perfect crime.
There are 50 things that might go wrong, and if you are a genius, you might be
able to foresee and forestall 25 of them.” – Paraphrased from Body Heat, with apologies to
Kathleen Turner fans

 Issues thus far:
– Data structure alignment (false sharing) – easy fix
– User-space RCU configuration (need per-thread call_rcu() handling, also easy fix)
– The “perf” tool shows massive futex contention, checking locking design finds nothing

• And replacing all lock acquisitions with “if (!trylock()) abort” never aborts
• Other “perf” entries shift suspicion to memory allocators

– Non-scalable memory allocators: More complex operations means more allocations!!!
• Lockless memory queue greatly reduces memory-allocator lock contention

– Profiling shows increased memory footprint is an issue: caches and TLBs!
– Userspace RCU callback handling appears to be the next bottleneck

• Perhaps some of techniques from the Linux kernel are needed in userspace

© 2018 IBM Corporation204

What is RCU?

Performance and Scalability of New-Age Existence
Structures for Triple Hash Rotation?

CPPCON

ACM App.

Some improvement, but still not spectacular
But note that each thread is rotating concurrently

© 2018 IBM Corporation205

What is RCU?

But What About Skiplists?

© 2018 IBM Corporation206

What is RCU?

Rotate 3 Elements Through 3 Skiplists (1/4)

SL 1 SL 2 SL 3

permanent permanent permanent

EL 1 EL 2 EL 3

© 2018 IBM Corporation207

What is RCU?

Rotate 3 Elements Through 3 Skiplists (2/4)

outgoing outgoing outgoing

incoming incoming incoming

EL 1 EL 2 EL 3

Existence Structure 0

SL 1 SL 2 SL 3

© 2018 IBM Corporation208

What is RCU?

Rotate 3 Elements Through 3 Skiplists (3/4)

outgoing outgoing outgoing

incoming incoming incoming

EL 1 EL 2 EL 3

Existence Structure 1

SL 1 SL 2 SL 3

© 2018 IBM Corporation209

What is RCU?

Rotate 3 Elements Through 3 Skiplists (4/4)

permanent permanent permanent

EL 1 EL 2 EL 3

SL 1 SL 2 SL 3

© 2018 IBM Corporation210

What is RCU?

Data to Rotate 3 Elements Through 3 Skiplists

struct keyvalue {

 unsigned long key;

 unsigned long value;

 atomic_t refcnt;

};

struct hash_exists {

 struct skiplist se_sle;

 struct skiplist *se_slh;

 struct existence_head se_eh;

 struct keyvalue *se_kv;

};

© 2018 IBM Corporation211

What is RCU?

Code to Rotate 3 Elements Through 3 Skiplists

egp = malloc(sizeof(*egp));

BUG_ON(!egp);

existence_group_init(egp);

rcu_read_lock();

seo[0] = skiplist_exists_alloc(egp, &slp[0], sei[2]->se_kv, ~0, ~0);

seo[1] = skiplist_exists_alloc(egp, &slp[1], sei[0]->se_kv, ~0, ~0);

seo[2] = skiplist_exists_alloc(egp, &slp[2], sei[1]->se_kv, ~0, ~0);

BUG_ON(existence_head_set_outgoing(&sei[0]->se_eh, egp));

BUG_ON(existence_head_set_outgoing(&sei[1]->se_eh, egp));

BUG_ON(existence_head_set_outgoing(&sei[2]->se_eh, egp));

rcu_read_unlock();

existence_flip(egp);

call_rcu(&egp->eg_rh, existence_group_rcu_cb);

As with hash table:RCU-protected skiplist that knows nothing of atomic move

© 2018 IBM Corporation212

What is RCU?

Performance and Scalability of New-Age Existence
Structures for Triple Skiplist Rotation?

Hash table

Skiplist

This skiplist is a random tree, so we have lock contention

© 2018 IBM Corporation213

What is RCU?

But Can We Atomically Rotate More Elements?

Apply batching optimization!

 Instead of rotating three elements through three hash tables,
rotate three pairs of elements

Then three triplets of elements

And so on, rotating ever larger sets through the three tables

© 2018 IBM Corporation214

What is RCU?

But Can We Atomically Rotate More Elements?

Apply batching optimization!

 Instead of rotating three elements through three hash tables,
rotate three pairs of elements

Then three triplets of elements

And so on, rotating ever larger sets through the three tables

 It can be done, but there is a performance mystery

© 2018 IBM Corporation215

What is RCU?

