
© 2017 IBM Corporation

Does RCU Really Work?

And if so, how would we know?

Paul E. McKenney, IBM Distinguished Engineer, Linux Technology Center
Member, IBM Academy of Technology

Multicore World, February 21, 2017

© 2017 IBM Corporation2

Multicore World, February 21, 2017

Isn't Making Software Work A Solved Problem?

© 2017 IBM Corporation3

Multicore World, February 21, 2017

Paul's Installed Base Over The Past Four Decades

Million-Year Bug: Once per million years

1

19
75

C
o

m
p

u
te

r
D

at
in

g

© 2017 IBM Corporation4

Multicore World, February 21, 2017

Paul's Installed Base Over The Past Four Decades

Million-Year Bug: Once per ten millenia

100

10

11

19
85

V
ar

io
u

s
E

m
b

ed
d

ed

19
75

C
o

m
p

u
te

r
D

at
in

g

© 2017 IBM Corporation5

Multicore World, February 21, 2017

Paul's Installed Base Over The Past Four Decades

Million-Year Bug: Once per century

1
99

5
D

Y
N

IX
/p

tx

10K

1K

100

10

1

100

10

11

19
75

C
o

m
p

u
te

r
D

at
in

g

19
85

V
ar

io
u

s
E

m
b

ed
d

ed

© 2017 IBM Corporation6

Multicore World, February 21, 2017

Paul's Installed Base Over The Past Four Decades

Million-Year Bug: Once a month

20
05

L
in

u
x

1
99

5
D

Y
N

IX
/p

tx

1M

100K

10K

10M

1K

100

10

1

10K

1K

100

10

1

100

10

11

19
75

C
o

m
p

u
te

r
D

at
in

g

19
85

V
ar

io
u

s
E

m
b

ed
d

ed

© 2017 IBM Corporation7

Multicore World, February 21, 2017

Paul's Installed Base Over The Past Four Decades

1G

10G

100M

1M

100K

10K

10M

2
01

5
L

in
u

x

Million-Year Bug: Several Times per Day

20
05

L
in

u
x

1
99

5
D

Y
N

IX
/p

tx

1K

100

10

1

1M

100K

10K

10M

1K

100

10

1

10K

1K

100

10

1

100

10

11

19
75

C
o

m
p

u
te

r
D

at
in

g

19
85

V
ar

io
u

s
E

m
b

ed
d

ed

© 2017 IBM Corporation8

Multicore World, February 21, 2017

1T

100G

Internet of Things, Anyone???

1G

10G

100M

1M

100K

10K

10M

2
01

5
L

in
u

x

Io
T

Million-Year Bug? You don't want to know...
But Murphy is still alive and kicking!

20
05

L
in

u
x

1
99

5
D

Y
N

IX
/p

tx

1K

100

10

1

1M

100K

10K

10M

1K

100

10

1

10K

1K

100

10

1

100

10

11

19
75

C
o

m
p

u
te

r
D

at
in

g

19
85

V
ar

io
u

s
E

m
b

ed
d

ed

1G

10G

100M

1M

100K

10K

10M

1K

100

10

1

© 2017 IBM Corporation9

Multicore World, February 21, 2017

Why Stress About Potential Low-Probability Bugs?

Almost any bug might become a security exploit
–Internet access means physical presence no longer required

RCU's low level does not necessarily mean low risk
–If Row Hammer can hit DRAM, RCU is not invulnerable

 Internet of Things could mean a trillion computers on Earth
–Even low failure probability translates to huge numbers of failures
–Some of which might put the general public at risk

• Linux is already used in some safety-critical applications
• Murphy transitions from nice guy to real jerk to homocidal maniac

 It is therefore not too early to think about reducing risk
–And RCU is a good well-contained test case for proofs of concept

© 2017 IBM Corporation10

Multicore World, February 21, 2017

Does RCU Really Work?
If So, How Would We Know?

© 2017 IBM Corporation11

Multicore World, February 21, 2017

Does RCU Really Work? If So, How Would We Know?

What is RCU (read-copy update) supposed to do?

What are the odds of RCU “just working”?

RCU validation

© 2017 IBM Corporation12

Multicore World, February 21, 2017

What is RCU Supposed To Do?

© 2017 IBM Corporation13

Multicore World, February 21, 2017

What is RCU Supposed To Do? (Brief Overview!)

Structured deferral: synchronization via procrastination
–The waiters: RCU grace periods

• synchronize_rcu(), call_rcu(), …
–The waited upon: RCU read-side critical sections

• rcu_read_lock() and rcu_read_unlock, …
• RCU's read-side primitives have exceedingly low overhead, great scalability

RCU grace periods must wait for pre-existing RCU read-side
critical sections

–How could this possibly be useful? See next slides...

Other examples of synchronization via procrastination:
–Reference counting, sequence locking, hazard pointers, garbage collectors
–Arguably also locking (new acquisition must wait for old acquisition)

© 2017 IBM Corporation14

Multicore World, February 21, 2017

What RCU is Supposed To Do

void thread0(void)
{
 rcu_read_lock();
 /* p = gp, sort of. */
 p = rcu_dereference(gp);

 do_something_with(p>a);
 rcu_read_unlock();
}

void thread1(void)
{
 q = alloc_something();
 p = gp;
 /* gp = p, sort of. */
 rcu_assign_pointer(gp, q);
 synchronize_rcu();
 /* wait */
 /* wait */
 /* wait */
 /* wait */
 free(p);
}

© 2017 IBM Corporation15

Multicore World, February 21, 2017

What RCU is Supposed To Do

void thread1(void)
{
 q = alloc_something();
 p = gp;
 rcu_assign_pointer(gp, q);
 synchronize_rcu();

 free(p);
}

void P2(void)
{

 rcu_read_lock();
 p = rcu_dereference(gp);

 do_something_with(p>a);
 rcu_read_unlock();
}

© 2017 IBM Corporation16

Multicore World, February 21, 2017

What RCU Is Supposed To Do and Not...

Reader Grace
Period

Reader

Grace
Period

Reader Grace
Period

Reader Grace
Period

CPU 0 CPU 1 CPU 0 CPU 1

CPU 0 CPU 1 CPU 0 CPU 1

T
im

e
T

im
e

© 2017 IBM Corporation17

Multicore World, February 21, 2017

What RCU is Supposed To Do

Read-side primitives are exceedingly low overhead
–rcu_read_lock(), rcu_read_unlock(), rcu_dereference(), …
–Free is a very good price!!!

