
© 2009 IBM Corporation

Making RCU Safe For Battery-Powered
Devices

Paul E. McKenney, IBM Distinguished Engineer, Linux Technology Center & Linaro

February 15, 2012

© 2009 IBM Corporation2

Overview

What is RCU?

 “The Good Old Days”

Overview of RCU's many variants of energy efficiency

Current state of RCU energy efficiency

Future directions

Making RCU Safe For Battery-Powered Devices

© 2009 IBM Corporation3

What is RCU?

© 2009 IBM Corporation4

A Very Brief Introduction to RCU

Synchronization technique sometimes used in place of
reader-writer locking

–Extremely low read-side overhead: can be zero in actual use
• Extreme performance, scalability, and real-time response
• “Free is a very good price!”

–RCU readers progress even in presence of writers and vice versa

Most useful for read-mostly data: increasingly important
–Routing tables, security policies, storage configuration, …
–All of which could change at any time, but rarely do change in practice

RCU operation:
–Publication of and subscription to new data
–RCU removal from linked list
–Waiting for pre-existing readers (for zero-cost readers)

© 2009 IBM Corporation5

Publication of And Subscription To New Data

A gptr

->a=?
->b=?
->c=?

gptrgptr gptr

in
iti

al
iz

at
io

n

km
al

lo
c(

)

rc
u_

as
si

g n
_p

oi
nt

er
()

->a=1
->b=2
->c=3

->a=1
->b=2
->c=3

Key: Dangerous for updates: all readers can access
Still dangerous for updates: pre-existing readers can access (next slide)
Safe for updates: inaccessible to all readers

reader

rc
u_

de
re

f e
re

nc
e(

)

tmp tmp tmp

© 2009 IBM Corporation6

RCU Removal From Linked List

 Combines waiting for readers and multiple versions:
– Writer removes element B from the list (list_del_rcu())
– Writer waits for all readers to finish (synchronize_rcu())
– Writer can then free B (kfree())

A

B

C

A

B

C

A

B

C

A

B

C

A

C

sy
nc

hr
on

i z
e_

rc
u(

)

lis
t_

de
l_

rc
u(

)

kf
re

e(
)

One Version Two Versions One Version

Readers? Readers? Readers?X

One Version

© 2009 IBM Corporation7

Waiting for Pre-Existing Readers

 Non-preemptive environment (CONFIG_PREEMPT=n)
– RCU readers are not permitted to block
– Same rule as for tasks holding spinlocks

 CPU context switch means all that CPU's readers are done
 Grace period ends after all CPUs execute a context switch

synchronize_rcu()

CPU 0

CPU 1

CPU 2

co
nt

ex
t

sw
itc

h

Grace Period

RCU re
ad

er

© 2009 IBM Corporation8

RCU Area of Applicability

Update-Mostly, Need Consistent Data
(RCU is Really Unlikely to be the Right Tool For The Job,

But SLAB_DESTROY_BY_RCU Is A Possibility)

Read-Write, Need Consistent Data
(RCU Might Be OK...)

Read-Mostly, Need Consistent Data
(RCU Works OK)

Read-Mostly, Stale &
Inconsistent Data OK
(RCU Works Great!!!)

Use the right tool for the job!!!

© 2009 IBM Corporation9

For More Information on RCU...

 Documentation/RCU in the Linux® kernel source code

 “User-Level Implementations of Read-Copy Update” (Mathieu Desnoyers et al.)
– http://doi.ieeecomputersociety.org/10.1109/TPDS.2011.159

 “The RCU API, 2010 Edition”
– http://lwn.net/Articles/418853/

 “What is RCU” LWN series
– http://lwn.net/Articles/262464/ (What is RCU, Fundamentally?)
– http://lwn.net/Articles/263130/ (What is RCU's Usage?)
– http://lwn.net/Articles/264090/ (What is RCU's API?)

 “Introducing technology into the Linux kernel: a case study”
– http://doi.acm.org/10.1145/1400097.1400099

 “Meet the Lockers” (Neil Brown)
– http://lwn.net/Articles/453685/

 “Read-Copy Update” (2001 OLS paper, still used in a number of college courses)
– http://www.linuxsymposium.org/2001/abstracts/readcopy.php

 Plus more at: http://www.rdrop.com/users/paulmck/RCU

© 2009 IBM Corporation10

“The Good Old Days”

© 2009 IBM Corporation11

Not Much “Good Old Days” Code Left in RCU

SRCU

rcutorture

TREE_RCU

rculist.h

TREE_PREEMPT_RCU
Boost

 lockdep,
 sparse,
debug-objects

Energy

© 2009 IBM Corporation12

Not Much “Good Old Days” Code Left in RCU
Why did I wait until 2011 to conserve energy???