Large-Hash-Rotation Performance Mystery

Many additional optimizations are possible, but...

© 2018 IBM Corporation216

What is RCU?

Even Bigger Mystery: Why Rotate This Way???

© 2018 IBM Corporation217

What is RCU?

Even Bigger Mystery: Why Rotate This Way???

Every third rotation brings us back to the original state

So why bother with allocation, freeing, and grace periods?

© 2018 IBM Corporation218

What is RCU?

Even Bigger Mystery: Why Rotate This Way???

Every third rotation brings us back to the original state

So why bother with allocation, freeing, and grace periods?

Just change the existence state variable!!!
–But we need not be limited to two states
–Define kaleidoscopic data structure as one updated by state change
–Data structures and algorithms are very similar to those for existence

© 2018 IBM Corporation219

What is RCU?

Rotate Through Hash Table & Skiplist (1/3)

Hash
Table

Skiplist

permanent permanent

EL 1 EL 2

© 2018 IBM Corporation220

What is RCU?

Rotate Through Hash Table & Skiplist (2/3)

State 0 State 0

State 1 State 1

EL 1 EL 2

Kaleidoscope Structure 0

Hash
Table

Skiplist

© 2018 IBM Corporation221

What is RCU?

Rotate Through Hash Table & Skiplist (3/3)

State 0 State 0

State 1 State 1

EL 1 EL 2

Kaleidoscope Structure 1

Hash
Table

Skiplist

© 2018 IBM Corporation222

What is RCU?

Rotate Through Hash Table & Skiplist (2/3)

State 0 State 0

State 1 State 1

EL 1 EL 2

Kaleidoscope Structure 0

Hash
Table

Skiplist

© 2018 IBM Corporation223

What is RCU?

Rotate Through Hash Table & Skiplist (3/3)

State 0 State 0

State 1 State 1

EL 1 EL 2

Kaleidoscope Structure 1

Hash
Table

Skiplist

© 2018 IBM Corporation224

What is RCU?

Very Tight Loop...

while (ACCESS_ONCE(goflag) == GOFLAG_RUN) {

 kaleidoscope_set_state(kgp, nrotations % 2);

 nrotations++;

}

© 2018 IBM Corporation225

What is RCU?

Kaleidoscopic Rotation Performance Results

This is more like it!!! Too bad about the specificity...

© 2018 IBM Corporation226

What is RCU?

Kaleidoscopic Rotation Performance Results

This is more like it!!! Too bad about the specificity...
As always, be wary of benchmarks!!!

© 2018 IBM Corporation227

What is RCU?

Existence Advantages and Disadvantages

 Existence requires focused developer effort

 Existence specialized to linked structures (for now, anyway)

 Existence requires explicit memory management

 Existence-based exchange operations require linked structures that
accommodate duplicate elements

– Current prototypes disallow duplicates, explicit check for hash tables

 Existence permits irrevocable operations

 Existence can exploit locking hierarchies, reducing the need for contention
management

 Existence achieves semi-decent performance and scalability

 Flip/backout automation significantly eases memory management

 Existence's use of synchronization primitives preserves locality of reference

 Existence is compatible with old hardware

 Existence is a downright mean memory-allocator and RCU test case!!!

© 2018 IBM Corporation228

What is RCU?

When Might You Use Existence-Based Update?

We really don't know yet
–But similar techniques are used by Linux-kernel filesystems

Best guess is when one or more of the following holds and
you are willing to invest significant developer effort to gain
performance and scalability:

–Many small updates to large linked data structure
–Complex updates that cannot be efficiently implemented with single

pointer update
–Read-mostly to amortize higher overhead of complex updates
–Need compatibility with hardware not supporting transactional memory

• Side benefit: Dispense with the need for software fallbacks!
–Need to be able to do irrevocable operations (e.g., I/O) as part of data-

structure update

© 2018 IBM Corporation229

What is RCU?

Existence Structures: Production Readiness

© 2018 IBM Corporation230

What is RCU?

Existence Structures: Production Readiness

No, it is not production ready (but was getting there)

Limping

Builds

Benchmark Special

Production: 1K Instances

Production: 1M Instances

Production: 1G Instances

LCA'15R&D Prototype

N4037

RCU

ACM'16

Current

© 2018 IBM Corporation231

What is RCU?