RCU therefore provides high scalability and performance for
access to read-mostly linked data structures

–And is therefore heavily used in the Linux kernel and elsewhere

But the devil is in the details!
–CPU hotplug, idle CPUs, energy efficiency, 4096-CPU systems, real-

time response, boot vs. runtime...
–RCU's specification is empirical in nature!

• https://lwn.net/Articles/652156/, https://lwn.net/Articles/652677/, and
https://lwn.net/Articles/653326/

• Linux kernel source: Documentation/RCU/Design/Requirements/

© 2017 IBM Corporation18

Multicore World, February 21, 2017

RCU Area of Applicability

Update-Mostly, Need Consistent Data
(RCU is Really Unlikely to be the Right Tool For The Job, But It Can:
(1) Provide Existence Guarantees For Update-Friendly Mechanisms

(2) Provide Wait-Free Read-Side Primitives for Real-Time Use)

Read-Write, Need Consistent Data
(RCU Might Be OK...)

Read-Mostly, Need Consistent Data
(RCU Works OK)

Read-Mostly, Stale &
Inconsistent Data OK
(RCU Works Great!!!)

© 2017 IBM Corporation19

Multicore World, February 21, 2017

RCU Applicability to the Linux Kernel

In 1996, I thought I knew everything there was to know about RCU

© 2017 IBM Corporation20

Multicore World, February 21, 2017

RCU Applicability to the Linux Kernel

In 1996, I thought I knew everything there was to know about RCU
The Linux kernel community proved me wrong many times!!!

© 2017 IBM Corporation21

Multicore World, February 21, 2017

What Are The Odds of RCU “Just Working”?

© 2017 IBM Corporation22

Multicore World, February 21, 2017

Two Definitions and a Consequence

© 2017 IBM Corporation23

Multicore World, February 21, 2017

Two Definitions and a Consequence

A bug-free software system is a trivial software system

A reliable software system contains no known bugs

© 2017 IBM Corporation24

Multicore World, February 21, 2017

Two Definitions and a Consequence

A bug-free software system is a trivial software system

A reliable software system contains no known bugs

Therefore, any non-trivial reliable software system contains at
least one bug that you don't know about

© 2017 IBM Corporation25

Multicore World, February 21, 2017

Two Definitions and a Consequence

A bug-free software system is a trivial software system

A reliable software system contains no known bugs

Therefore, any non-trivial reliable software system contains at
least one bug that you don't know about

 I assert that Linux-kernel RCU is both non-trivial and reliable,
thus containing at least one bug that I don't (yet) know about

© 2017 IBM Corporation26

Multicore World, February 21, 2017

Two Definitions and a Consequence

A bug-free software system is a trivial software system

A reliable software system contains no known bugs

Therefore, any non-trivial reliable software system contains at
least one bug that you don't know about

 I assert that Linux-kernel RCU is both non-trivial and reliable,
thus containing at least one bug that I don't (yet) know about

But how many bugs?
–Analyze from a software-engineering viewpoint...

© 2017 IBM Corporation27

Multicore World, February 21, 2017

Software-Engineering Analysis

© 2017 IBM Corporation28

Multicore World, February 21, 2017

Software-Engineering Analysis

RCU contains 11,534 lines of code (including comments, etc.)

1-3 bugs/KLoC for production-quality code: 11-36 bugs
–Best case I have seen: 0.04 bugs/KLoC for safety-critical code

• Extreme code-style restrictions, single-threaded, formal methods, …
• And still way more than zero bugs!!! :-)

Median age of a line of RCU code is less than four years
–And young code tends to be buggier than old code!

© 2017 IBM Corporation29

Multicore World, February 21, 2017

Software-Engineering Analysis

RCU contains 11,534 lines of code (including comments, etc.)

1-3 bugs/KLoC for production-quality code: 11-36 bugs
–Best case I have seen: 0.04 bugs/KLoC for safety-critical code

• Extreme code-style restrictions, single-threaded, formal methods, …
• And still way more than zero bugs!!! :-)

Median age of a line of RCU code is less than four years
–And young code tends to be buggier than old code!

We should therefore expect a few tens more bugs in RCU!

© 2017 IBM Corporation30

Multicore World, February 21, 2017

RCU Validation

© 2017 IBM Corporation31

Multicore World, February 21, 2017

Current RCU Regression Testing

© 2017 IBM Corporation32

Multicore World, February 21, 2017

Current RCU Regression Testing

Stress-test suite: “rcutorture”
–http://lwn.net/Articles/154107/, http://lwn.net/Articles/622404/

 “Intelligent fuzz testing”: “trinity”
–http://codemonkey.org.uk/projects/trinity/

Test suite including static analysis: “0-day test robot”
–https://lwn.net/Articles/514278/

 Integration testing: “linux-next tree”
–https://lwn.net/Articles/571980/

Above is old technology – but quite effective
–2010: wait for -rc3 or -rc4. 2013: Usually no problems with -rc1

© 2017 IBM Corporation33

Multicore World, February 21, 2017

Current RCU Regression Testing

Stress-test suite: “rcutorture”
–http://lwn.net/Articles/154107/, http://lwn.net/Articles/622404/

 “Intelligent fuzz testing”: “trinity”
–http://codemonkey.org.uk/projects/trinity/

Test suite including static analysis: “0-day test robot”
–https://lwn.net/Articles/514278/

 Integration testing: “linux-next tree”
–https://lwn.net/Articles/571980/

Above is old technology – but quite effective
–2010: wait for -rc3 or -rc4. 2013: Usually no problems with -rc1

Formal verification in design, but not in regression testing
–http://lwn.net/Articles/243851/, https://lwn.net/Articles/470681/,

https://lwn.net/Articles/608550/

© 2017 IBM Corporation34

Multicore World, February 21, 2017

January 30, 2017 rcutorture Output

tools/testing/selftests/rcutorture/bin/kvm.sh --cpus 50 --duration 1800
SRCU-N ------- 610414 grace periods (5.65198 per second)
SRCU-P ------- 13349 grace periods (0.123602 per second)
TASKS01 ------- 70971 grace periods (0.657139 per second)
TASKS02 ------- 70238 grace periods (0.650352 per second)
TASKS03 ------- 69972 grace periods (0.647889 per second)
TINY01 ------- 8152793 grace periods (75.4888 per second)
TINY02 ------- 17916244 grace periods (165.891 per second)
TREE01 ------- 4376468 grace periods (40.5229 per second)
TREE02 ------- 3034531 grace periods (28.0975 per second)
TREE03 ------- 1048736 grace periods (9.71052 per second)
TREE04 ------- 637788 grace periods (5.90544 per second)
TREE05 ------- 2415024 grace periods (22.3613 per second)
TREE06 ------- 1791390 grace periods (16.5869 per second)
TREE07 ------- 551532 grace periods (5.10678 per second)
TREE08 ------- 1072103 grace periods (9.92688 per second)
TREE09 ------- 7543572 grace periods (69.8479 per second)