SRCU

rcutorture

TREE_RCU

rculist.h

TREE_PREEMPT_RCU
Boost

 lockdep,
 sparse,
debug-objects

Energy

© 2009 IBM Corporation13

Why Did I Wait Until 2011 to Conserve Energy?

The fact is that I didn't wait until 2011!!!

But RCU's energy-efficiency code is unusual in that it has
been rewritten a great many times

–RCU has been concerned about energy efficiency for about ten years
–Not much energy-efficiency code in RCU in the 1990s: Why?

Other minor changes:
–Expedited grace periods
–Additions to rcutorture
–Additional list-traversal primitives
–Reworking of CPU hotplug code
–Plus the usual list of fixes, improvements, and adaptations

© 2009 IBM Corporation14

“The Good Really Old Days”

RCU used by DYNIX/ptx: Heavy database servers

Used for a number of applications:
–Fraud detection in large financial systems
–Inventory monitoring/control for large retail firms
–Rental car tracking/billing
–Manufacturing coordination/control

• Including manufacturing of airliners

© 2009 IBM Corporation15

Airliner Manufacturing Plants Have Lots of These:

Author: William M. Plate Jr. (Public Domain)

© 2009 IBM Corporation16

Airliner Manufacturing Plants Have Lots of These

Author: William M. Plate Jr. (Public Domain)

At About 40KW Each

© 2009 IBM Corporation17

And if You Think That Welders Are Power-Hungry...

GE90-115B turbofan - front {{Le Bourget 2005}} Copyright © 2005 David Monniaux {{GFDL}} {{cc-by-sa-2.0}} {{cc-by-sa-2.0-fr}}

http://en.wikipedia.org/wiki/GE90
http://en.wikipedia.org/wiki/User:David.Monniaux

© 2009 IBM Corporation18

If You Are Running a Bunch of Welders or Turbines...

Not only are you not going to care much about RCU's
contribution to power consumption...

© 2009 IBM Corporation19

If You Are Running a Bunch of Welders or Turbines...

Not only are you not going to care much about RCU's
contribution to power consumption...

You are not going to care much about the whole server's
contribution to power consumption!

But of course things look very different for small battery-
powered devices...

© 2009 IBM Corporation20

RCU's Many Energy-Efficiency Implementations

© 2009 IBM Corporation21

Initial RCU Did Have One Energy-Efficiency Feature

 Initial DYNIX/ptx RCU had light-weight read-side primitives
–“Free” is a very good price!!!

This meant that the system returned to idle more quickly than
it would with heavier-weight synchronization primitives

–But 1990s systems consumed more power idle than when running!
–This was because the idle loop fit into cache, thus allowing the CPU to

execute useless instructions at a very high rate

But today's CPUs have many energy-efficiency features
–And have very low idle power, especially for long-duration idle periods

So why does RCU need to worry about energy efficiency???
–After all, it is just a synchronization primitive!!!

© 2009 IBM Corporation22

RCU Driven From Scheduling Clock Interrupt

What RCU
Did (2003)

Scheduling-Clock
Interrupts

RCU's Use of Scheduling-Clock
Interrupts Prevents Deep CPU Sleep States

What Is
Required

No Scheduling-Clock Interrupts, CPU Enters Deep Sleep

© 2009 IBM Corporation23

RCU Driven From Scheduling Clock Interrupt

Scheduling-Clock
Interrupts

RCU's Use of Scheduling-Clock
Interrupts Wastes Power and

Prevents Deep CPU Sleep States

No Scheduling-Clock Interrupts, CPU Enters Deep Sleep

Which is why RCU has a dyntick-idle subsystem!