Existence Structures: Production Readiness

No, it is not production ready (but was getting there)

Limping

Builds

Benchmark Special

Production: 1K Instances

Production: 1M Instances

Production: 1G Instances

Production: 1T Instances

R&D Prototype LCA'15

N4037 ACM'16

RCU

Current

Need this for Internet of Things,
Validation is a big unsolved problem
Formal verification for RCU!!!

© 2018 IBM Corporation232

What is RCU?

Existence Structures: Known Antecedents

 Fraser: “Practical Lock-Freedom”, Feb 2004
– Insistence on lock freedom: High complexity, poor performance
– Similarity between Fraser's OSTM commit and existence switch

 McKenney, Krieger, Sarma, & Soni: “Atomically Moving List Elements
Between Lists Using Read-Copy Update”, Apr 2006

– Block concurrent operations while large update is carried out

 Triplett: “Scalable concurrent hash tables via relativistic programming”,
Sept 2009

 Triplett: “Relativistic Causal Ordering: A Memory Model for Scalable
Concurrent Data Structures”, Feb 2012

– Similarity between Triplett's key switch and allegiance switch
– Could share nodes between trees like Triplett does between hash chains, but would

impose restrictions and API complexity

 Some filesystem algorithms in Linux kernel

© 2018 IBM Corporation233

What is RCU?

Summary

© 2018 IBM Corporation234

What is RCU?

Summary

Complex atomic updates can be applied to unmodified RCU-
aware concurrent data structures

–Need functions to add, remove, and free elements
–Free to use any synchronization mechanism
–Free to use any memory allocator

Flip/backout processing can be automated

High update rates encounter interesting bottlenecks in the
infrastructure: Memory allocation and userspace RCU

–Read-mostly workloads continue to perform and scale well
–As do kaleidoscopic updates

Lots of opportunity for collaboration and innovation!

© 2018 IBM Corporation235

What is RCU?

Graphical Summary

© 2018 IBM Corporation236

What is RCU?

To Probe Deeper (1/4)
 Hash tables:

– http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Chapter 10

 Split counters:
– http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Chapter 5
– http://events.linuxfoundation.org/sites/events/files/slides/BareMetal.2014.03.09a.pdf

 Perfect partitioning
– Candide et al: “Dynamo: Amazon's highly available key-value store”

• http://doi.acm.org/10.1145/1323293.1294281
– McKenney: “Is Parallel Programming Hard, And, If So, What Can You Do About It?”

• http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Section 6.5
– McKenney: “Retrofitted Parallelism Considered Grossly Suboptimal”

• Embarrassing parallelism vs. humiliating parallelism
• https://www.usenix.org/conference/hotpar12/retro%EF%AC%81tted-parallelism-considered-

grossly-sub-optimal
– McKenney et al: “Experience With an Efficient Parallel Kernel Memory Allocator”

• http://www.rdrop.com/users/paulmck/scalability/paper/mpalloc.pdf
– Bonwick et al: “Magazines and Vmem: Extending the Slab Allocator to Many CPUs and Arbitrary

Resources”
• http://static.usenix.org/event/usenix01/full_papers/bonwick/bonwick_html/

– Turner et al: “PerCPU Atomics”
• http://www.linuxplumbersconf.org/2013/ocw//system/presentations/1695/original/LPC%20-

%20PerCpu%20Atomics.pdf

© 2018 IBM Corporation237

What is RCU?

To Probe Deeper (2/4)

 Stream-based applications:
– Sutton: “Concurrent Programming With The Disruptor”

• http://www.youtube.com/watch?v=UvE389P6Er4
• http://lca2013.linux.org.au/schedule/30168/view_talk

– Thompson: “Mechanical Sympathy”
• http://mechanical-sympathy.blogspot.com/

 Read-only traversal to update location
– Arcangeli et al: “Using Read-Copy-Update Techniques for System V IPC in the Linux 2.5

Kernel”
• https://www.usenix.org/legacy/events/usenix03/tech/freenix03/full_papers/arcangeli/arcang

eli_html/index.html
– Corbet: “Dcache scalability and RCU-walk”

• https://lwn.net/Articles/419811/
– Xu: “bridge: Add core IGMP snooping support”

• http://kerneltrap.com/mailarchive/linux-netdev/2010/2/26/6270589
– Triplett et al., “Resizable, Scalable, Concurrent Hash Tables via Relativistic Programming”

• http://www.usenix.org/event/atc11/tech/final_files/Triplett.pdf
– Howard: “A Relativistic Enhancement to Software Transactional Memory”

• http://www.usenix.org/event/hotpar11/tech/final_files/Howard.pdf
– McKenney et al: “URCU-Protected Hash Tables”

• http://lwn.net/Articles/573431/

© 2018 IBM Corporation238

What is RCU?