© 2017 IBM Corporation35

Multicore World, February 21, 2017

January 30, 2017 rcutorture Output

tools/testing/selftests/rcutorture/bin/kvm.sh --cpus 50 --duration 1800
SRCU-N ------- 610414 grace periods (5.65198 per second)
SRCU-P ------- 13349 grace periods (0.123602 per second)
TASKS01 ------- 70971 grace periods (0.657139 per second)
TASKS02 ------- 70238 grace periods (0.650352 per second)
TASKS03 ------- 69972 grace periods (0.647889 per second)
TINY01 ------- 8152793 grace periods (75.4888 per second)
TINY02 ------- 17916244 grace periods (165.891 per second)
TREE01 ------- 4376468 grace periods (40.5229 per second)
TREE02 ------- 3034531 grace periods (28.0975 per second)
TREE03 ------- 1048736 grace periods (9.71052 per second)
TREE04 ------- 637788 grace periods (5.90544 per second)
TREE05 ------- 2415024 grace periods (22.3613 per second)
TREE06 ------- 1791390 grace periods (16.5869 per second)
TREE07 ------- 551532 grace periods (5.10678 per second)
TREE08 ------- 1072103 grace periods (9.92688 per second)
TREE09 ------- 7543572 grace periods (69.8479 per second)

There are bugs in RCU, and 30 hours of rcutorture failed to find them

© 2017 IBM Corporation36

Multicore World, February 21, 2017

January 30, 2017 rcutorture Output

tools/testing/selftests/rcutorture/bin/kvm.sh --cpus 50 --duration 1800
SRCU-N ------- 610414 grace periods (5.65198 per second)
SRCU-P ------- 13349 grace periods (0.123602 per second)
TASKS01 ------- 70971 grace periods (0.657139 per second)
TASKS02 ------- 70238 grace periods (0.650352 per second)
TASKS03 ------- 69972 grace periods (0.647889 per second)
TINY01 ------- 8152793 grace periods (75.4888 per second)
TINY02 ------- 17916244 grace periods (165.891 per second)
TREE01 ------- 4376468 grace periods (40.5229 per second)
TREE02 ------- 3034531 grace periods (28.0975 per second)
TREE03 ------- 1048736 grace periods (9.71052 per second)
TREE04 ------- 637788 grace periods (5.90544 per second)
TREE05 ------- 2415024 grace periods (22.3613 per second)
TREE06 ------- 1791390 grace periods (16.5869 per second)
TREE07 ------- 551532 grace periods (5.10678 per second)
TREE08 ------- 1072103 grace periods (9.92688 per second)
TREE09 ------- 7543572 grace periods (69.8479 per second)

There are bugs in RCU, and 30 hours of rcutorture failed to find them
This constitutes a critical bug in rcutorture

© 2017 IBM Corporation37

Multicore World, February 21, 2017

January 30, 2017 rcutorture Output

tools/testing/selftests/rcutorture/bin/kvm.sh --cpus 50 --duration 1800
SRCU-N ------- 610414 grace periods (5.65198 per second)
SRCU-P ------- 13349 grace periods (0.123602 per second)
TASKS01 ------- 70971 grace periods (0.657139 per second)
TASKS02 ------- 70238 grace periods (0.650352 per second)
TASKS03 ------- 69972 grace periods (0.647889 per second)
TINY01 ------- 8152793 grace periods (75.4888 per second)
TINY02 ------- 17916244 grace periods (165.891 per second)
TREE01 ------- 4376468 grace periods (40.5229 per second)
TREE02 ------- 3034531 grace periods (28.0975 per second)
TREE03 ------- 1048736 grace periods (9.71052 per second)
TREE04 ------- 637788 grace periods (5.90544 per second)
TREE05 ------- 2415024 grace periods (22.3613 per second)
TREE06 ------- 1791390 grace periods (16.5869 per second)
TREE07 ------- 551532 grace periods (5.10678 per second)
TREE08 ------- 1072103 grace periods (9.92688 per second)
TREE09 ------- 7543572 grace periods (69.8479 per second)

There are bugs in RCU, and 30 hours of rcutorture failed to find them
This constitutes a critical bug in rcutorture

On the other hand, first time in over a year that I have see this!

© 2017 IBM Corporation38

Multicore World, February 21, 2017

How Well Does Linux-Kernel Testing Really Work?

© 2017 IBM Corporation39

Multicore World, February 21, 2017

Example 1: RCU-Scheduler Mutual Dependency

RCU Scheduler

Synchronization

Schedule Threads
Priority Boosting

Interrupt Handling

© 2017 IBM Corporation40

Multicore World, February 21, 2017

So, What Was The Problem?

Found during testing of Linux kernel v3.0-rc7:
–RCU read-side critical section is preempted for an extended period
–RCU priority boosting is brought to bear
–RCU read-side critical section ends, notes need for special processing
–Interrupt invokes handler, then starts softirq processing
–Scheduler invoked to wake ksoftirqd kernel thread:

• Acquires runqueue lock and enters RCU read-side critical section
• Leaves RCU read-side critical section, notes need for special processing
• Because in_irq() returns false, special processing attempts deboosting
• Which causes the scheduler to acquire the runqueue lock
• Which results in self-deadlock

–(See http://lwn.net/Articles/453002/ for more details.)

Fix: Add separate “exiting read-side critical section” state
–Also validated my creation of correct patches – without testing!