What RCU
Did (2003)

What Is
Required

© 2009 IBM Corporation24

RCU and Dyntick Idle (AKA CONFIG_NO_HZ=y)

List of implementations:
–2004: Dyntick-idle bit vector

• Manfred Spraul locates theoretical bug

© 2009 IBM Corporation25

RCU and Dyntick Idle (AKA CONFIG_NO_HZ=y)

List of implementations:
–2004: Dyntick-idle bit vector

• Manfred Spraul locates theoretical bug
• A few months before the mainframe guys encounter it

© 2009 IBM Corporation26

RCU and Dyntick Idle (AKA CONFIG_NO_HZ=y)

List of implementations:
–2004: Dyntick-idle bit vector

• Manfred Spraul locates theoretical bug
• A few months before the mainframe guys encounter it
• But after it had been in-tree for four years

© 2009 IBM Corporation27

RCU and Dyntick Idle (AKA CONFIG_NO_HZ=y)

List of implementations:
–2004: Dyntick-idle bit vector

• Manfred Spraul locates theoretical bug
• A few months before the mainframe guys encounter it
• But after it has been in-tree for four years

–2008: -rt version (with Steven Rostedt)
• Very complex: http://lwn.net/Articles/279077/

–2009: Separate out NMI accounting
• Greatly simplified: No proof of correctness required ;-)

© 2009 IBM Corporation28

RCU and Dyntick Idle as of Early 2010

CPU 1

CPU 0

Scheduling-Clock
Interrupts

Enter Dyntick-Idle Mode

Need to Process RCU
Callbacks Before Entering

Dyntick-Idle Mode

RCU Grace
Period Ends

Dyntick-Idle Mode Enables
CPU Deep-Sleep States

© 2009 IBM Corporation29

So RCU is Perfectly Energy Efficient, Right?

© 2009 IBM Corporation30

So RCU is Perfectly Energy Efficient, Right?

Well, I thought that RCU was very energy efficient

Then in early 2010 I got a call from someone working on a battery-
powered multicore system

And he was very upset with RCU

Why?

© 2009 IBM Corporation31

RCU Energy Inefficiency

CPU 1

CPU 0

Scheduling-Clock
Interrupts

Enter Dyntick-Idle Mode

RCU Callbacks Prevent
Dyntick-Idle Mode Entry

CPU is Draining
the Battery For

No Good Reason!!!

No RCU Read-Side
Critical Sections!

© 2009 IBM Corporation32

RCU and Dyntick Idle (AKA CONFIG_NO_HZ=y)

List of implementations:
–2004: Dyntick-idle bit vector

• Manfred Spraul locates theoretical bug
• A few months before the mainframe guys encounter it
• But after it has been in-tree for four years

–2008: -rt version (with Steven Rostedt)
• Very complex: http://lwn.net/Articles/279077/

–2009: Separate out NMI accounting
• Greatly simplified: No proof of correctness required

–2010: CONFIG_RCU_FAST_NO_HZ for small systems
• Force last CPU into dyntick-idle mode

© 2009 IBM Corporation33

CONFIG_RCU_FAST_NO_HZ

CPU 1

CPU 0

Scheduling-Clock
Interrupts

Enter Dyntick-Idle Mode

All Other CPUs Idle,
Grace Period Ends Immediately

RCU Callbacks
Invoked Immediately

No RCU Read-Side
Critical Sections!

© 2009 IBM Corporation34

So RCU is Perfectly Energy Efficient, Right?

© 2009 IBM Corporation35

So RCU is Perfectly Energy Efficient, Right?

This time, I was wiser:
–I suspected CONFIG_FAST_NO_HZ needed on large systems

And someone mentioned this to me in late 2011

But some things never change: He was very upset with RCU

Why?

© 2009 IBM Corporation36

Might Never Have All But One CPU Dyntick-Idled!!!

CPU 1

CPU 0

CPU 2

The more CPUs you have, the worse this effect gets

© 2009 IBM Corporation37

RCU and Dyntick Idle (AKA CONFIG_NO_HZ=y)

List of implementations:
–2004: Dyntick-idle bit vector

• Manfred Spraul locates theoretical bug
• A few months before the mainframe guys encounter it
• But after it has been in-tree for four years

–2008: -rt version (with Steven Rostedt)
• Very complex: http://lwn.net/Articles/279077/

–2009: Separate out NMI accounting
• Greatly simplified: No proof of correctness required

–2010: CONFIG_RCU_FAST_NO_HZ for small systems
• Force last CPU into dyntick-idle mode

–2012: CONFIG_RCU_FAST_NO_HZ for large systems
• Force CPUs with callbacks into dyntick-idle, but wake them up later