To Probe Deeper (3/4)

 Hardware lock elision: Overviews
– Kleen: “Scaling Existing Lock-based Applications with Lock Elision”

• http://queue.acm.org/detail.cfm?id=2579227

 Hardware lock elision: Hardware description
– POWER ISA Version 2.07

• http://www.power.org/documentation/power-isa-version-2-07/
– Intel® 64 and IA-32 Architectures Software Developer Manuals

• http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
– Jacobi et al: “Transactional Memory Architecture and Implementation for IBM System z”

• http://www.microsymposia.org/micro45/talks-posters/3-jacobi-presentation.pdf

 Hardware lock elision: Evaluations
– http://pcl.intel-research.net/publications/SC13-TSX.pdf
– http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Section 16.3

 Hardware lock elision: Need for weak atomicity
– Herlihy et al: “Software Transactional Memory for Dynamic-Sized Data Structures”

• http://research.sun.com/scalable/pubs/PODC03.pdf
– Shavit et al: “Data structures in the multicore age”

• http://doi.acm.org/10.1145/1897852.1897873
– Haas et al: “How FIFO is your FIFO queue?”

• http://dl.acm.org/citation.cfm?id=2414731
– Gramoli et al: “Democratizing transactional programming”

• http://doi.acm.org/10.1145/2541883.2541900

© 2018 IBM Corporation239

What is RCU?

To Probe Deeper (4/4)

 RCU
– Desnoyers et al.: “User-Level Implementations of Read-Copy Update”

• http://www.rdrop.com/users/paulmck/RCU/urcu-main-accepted.2011.08.30a.pdf
• http://www.computer.org/cms/Computer.org/dl/trans/td/2012/02/extras/ttd2012020375s.pdf

– McKenney et al.: “RCU Usage In the Linux Kernel: One Decade Later”
• http://rdrop.com/users/paulmck/techreports/survey.2012.09.17a.pdf
• http://rdrop.com/users/paulmck/techreports/RCUUsage.2013.02.24a.pdf

– McKenney: “Structured deferral: synchronization via procrastination”
• http://doi.acm.org/10.1145/2483852.2483867

– McKenney et al.: “User-space RCU” https://lwn.net/Articles/573424/

 Possible future additions
– Boyd-Wickizer: “Optimizing Communications Bottlenecks in Multiprocessor Operating

Systems Kernels”
• http://pdos.csail.mit.edu/papers/sbw-phd-thesis.pdf

– Clements et al: “The Scalable Commutativity Rule: Designing Scalable Software for
Multicore Processors”

• http://www.read.seas.harvard.edu/~kohler/pubs/clements13scalable.pdf
– McKenney: “N4037: Non-Transactional Implementation of Atomic Tree Move”

• http://www.rdrop.com/users/paulmck/scalability/paper/AtomicTreeMove.2014.05.26a.pdf
– McKenney: “C++ Memory Model Meets High-Update-Rate Data Structures”

• http://www2.rdrop.com/users/paulmck/RCU/C++Updates.2014.09.11a.pdf

© 2018 IBM Corporation240

What is RCU?

Legal Statement

 This work represents the view of the author and does not necessarily represent
the view of IBM.

 IBM and IBM (logo) are trademarks or registered trademarks of International
Business Machines Corporation in the United States and/or other countries.

 Linux is a registered trademark of Linus Torvalds.

 Other company, product, and service names may be trademarks or service marks
of others.

 Credits:
– This material is based upon work supported by the National Science Foundation under Grant

No. CNS-0719851.
– Joint work with Mathieu Desnoyers, Alan Stern, Michel Dagenais, Manish Gupta, Maged

Michael, Phil Howard, Joshua Triplett, Jonathan Walpole, and the Linux kernel community.
– Additional reviewers: Carsten Weinhold and Mingming Cao.

© 2018 IBM Corporation241

What is RCU?

Questions?

	IBM Presentation Template Full Version
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241