Note: Remains a bug even under SC

© 2017 IBM Corporation41

Multicore World, February 21, 2017

Example 1: Bug Was Located By Normal Testing

© 2017 IBM Corporation42

Multicore World, February 21, 2017

Example 2: Grace Period Cleanup/Initialization Bug

1. CPU 0 completes grace period, starts new one, cleaning up and initializing up through first
leaf rcu_node structure

2. CPU 1 passes through quiescent state (new grace period!)

3. CPU 1 does rcu_read_lock() and acquires reference to A

4. CPU 16 exits dyntick-idle mode (back on old grace period)

5. CPU 16 removes A, passes it to call_rcu()

6. CPU 16 associates callback with next grace period

7. CPU 0 completes cleanup/initialization of rcu_node structures

8. CPU 16 callback associated with now-current grace period

9. All remaining CPUs pass through quiescent states

10. Last CPU performs cleanup on all rcu_node structures

11. CPU 16 notices end of grace period, advances callback to “done” state

12. CPU 16 invokes callback, freeing A (too bad CPU 1 is still using it)

Not found via Linux-kernel validation: In production for 5 years!

© 2017 IBM Corporation43

Multicore World, February 21, 2017

Example 2: Grace Period Cleanup/Initialization Bug

CPU 0

CPU 1

CPU 15

CPU 16

CPU 17

CPU 31

QS

QS

QS

Idle

Idle

Idle

Idle Remove A QS

Read A

QS

Free A

Still
Using A!!!Grace

Period 0
Grace

Period 1
Grace

Period 2

Grace
Period 0

Grace
Period 1

Grace
Period 2

Note: Remains a bug even under SC

© 2017 IBM Corporation44

Multicore World, February 21, 2017

Example 2: Grace Period Cleanup/Initialization Fix

CPU 0

CPU 1

CPU 15

CPU 16

CPU 17

CPU 31

QS

QS

QS

Idle

Idle

Idle

Idle Remove A QS

Read A

QS

Grace
Period 0

Grace Period
intermission

Grace
Period 1

Grace
Period 0

Grace
Period 1

Grace Period
intermission

Cannot yet free A

All agree that grace period 1 starts after grace period 0 ends

© 2017 IBM Corporation45

Multicore World, February 21, 2017

Example 1 & Example 2 Results

Example 1: Bug was located by normal Linux test procedures

Example 2: Bug was missed by normal Linux test procedures
–Not found via Linux-kernel validation: In production for 5 years!
–On systems with up to 4096 CPUs...

Both are bugs even under sequential consistency

Normal testing is not bad, but improvement is needed

Can Linux-kernel RCU validation do better?

© 2017 IBM Corporation46

Multicore World, February 21, 2017

Example 1 & Example 2 Results

Example 1: Bug was located by normal Linux test procedures

Example 2: Bug was missed by normal Linux test procedures
–Not found via Linux-kernel validation: In production for 5 years!
–On systems with up to 4096 CPUs...

Both are bugs even under sequential consistency

Normal testing is not bad, but improvement is needed

Can Linux-kernel RCU validation do better?

But first, what is the validation problem that must be solved?

© 2017 IBM Corporation47

Multicore World, February 21, 2017

More Than 1.5 Billion Linux Instances Running!!!

© 2017 IBM Corporation48

Multicore World, February 21, 2017

More Than 1.5 Billion Linux Instances Running!!!
Woo-Hoo!!! Linux Has Won!!!

© 2017 IBM Corporation49

Multicore World, February 21, 2017

More Than 1.5 Billion Linux Instances Running!!!
Woo-Hoo!!! Linux Has Won!!!

But How The #@$&! Do I Validate RCU For This???

© 2017 IBM Corporation50

Multicore World, February 21, 2017

How The #@$&! Do I Validate RCU For This???

A race condition that occurs once in a million years happens
several times per day across the installed base

–I am very proud of rcutorture, but it simply cannot detect million-year
races when running on a reasonable test setup

© 2017 IBM Corporation51

Multicore World, February 21, 2017

How The #@$&! Do I Validate RCU For This???

A race condition that occurs once in a million years happens
several times per day across the installed base

–I am very proud of rcutorture, but it simply cannot detect million-year
races when running on a reasonable test setup

–Even given expected improvements in rcutorture

© 2017 IBM Corporation52

Multicore World, February 21, 2017

How The #@$&! Do I Validate RCU For This???

A race condition that occurs once in a million years happens
several times per day across the installed base

–I am very proud of rcutorture, but it simply cannot detect million-year
races when running on a reasonable test setup

–Even given expected improvements in rcutorture
–Even with help from mutation testing

• Groce et al., “How Verified is My Code? Falsification-Driven Verification”
https://www.cs.cmu.edu/~agroce/ase15.pdf

© 2017 IBM Corporation53

Multicore World, February 21, 2017

RCU Validation Options?

Other failures mask RCU's, including hardware failures
–I know of no human artifact with a million-year MTBF
–But I do know of Linux uses that put the public's safety at risk...

 Increasing CPUs on test system increases race probability

Rare critical operations forced to happen more frequently

Knowledge of possible race conditions allows targeted tests
–Plus other dirty tricks from 25 years of testing concurrent software
–Provide harsh environment to force software to evolve quickly

Formal verification used for some aspects of RCU design

© 2017 IBM Corporation54

Multicore World, February 21, 2017

RCU Validation Options?

Other failures mask RCU's, including hardware failures
–I know of no human artifact with a million-year MTBF
–But I do know of Linux uses that put the public's safety at risk...

 Increasing CPUs on test system increases race probability

Rare critical operations forced to happen more frequently

Knowledge of possible race conditions allows targeted tests
–Plus other dirty tricks from 25 years of testing concurrent software
–Provide harsh environment to force software to evolve quickly

Formal verification used for some aspects of RCU design

Should I use formal verification in RCU's regression testing?