© 2009 IBM Corporation38

CONFIG_RCU_FAST_NO_HZ for Large Systems

rcu_needs_cpu()

Yes/No

RCU

enter
idle

exit
idle

rcu_idle_enter()
rcu_irq_exit()
rcu_nmi_exit()

rcu_idle_exit()
rcu_irq_enter()
rcu_nmi_enter()

© 2009 IBM Corporation39

CONFIG_RCU_FAST_NO_HZ for Large Systems

Constraints:
–The RCU core code is a state machine driven out of the scheduling-

clock interrupt handler that runs primarily in softirq context
–Cannot indefinitely delay callbacks: would otherwise result in hangs
–Cannot spin indefinitely trying to enter dyntick-idle mode

• At some point it is better to accept periodic scheduling-clock interrupts
–Need to control idle-entry overhead if entering/exiting idle frequently
–Cannot use conventional looping constructs due to deadlock issues
–Cannot assume that rcu_needs_cpu() is called in a quiescent state
–Some architectures enter interrupt handlers that they never exit

• And vice versa

© 2009 IBM Corporation40

Initial Version of Code

void rcu_prepare_for_idle(int cpu)
{
 int i;

 while (rcu_cpu_has_callbacks(cpu)) {
 rcu_sched_qs();
 force_quiescent_state(&rcu_sched_state, 0);
 rcu_process_callbacks();
 }
}

© 2009 IBM Corporation41

Initial Version of Code

void rcu_prepare_for_idle(int cpu)
{
 int i;

 while (rcu_cpu_has_callbacks(cpu)) {
 rcu_sched_qs();
 force_quiescent_state(&rcu_sched_state, 0);
 rcu_process_callbacks();
 }
}

RCU callbacks might spawn more RCU callbacks indefinitely
Better a scheduling-clock interrupt than spinning while idle!

© 2009 IBM Corporation42

Limit Number of Attempts to RCU_IDLE_FLUSHES

void rcu_prepare_for_idle(int cpu)
{
 int i;

 for (i = 0; i < RCU_IDLE_FLUSHES; i++) {
 if (!rcu_cpu_has_callbacks(cpu))
 return;
 rcu_sched_qs();
 force_quiescent_state(&rcu_sched_state, 0);
 rcu_process_callbacks();
 }
 invoke_rcu_core();
}

© 2009 IBM Corporation43

Limit Number of Attempts to RCU_IDLE_FLUSHES

void rcu_prepare_for_idle(int cpu)
{
 int i;

 for (i = 0; i < RCU_IDLE_FLUSHES; i++) {
 if (!rcu_cpu_has_callbacks(cpu))
 return;
 rcu_sched_qs();
 force_quiescent_state(&rcu_sched_state, 0);
 rcu_process_callbacks();
 }
 invoke_rcu_core();
}

High overhead for frequent switches to idle!

© 2009 IBM Corporation44

Hold Off Future Attempts if Unsuccessful

DEFINE_PER_CPU(unsigned long, rcu_dyntick_holdoff);

void rcu_prepare_for_idle(int cpu)
{
 int i;

 if (per_cpu(rcu_dyntick_holdoff, cpu) == jiffies)
 return;
 for (i = 0; i < RCU_IDLE_FLUSHES; i++) {
 if (!rcu_cpu_has_callbacks(cpu))
 return;
 rcu_sched_qs();
 force_quiescent_state(&rcu_sched_state, 0);
 rcu_process_callbacks();
 }
 if (rcu_cpu_has_callbacks(cpu)) {
 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies;
 invoke_rcu_core();
 }
}

© 2009 IBM Corporation45

Hold Off Future Attempts if Unsuccessful

DEFINE_PER_CPU(unsigned long, rcu_dyntick_holdoff);

void rcu_prepare_for_idle(int cpu)
{
 int i;

 if (per_cpu(rcu_dyntick_holdoff, cpu) == jiffies)
 return;
 for (i = 0; i < RCU_IDLE_FLUSHES; i++) {
 if (!rcu_cpu_has_callbacks(cpu))
 return;
 rcu_sched_qs();
 force_quiescent_state(&rcu_sched_state, 0);
 rcu_process_callbacks();
 }
 if (rcu_cpu_has_callbacks(cpu)) {
 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies;
 invoke_rcu_core();
 }
}

Cannot clear all RCU callbacks often enough!