© 2017 IBM Corporation55

Multicore World, February 21, 2017

Formal Verification and Regression Testing:
Requirements

© 2017 IBM Corporation56

Multicore World, February 21, 2017

Formal Verification and Regression Testing:
Requirements

(1)Either automatic translation or no translation required
–Automatic discarding of irrelevant portions of the code
–Manual translation provides opportunity for human error

© 2017 IBM Corporation57

Multicore World, February 21, 2017

Formal Verification and Regression Testing:
Requirements

(1)Either automatic translation or no translation required

(2)Correctly handle environment, including memory model
–The QRCU validation benchmark is an excellent cautionary tale

© 2017 IBM Corporation58

Multicore World, February 21, 2017

Formal Verification and Regression Testing:
Requirements

(1)Either automatic translation or no translation required

(2)Correctly handle environment, including memory model

(3)Reasonable memory and CPU overhead
–Bugs must be located in practice as well as in theory
–Linux-kernel RCU is 15KLoC and release cycles are short

© 2017 IBM Corporation59

Multicore World, February 21, 2017

Formal Verification and Regression Testing:
Requirements

(1)Either automatic translation or no translation required

(2)Correctly handle environment, including memory model

(3)Reasonable memory and CPU overhead

(4)Map to source code line(s) containing the bug
–“Something is wrong somewhere” is not a helpful diagnostic: I

know bugs exist

© 2017 IBM Corporation60

Multicore World, February 21, 2017

Formal Verification and Regression Testing:
Requirements

(1)Either automatic translation or no translation required

(2)Correctly handle environment, including memory model

(3)Reasonable memory and CPU overhead

(4)Map to source code line(s) containing the bug

(5)Modest input outside of source code under test
–Preferably glean much of the specification from the source code

itself (empirical spec!)
–Specifications are software and can have their own bugs

© 2017 IBM Corporation61

Multicore World, February 21, 2017

Formal Verification and Regression Testing:
Requirements

(1)Either automatic translation or no translation required

(2)Correctly handle environment, including memory model

(3)Reasonable memory and CPU overhead

(4)Map to source code line(s) containing the bug

(5)Modest input outside of source code under test

(6)Find relevant bugs
–Low false-positive rate, weight towards likelihood of occurrence

(fixes create bugs!)

© 2017 IBM Corporation62

Multicore World, February 21, 2017

Formal Verification and Regression Testing:
Requirements

(1)Either automatic translation or no translation required
– Automatic discarding of irrelevant portions of the code
– Manual translation provides opportunity for human error

(2)Correctly handle environment, including memory model
– The QRCU validation benchmark is an excellent cautionary tale

(3)Reasonable memory and CPU overhead
– Bugs must be located in practice as well as in theory
– Linux-kernel RCU is 15KLoC and release cycles are short

(4)Map to source code line(s) containing the bug
– “Something is wrong somewhere” is not a helpful diagnostic: I know bugs exist

(5)Modest input outside of source code under test
– Preferably glean much of the specification from the source code itself (empirical spec!)
– Specifications are software and can have their own bugs

(6)Find relevant bugs
– Low false-positive rate, weight towards likelihood of occurrence (fixes create bugs!)

© 2017 IBM Corporation63

Multicore World, February 21, 2017

Formal Validation Tools Used and Regression Testing

Promela and Spin
– Holzmann: “The Spin Model Checker”
– I have used Promela/Spin in design for more than 20 years, but:

• Limited problem size, long run times, large memory consumption
• Does not implement memory models (assumes sequential consistency)
• Special language, difficult to translate from C

ARMMEM and PPCMEM (2)
– Alglave, Maranget, Pawan, Sarkar, Sewell, Williams, Nardelli:

“PPCMEM/ARMMEM: A Tool for Exploring the POWER and ARM Memory
Models”

• Very limited problem size, long run times, large memory consumption
• Restricted pseudo-assembly language, manual translation required

Herd (2, 3)
– Alglave, Maranget, and Tautschnig: “Herding Cats: Modelling, Simulation,

Testing, and Data-mining for Weak Memory”
• Very limited problem size (but much improved run times and memory consumption)
• Restricted pseudo-assembly language, manual translation required

Useful, but not for regression testing

© 2017 IBM Corporation64

Multicore World, February 21, 2017

C Bounded Model Checker (CBMC)

Nascent concurrency and weak-memory functionality

Valuable property: “Just enough specification”
–Assertions in code act as specifications!
–Can provide additional specifications in “verification driver” code

Verified rcu_dereference() and rcu_assign_pointer()
–Daniel Kroening, Oxford

Verified Tiny RCU
–http://paulmck.livejournal.com/39343.html

Verified substantial portion of Tree RCU
–Lihao Liang, Oxford: https://arxiv.org/abs/1610.03052

Added Lance Roy's CBMC SRCU verification to rcutorture

Kroening, Clarke, and Lerda, “A tool for checking ANSI-C programs”, Tools and Algorithms
for the Construction and Analysis of Systems, 2004, pp. 168-176.

© 2017 IBM Corporation65

Multicore World, February 21, 2017

C Bounded Model Checker (CBMC): Usage

C Bounded Model Checker (CBMC) applies long-standing
hardware verification techniques to software

Easy to use: Given recent Debian-derived distributions:

 sudo aptget install cbmc

 cbmc filename.c

 If no combination of inputs can trigger an assertion or cause
an array-out-of-bounds error, it prints:

 VERIFICATION SUCCESSFUL

And since 2015, CBMC handles concurrency!!!

© 2017 IBM Corporation66

Multicore World, February 21, 2017

How Does CBMC Work?

Logic Expression

Trace Generation

C Code

SAT Solver

Verification Result

CBMC

© 2017 IBM Corporation67

Multicore World, February 21, 2017

Scorecard For Linux-Kernel C Code (Incomplete)

Promela PPCMEM Herd CBMC

(1) Automated

(2) Handle environment (MM) (MM) (MM)

(3) Low overhead SAT?

(4) Map to source code

(5) Modest input

(6) Relevant bugs ??? ??? ??? ???

Paul McKenney's first use 1993 2011 2014 2015

Promela MM: Only SC: Weak memory must be implemented in model
Herd MM: Some PowerPC and ARM corner-case issues
CBMC MM: Only SC and TSO
Note: All four handle concurrency! (Promela has done so for 25 years!!!)

© 2017 IBM Corporation68

Multicore World, February 21, 2017

Scorecard For Linux-Kernel C Code

Promela PPCMEM Herd CBMC Test

(1) Automated

(2) Handle environment (MM) (MM) (MM)

(3) Low overhead SAT?

(4) Map to source code

(5) Modest input

(6) Relevant bugs ??? ??? ??? ???

Paul McKenney's first use 1993 2011 2014 2015 1973

So why do anything other than testing?

© 2017 IBM Corporation69

Multicore World, February 21, 2017

Scorecard For Linux-Kernel C Code

Promela PPCMEM Herd CBMC Test

(1) Automated

(2) Handle environment (MM) (MM) (MM)

(3) Low overhead SAT?

(4) Map to source code

(5) Modest input

(6) Relevant bugs ??? ??? ??? ???