© 2009 IBM Corporation46

Allow Idle with Callbacks: Set Timer

DEFINE_PER_CPU(unsigned long, rcu_dyntick_holdoff);
DEFINE_PER_CPU(struct hrtimer, …);

void rcu_prepare_for_idle(int cpu)
{
 int i;

 if (per_cpu(rcu_dyntick_holdoff, cpu) == jiffies)
 return;
 for (i = 0; i < RCU_IDLE_FLUSHES; i++) {
 if (!rcu_cpu_has_callbacks(cpu))
 return;
 rcu_sched_qs();
 force_quiescent_state(&rcu_sched_state, 0);
 rcu_process_callbacks();
 }
 if (rcu_cpu_has_callbacks(cpu))
 If (rcu_pending()) {
 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies;
 invoke_rcu_core();
 } else
 hrtimer_start(…);
}

© 2009 IBM Corporation47

Allow Idle with Callbacks: Set Timer

DEFINE_PER_CPU(unsigned long, rcu_dyntick_holdoff);
DEFINE_PER_CPU(struct hrtimer, …);

void rcu_prepare_for_idle(int cpu)
{
 int i;

 if (per_cpu(rcu_dyntick_holdoff, cpu) == jiffies)
 return;
 for (i = 0; i < RCU_IDLE_FLUSHES; i++) {
 if (!rcu_cpu_has_callbacks(cpu))
 return;
 rcu_sched_qs();
 force_quiescent_state(&rcu_sched_state, 0);
 rcu_process_callbacks();
 }
 if (rcu_cpu_has_callbacks(cpu))
 If (rcu_pending()) {
 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies;
 invoke_rcu_core();
 } else
 hrtimer_start(…);
}

Results in useless hrtimer events!!!

© 2009 IBM Corporation48

Allow Idle with Callbacks: Set and Cancel Timer

DEFINE_PER_CPU(unsigned long, rcu_dyntick_holdoff);
DEFINE_PER_CPU(struct hrtimer, …);

void rcu_prepare_for_idle(int cpu)
{
 int i;

 if (per_cpu(rcu_dyntick_holdoff, cpu) == jiffies)
 return;
 for (i = 0; i < RCU_IDLE_FLUSHES; i++) {
 if (!rcu_cpu_has_callbacks(cpu))
 return;
 rcu_sched_qs();
 force_quiescent_state(&rcu_sched_state, 0);
 rcu_process_callbacks();
 }
 if (rcu_cpu_has_callbacks(cpu))
 if (rcu_pending()) {
 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies;
 invoke_rcu_core();
 } else
 hrtimer_start(…);
}

void rcu_cleanup_after_idle(int cpu)
{
 hrtimer_cancel((…);
}

© 2009 IBM Corporation49

Allow Idle with Callbacks: Set and Cancel Timer

DEFINE_PER_CPU(unsigned long, rcu_dyntick_holdoff);
DEFINE_PER_CPU(struct hrtimer, …);

void rcu_prepare_for_idle(int cpu)
{
 int i;

 if (per_cpu(rcu_dyntick_holdoff, cpu) == jiffies)
 return;
 for (i = 0; i < RCU_IDLE_FLUSHES; i++) {
 if (!rcu_cpu_has_callbacks(cpu))
 return;
 rcu_sched_qs();
 force_quiescent_state(&rcu_sched_state, 0);
 rcu_process_callbacks();
 }
 if (rcu_cpu_has_callbacks(cpu))
 if (rcu_pending()) {
 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies;
 invoke_rcu_core();
 } else
 hrtimer_start(…);
}

void rcu_cleanup_after_idle(int cpu)
{
 hrtimer_cancel((…);
} kfree_rcu() callbacks don't need timer!!!

© 2009 IBM Corporation50

Allow Idle with Callbacks: Lazy RCU Callbacks

DEFINE_PER_CPU(unsigned long, rcu_dyntick_holdoff);
DEFINE_PER_CPU(struct hrtimer, …);

void rcu_prepare_for_idle(int cpu)
{
 int i;

 if (per_cpu(rcu_dyntick_holdoff, cpu) == jiffies)
 return;
 for (i = 0; i < RCU_IDLE_FLUSHES; i++) {
 if (!rcu_cpu_has_callbacks(cpu))
 return;
 rcu_sched_qs();
 force_quiescent_state(&rcu_sched_state, 0);
 rcu_process_callbacks();
 }
 if (rcu_cpu_has_callbacks(cpu))
 if (rcu_pending()) {
 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies;
 invoke_rcu_core();
 } else if (rcu_cpu_has_nonlazy_callbacks())
 hrtimer_start(…);
}

void rcu_cleanup_after_idle(int cpu)
{
 hrtimer_cancel((…);
}

© 2009 IBM Corporation51

Allow Idle with Callbacks: Lazy RCU Callbacks

DEFINE_PER_CPU(unsigned long, rcu_dyntick_holdoff);
DEFINE_PER_CPU(struct hrtimer, …);

void rcu_prepare_for_idle(int cpu)
{
 int i;

 if (per_cpu(rcu_dyntick_holdoff, cpu) == jiffies)
 return;
 for (i = 0; i < RCU_IDLE_FLUSHES; i++) {
 if (!rcu_cpu_has_callbacks(cpu))
 return;
 rcu_sched_qs();
 force_quiescent_state(&rcu_sched_state, 0);
 rcu_process_callbacks();
 }
 if (rcu_cpu_has_callbacks(cpu))
 if (rcu_pending()) {
 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies;
 invoke_rcu_core();
 } else if (rcu_cpu_has_nonlazy_callbacks())
 hrtimer_start(…);
}

void rcu_cleanup_after_idle(int cpu)
{
 hrtimer_cancel((…);
}

What if some task wakes??? Scheduling latency!!!

© 2009 IBM Corporation52

Controlling Scheduling Latency

DEFINE_PER_CPU(unsigned long, rcu_dyntick_holdoff);
DEFINE_PER_CPU(struct hrtimer, …);

void rcu_prepare_for_idle(int cpu)
{
 int i;

 if (per_cpu(rcu_dyntick_holdoff, cpu) == jiffies)
 return;
 for (i = 0; i < RCU_IDLE_FLUSHES; i++) {
 if (!rcu_cpu_has_callbacks(cpu) || need_resched())
 return;
 rcu_sched_qs();
 force_quiescent_state(&rcu_sched_state, 0);
 rcu_process_callbacks();
 }
 if (rcu_cpu_has_callbacks(cpu))
 if (rcu_pending()) {
 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies;
 invoke_rcu_core();
 } else if (rcu_cpu_has_nonlazy_callbacks())
 hrtimer_start(…);
}

void rcu_cleanup_after_idle(int cpu)
{
 hrtimer_cancel((…);
}

© 2009 IBM Corporation53

Controlling Scheduling Latency

DEFINE_PER_CPU(unsigned long, rcu_dyntick_holdoff);
DEFINE_PER_CPU(struct hrtimer, …);

void rcu_prepare_for_idle(int cpu)
{
 int i;

 if (per_cpu(rcu_dyntick_holdoff, cpu) == jiffies)
 return;
 for (i = 0; i < RCU_IDLE_FLUSHES; i++) {
 if (!rcu_cpu_has_callbacks(cpu) || need_resched())
 return;
 rcu_sched_qs();
 force_quiescent_state(&rcu_sched_state, 0);
 rcu_process_callbacks();
 }
 if (rcu_cpu_has_callbacks(cpu))
 if (rcu_pending()) {
 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies;
 invoke_rcu_core();
 } else if (rcu_cpu_has_nonlazy_callbacks())
 hrtimer_start(…);
}

void rcu_cleanup_after_idle(int cpu)
{
 hrtimer_cancel((…);
}

Lockdep begs to differ!!!

© 2009 IBM Corporation54

Other Issues and Fixes

 Lockdep issues: Use state-machine implementation
– Per-CPU loop variable
– Half of loop executed during idle entry
– The other half is executed within softirq

• Exiting softirq initiates another idle entry

 Jiffies counter overflow
– Do “per_cpu(rcu_dyntick_holdoff, cpu) = jiffies – 1” on non-holdoff exit

 The hrtimer handler never is actually executed!
– Too bad!!! Life is like that sometimes!

 Special case for kfree_rcu() is OK, but call_rcu() mostly just frees memory
– Expect a call_rcu_lazy() in a -rcu git tree near you...