Paul McKenney's first use 1993 2011 2014 2015 1973

So why do anything other than testing?
● Low-probability bugs can require expensive testing regimen
● Large installed base will encounter low-probability bugs
● Safety-criitcal applications are sensitive to low-probability bugs

© 2017 IBM Corporation70

Multicore World, February 21, 2017

Other Possible Approaches

By-hand formalizations and proofs
–Stern: Semi-formal proof of URCU (2012 IEEE TPDS)
–Gotsman: Separation-logic RCU semantics (2013 ESOP)
–Tasserotti et al.: Formal proof of URCU linked list: (2015 PLDI)
–Excellent work, but not useful for regression testing

seL4 tooling: Lacks support for concurrency and RCU idioms
–Might be applicable to Tiny RCU callback handling
–Impressive work nevertheless!!!

Apply Peter O'Hearn's Infer to the Linux kernel

Nidhugg: Work by Michalis Kokologiannakis and Kostis Sagonas
–https://github.com/michalis-/rcu/blob/master/rcupaper.pdf
–Appears to be more scalable than CBMC, but some restrictions
–Nevertheless, Nidhugg finds all my injected bugs

© 2017 IBM Corporation71

Multicore World, February 21, 2017

Summary and Challenges

© 2017 IBM Corporation72

Multicore World, February 21, 2017

Summary

RCU's specification is empirical

RCU's implementation is unlikely to be bug-free, reliable
though it might be

Currently relying on stress testing augmented by mutation
analysis, adding formal verification

© 2017 IBM Corporation73

Multicore World, February 21, 2017

Summary

RCU's specification is empirical

RCU's implementation is unlikely to be bug-free, reliable
though it might be

Currently relying on stress testing augmented by mutation
analysis, adding formal verification

–Formal verification currently weak on forward-progress guarantees
–And has not yet found any RCU bugs that I didn't already know about
–But RCU validation is difficult, so I am throwing everything I can at it!!!

© 2017 IBM Corporation74

Multicore World, February 21, 2017

Challenges

Find bug in rcu_preempt_offline_tasks()
–Note: No practical impact because this function has been removed
–http://paulmck.livejournal.com/37782.html

Find bug in RCU_NO_HZ_FULL_SYSIDLE
–http://paulmck.livejournal.com/38016.html

Find bug in RCU linked-list use cases
–http://paulmck.livejournal.com/39793.html

Find lost wakeup bug in the Linux kernel (or maybe qemu)
–Heavy rcutorture testing with CPU hotplug on two-socket system
–Detailed repeat-by: https://lkml.org/lkml/2016/3/28/214
–Can you find this before we do? (Sorry, too late!!!)

Find any other bug in popular open-source software
–A verification researcher has provoked a SEGV in Linux-kernel RCU

© 2017 IBM Corporation75

Multicore World, February 21, 2017

More Challenges (AKA Current Limitations)

 Incorporate Linux-kernel memory model into analysis
–And/or the ARM and PowerPC memory models

Detect race conditions leading to deadlocks and hangs
–CBMC and Nidhugg can detect unconditional deadlocks and hangs

Analyze bugs involving networking and mass storage

Use induction techniques to fully analyze indefinite recursion
and unbounded looping

–Spinloops should be easy: Yes, there are halting-problem limitations

Analyze larger programs: RCU is not exactly huge!!!
–Automatically decompose large programs and combine results?

© 2017 IBM Corporation76

Multicore World, February 21, 2017

To Probe Deeper (RCU)
 https://queue.acm.org/detail.cfm?id=2488549

– “Structured Deferral: Synchronization via Procrastination” (also in July 2013 CACM)
 http://doi.ieeecomputersociety.org/10.1109/TPDS.2011.159 and

http://www.computer.org/cms/Computer.org/dl/trans/td/2012/02/extras/ttd2012020375s.pdf
– “User-Level Implementations of Read-Copy Update”

 git://lttng.org/userspace-rcu.git (User-space RCU git tree)
 http://people.csail.mit.edu/nickolai/papers/clements-bonsai.pdf

– Applying RCU and weighted-balance tree to Linux mmap_sem.
 http://www.usenix.org/event/atc11/tech/final_files/Triplett.pdf

– RCU-protected resizable hash tables, both in kernel and user space
 http://www.usenix.org/event/hotpar11/tech/final_files/Howard.pdf

– Combining RCU and software transactional memory
 http://wiki.cs.pdx.edu/rp/: Relativistic programming, a generalization of RCU
 http://lwn.net/Articles/262464/, http://lwn.net/Articles/263130/, http://lwn.net/Articles/264090/

– “What is RCU?” Series
 http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdf

– RCU motivation, implementations, usage patterns, performance (micro+sys)
 http://www.livejournal.com/users/james_morris/2153.html

– System-level performance for SELinux workload: >500x improvement
 http://www.rdrop.com/users/paulmck/RCU/hart_ipdps06.pdf

– Comparison of RCU and NBS (later appeared in JPDC)
 http://doi.acm.org/10.1145/1400097.1400099

– History of RCU in Linux (Linux changed RCU more than vice versa)
 http://read.seas.harvard.edu/cs261/2011/rcu.html

– Harvard University class notes on RCU (Courtesy of Eddie Koher)
 http://www.rdrop.com/users/paulmck/RCU/ (More RCU information)

© 2017 IBM Corporation77

Multicore World, February 21, 2017

To Probe Deeper (1/5)
 Hash tables:

– http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook-e1.html Chapter 10

 Split counters:
– http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Chapter 5
– http://events.linuxfoundation.org/sites/events/files/slides/BareMetal.2014.03.09a.pdf

 Perfect partitioning
– Candide et al: “Dynamo: Amazon's highly available key-value store”

• http://doi.acm.org/10.1145/1323293.1294281
– McKenney: “Is Parallel Programming Hard, And, If So, What Can You Do About It?”