 User code incurs scheduling-clock ticks even when only one per CPU
– Frederic Weisbecker is working on this

© 2009 IBM Corporation55

Lessons Learned and Relearned

© 2009 IBM Corporation56

Lessons Learned, Old and New

Workload matters!!!
–Different workloads have different requirements
–A given workload's requirements change over time

• More important, one's understanding of requirements changes over time!
–Supporting a single workload is easier than supporting many of them

© 2009 IBM Corporation57

Lessons Learned, Old and New

Workload matters!!!
–Different workloads have different requirements
–A given workload's requirements change over time

• More important, one's understanding of requirements changes over time!
–Supporting a single workload is easier than supporting many of them

Energy-efficiency and performance benchmarkers
–You would never believe what either group will do for 5%...

© 2009 IBM Corporation58

Lessons Learned, Old and New

Workload matters!!!
–Different workloads have different requirements
–A given workload's requirements change over time

• More important, one's understanding of requirements changes over time!
–Supporting a single workload is easier than supporting many of them

Energy-efficiency and performance benchmarkers
–You would never believe what either group will do for 5%...

Median age of randomly chosen line of RCU code: < 2 years

© 2009 IBM Corporation59

Lessons Learned, Old and New

Workload matters!!!
–Different workloads have different requirements
–A given workload's requirements change over time

• More important, one's understanding of requirements changes over time!
–Supporting a single workload is easier than supporting many of them

Energy-efficiency and performance benchmarkers
–You would never believe what either group will do for 5%...

Median age of randomly chosen line of RCU code: < 2 years

The guys who request an enhancement are rarely the guys
who are willing to test your patches

© 2009 IBM Corporation60

Lessons Learned, Old and New

Workload matters!!!
–Different workloads have different requirements
–A given workload's requirements change over time

• More important, one's understanding of requirements changes over time!
–Supporting a single workload is easier than supporting many of them

Energy-efficiency and performance benchmarkers
–You would never believe what either group will do for 5%...

Median age of randomly chosen line of RCU code: < 2 years

The guys who request an enhancement are rarely the guys
who are willing to test your patches

The importance of the community

© 2009 IBM Corporation61

A Brief History of RCU Issues

 ~1993: SMP scalability (30 CPUs) for RDBMS workloads

 1996: NUMA (64 CPUs) for RDBMS workloads

 2002: SMP scalability (~30 CPUs) for general workloads

 2004: SMP scalability (~512 CPUs) for HPC workloads
– And some concern about energy efficiency

 2005: Real-time response (~4 CPUs)

 2008: SMP scalability (>1024 CPUs) for HPC workloads
– 100s of CPUs for more general workloads

 2009: Real-time response (~30 CPUs) for general workloads

 2010: Energy efficiency (~2 CPUs), real-time response when CPU-bound

 2011: Energy efficiency (lots of CPUs)

 2012: RCU causes 200-microsecond latency spikes...

© 2009 IBM Corporation62

A Brief History of RCU Issues

 ~1993: SMP scalability (30 CPUs) for RDBMS workloads

 1996: NUMA (64 CPUs) for RDBMS workloads

 2002: SMP scalability (~30 CPUs) for general workloads

 2004: SMP scalability (~512 CPUs) for HPC workloads
– And some concern about energy efficiency

 2005: Real-time response (~4 CPUs)

 2008: SMP scalability (>1024 CPUs) for HPC workloads
– 100s of CPUs for more general workloads

 2009: Real-time response (~30 CPUs) for general workloads

 2010: Energy efficiency (~2 CPUs), real-time response when CPU-bound

 2011: Energy efficiency (lots of CPUs)

 2012: RCU causes 200-microsecond latency spikes... For NR_CPUS=4096

© 2009 IBM Corporation63

And So I Owe The Linux Community Many Thanks

Because of the many RCU-related challenges from the Linux
community, some of my most important work and
collaborations have been in the past ten years

© 2009 IBM Corporation64

And So I Owe The Linux Community Many Thanks

Because of the many RCU-related challenges from the Linux
community, some of my most important work and
collaborations have been in the past ten years

Not many people my age can truthfully say that

Here is hoping for ten more years!!! ;-)

© 2009 IBM Corporation65

Legal Statement

This work represents the view of the author and does not
necessarily represent the view of IBM.

 IBM and IBM (logo) are trademarks or registered trademarks
of International Business Machines Corporation in the United
States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.

© 2009 IBM Corporation66

Questions

	IBM Presentation Template Full Version
	Selecting a template
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