• http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Section 6.5
– McKenney: “Retrofitted Parallelism Considered Grossly Suboptimal”

• Embarrassing parallelism vs. humiliating parallelism
• https://www.usenix.org/conference/hotpar12/retro%EF%AC%81tted-parallelism-considered-

grossly-sub-optimal
– McKenney et al: “Experience With an Efficient Parallel Kernel Memory Allocator”

• http://www.rdrop.com/users/paulmck/scalability/paper/mpalloc.pdf
– Bonwick et al: “Magazines and Vmem: Extending the Slab Allocator to Many CPUs and Arbitrary

Resources”
• http://static.usenix.org/event/usenix01/full_papers/bonwick/bonwick_html/

– Turner et al: “PerCPU Atomics”
• http://www.linuxplumbersconf.org/2013/ocw//system/presentations/1695/original/LPC%20-

%20PerCpu%20Atomics.pdf

© 2017 IBM Corporation78

Multicore World, February 21, 2017

To Probe Deeper (2/5)
 Stream-based applications:

– Sutton: “Concurrent Programming With The Disruptor”
• http://www.youtube.com/watch?v=UvE389P6Er4
• http://lca2013.linux.org.au/schedule/30168/view_talk

– Thompson: “Mechanical Sympathy”
• http://mechanical-sympathy.blogspot.com/

 Read-only traversal to update location
– Arcangeli et al: “Using Read-Copy-Update Techniques for System V IPC in the Linux 2.5

Kernel”
• https://www.usenix.org/legacy/events/usenix03/tech/freenix03/full_papers/arcangeli/arcan

geli_html/index.html
– Corbet: “Dcache scalability and RCU-walk”

• https://lwn.net/Articles/419811/
– Xu: “bridge: Add core IGMP snooping support”

• http://kerneltrap.com/mailarchive/linux-netdev/2010/2/26/6270589
– Triplett et al., “Resizable, Scalable, Concurrent Hash Tables via Relativistic Programming”

• http://www.usenix.org/event/atc11/tech/final_files/Triplett.pdf
– Howard: “A Relativistic Enhancement to Software Transactional Memory”

• http://www.usenix.org/event/hotpar11/tech/final_files/Howard.pdf
– McKenney et al: “URCU-Protected Hash Tables”

• http://lwn.net/Articles/573431/

© 2017 IBM Corporation79

Multicore World, February 21, 2017

To Probe Deeper (3/5)
 Hardware lock elision: Overviews

– Kleen: “Scaling Existing Lock-based Applications with Lock Elision”
• http://queue.acm.org/detail.cfm?id=2579227

 Hardware lock elision: Hardware description
– POWER ISA Version 2.07

• http://www.power.org/documentation/power-isa-version-2-07/
– Intel® 64 and IA-32 Architectures Software Developer Manuals

• http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
– Jacobi et al: “Transactional Memory Architecture and Implementation for IBM System z”

• http://www.microsymposia.org/micro45/talks-posters/3-jacobi-presentation.pdf

 Hardware lock elision: Evaluations
– http://pcl.intel-research.net/publications/SC13-TSX.pdf
– http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Section 16.3

 Hardware lock elision: Need for weak atomicity
– Herlihy et al: “Software Transactional Memory for Dynamic-Sized Data Structures”

• http://research.sun.com/scalable/pubs/PODC03.pdf
– Shavit et al: “Data structures in the multicore age”

• http://doi.acm.org/10.1145/1897852.1897873
– Haas et al: “How FIFO is your FIFO queue?”

• http://dl.acm.org/citation.cfm?id=2414731
– Gramoli et al: “Democratizing transactional programming”

• http://doi.acm.org/10.1145/2541883.2541900

© 2017 IBM Corporation80

Multicore World, February 21, 2017

To Probe Deeper (4/5)
 RCU

– Desnoyers et al.: “User-Level Implementations of Read-Copy Update”
• http://www.rdrop.com/users/paulmck/RCU/urcu-main-accepted.2011.08.30a.pdf
• http://www.computer.org/cms/Computer.org/dl/trans/td/2012/02/extras/ttd2012020375s.pdf

– McKenney et al.: “RCU Usage In the Linux Kernel: One Decade Later”
• http://rdrop.com/users/paulmck/techreports/survey.2012.09.17a.pdf
• http://rdrop.com/users/paulmck/techreports/RCUUsage.2013.02.24a.pdf

– McKenney: “Structured deferral: synchronization via procrastination”
• http://doi.acm.org/10.1145/2483852.2483867

– McKenney et al.: “User-space RCU” https://lwn.net/Articles/573424/

 Possible future additions
– Boyd-Wickizer: “Optimizing Communications Bottlenecks in Multiprocessor Operating

Systems Kernels”
• http://pdos.csail.mit.edu/papers/sbw-phd-thesis.pdf

– Clements et al: “The Scalable Commutativity Rule: Designing Scalable Software for
Multicore Processors”

• http://www.read.seas.harvard.edu/~kohler/pubs/clements13scalable.pdf
– McKenney: “N4037: Non-Transactional Implementation of Atomic Tree Move”

• http://www.rdrop.com/users/paulmck/scalability/paper/AtomicTreeMove.2014.05.26a.pdf
– McKenney: “C++ Memory Model Meets High-Update-Rate Data Structures”

• http://www2.rdrop.com/users/paulmck/RCU/C++Updates.2014.09.11a.pdf

© 2017 IBM Corporation81

Multicore World, February 21, 2017

To Probe Deeper (5/5)
 RCU theory and semantics, academic contributions (partial list)

– Gamsa et al., “Tornado: Maximizing Locality and Concurrency in a Shared Memory
Multiprocessor Operating System”

• http://www.usenix.org/events/osdi99/full_papers/gamsa/gamsa.pdf
– McKenney, “Exploiting Deferred Destruction: An Analysis of RCU Techniques”

• http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdf
– Hart, “Applying Lock-free Techniques to the Linux Kernel”

• http://www.cs.toronto.edu/~tomhart/masters_thesis.html
– Olsson et al., “TRASH: A dynamic LC-trie and hash data structure”

• http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4281239
– Desnoyers, “Low-Impact Operating System Tracing”

• http://www.lttng.org/pub/thesis/desnoyers-dissertation-2009-12.pdf
– Dalton, “The Design and Implementation of Dynamic Information Flow Tracking ...”

• http://csl.stanford.edu/~christos/publications/2009.michael_dalton.phd_thesis.pdf
– Gotsman et al., “Verifying Highly Concurrent Algorithms with Grace (extended version)”

• http://software.imdea.org/~gotsman/papers/recycling-esop13-ext.pdf
– Liu et al., “Mindicators: A Scalable Approach to Quiescence”

• http://dx.doi.org/10.1109/ICDCS.2013.39
– Tu et al., “Speedy Transactions in Multicore In-memory Databases”

• http://doi.acm.org/10.1145/2517349.2522713
– Arbel et al., “Concurrent Updates with RCU: Search Tree as an Example”

• http://www.cs.technion.ac.il/~mayaarl/podc047f.pdf

© 2017 IBM Corporation82

Multicore World, February 21, 2017

Legal Statement

This work represents the view of the author and does not
necessarily represent the view of IBM.

 IBM and IBM (logo) are trademarks or registered trademarks
of International Business Machines Corporation in the United
States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.

© 2017 IBM Corporation83

Multicore World, February 21, 2017

Questions?

© 2017 IBM Corporation84

Multicore World, February 21, 2017

BACKUP

© 2017 IBM Corporation85

Multicore World, February 21, 2017

Promela/spin: Design-Time Verification

1993: Shared-disk/network election algorithm (pre-Linux)
–Hadn't figured out bug injection: Way too trusting!!!
–Single-point-of failure bug in specification: Fixed during coding

• But fix had bug that propagated to field: Cluster partition
–Conclusion: Formal verification is trickier than expected!!!

2007: RCU idle-detection energy-efficiency logic
–(http://lwn.net/Articles/243851/)
–Verified, but much simpler approach found two years later
–Conclusion: The need for formal verification is a symptom of a too-

complex design

2012: Verify userspace RCU, emulating weak memory
–Two independent models (Desnoyers and myself), bug injection

2014: NMIs can nest!!! Affects energy-efficiency logic
–Verified Andy's code, and no simpler approach apparent thus far!!!
–Note: Excellent example of empirical specification

© 2017 IBM Corporation86

Multicore World, February 21, 2017

Promela Model of Incorrect Atomic Increment (1/2)

 1 #define NUMPROCS 2
 2
 3 byte counter = 0;
 4 byte progress[NUMPROCS];
 5
 6 proctype incrementer(byte me)
 7 {
 8 int temp;
 9
 10 temp = counter;
 11 counter = temp + 1;
 12 progress[me] = 1;
 13 }

© 2017 IBM Corporation87

Multicore World, February 21, 2017

Promela Model of Incorrect Atomic Increment (2/2)
 15 init {
 16 int i = 0;
 17 int sum = 0;
 18
 19 atomic {
 20 i = 0;
 21 do
 22 :: i < NUMPROCS >
 23 progress[i] = 0;
 24 run incrementer(i);
 25 i++
 26 :: i >= NUMPROCS > break
 27 od;
 28 }
 29 atomic {
 30 i = 0;
 31 sum = 0;
 32 do
 33 :: i < NUMPROCS >
 34 sum = sum + progress[i];
 35 i++
 36 :: i >= NUMPROCS > break
 37 od;
 38 assert(sum < NUMPROCS || counter == NUMPROCS)
 39 }
 40 }

© 2017 IBM Corporation88

Multicore World, February 21, 2017

PPCMEM and Herd

Verified suspected bug in Power Linux atomic primitives

Found bug in Power Linux spin_unlock_wait()

Verified ordering properties of locking primitives

Excellent memory-ordering teaching tools
–Starting to be used more widely within IBM as a design-time tool

PPCMEM: (http://lwn.net/Articles/470681/)
–Accurate but slow

Herd: (http://lwn.net/Articles/608550/)
–Faster, but some correctness issues with RMW atomics and lwsync
–Work in progress: Formalize Linux-kernel memory model

• With Alglave, Maranget, Parri, and Stern, plus lots of architects
• Hopefully will feed into improved tooling

Alglave, Maranget, Pawan, Sarkar, Sewell, Williams, Nardelli:
“PPCMEM/ARMMEM: A Tool for Exploring the POWER and ARM Memory Models”
Alglave, Maranget, and Tautschnig: “Herding Cats: Modelling, Simulation, Testing, and Data-mining for Weak Memory”

© 2017 IBM Corporation89

Multicore World, February 21, 2017

PPCMEM Example Litmus Test for IRIW

PPC IRIW.litmus
""
(* Traditional IRIW. *)
{
0:r1=1; 0:r2=x;
1:r1=1; 1:r4=y;
2: 2:r2=x; 2:r4=y;
3: 3:r2=x; 3:r4=y;
}
 P0 | P1 | P2 | P3 ;
 stw r1,0(r2) | stw r1,0(r4) | lwz r3,0(r2) | lwz r3,0(r4) ;
 | | sync | sync ;
 | | lwz r5,0(r4) | lwz r5,0(r2) ;

exists
(2:r3=1 /\ 2:r5=0 /\ 3:r3=1 /\ 3:r5=0)

Fourteen CPU hours and 10 GB of memory

© 2017 IBM Corporation90

Multicore World, February 21, 2017

Herd Example Litmus Test for Incorrect IRIW

PPC IRIWlwsyncf.litmus
""
(* Traditional IRIW. *)
{
0:r1=1; 0:r2=x;
1:r1=1; 1:r4=y;
2: 2:r2=x; 2:r4=y;
3: 3:r2=x; 3:r4=y;
}
 P0 | P1 | P2 | P3 ;
 stw r1,0(r2) | stw r1,0(r4) | lwz r3,0(r2) | lwz r3,0(r4) ;
 | | lwsync | lwsync ;
 | | lwz r5,0(r4) | lwz r5,0(r2) ;

exists
(2:r3=1 /\ 2:r5=0 /\ 3:r3=1 /\ 3:r5=0)

. . .

Positive: 1 Negative: 15
Condition exists (2:r3=1 /\ 2:r5=0 /\ 3:r3=1 /\ 3:r5=0)
Observation IRIW Sometimes 1 15

© 2017 IBM Corporation91

Multicore World, February 21, 2017

What Exactly is a Relevant Bug???

Suppose RCU has 19 million-year bugs and one 10-year bug
–Suppose tool finds all 19 million-year bugs, but misses the 10-year bug
–Further suppose I fix all 19 bugs located by the tool
–What is the effect on RCU robustness?

© 2017 IBM Corporation92

Multicore World, February 21, 2017

What Exactly is a Relevant Bug???

Suppose RCU has 19 million-year bugs and one 10-year bug
–Suppose tool finds all 19 million-year bugs, but misses the 10-year bug
–Further suppose I fix all 19 bugs located by the tool
–What is the effect on RCU robustness?

Negligible net improvement from the 19 fixes
–And possible large degradation from these fixes
–Statistically, one in every six fixes injects a new bug!

Of course both severity and frequency are important
–Loss of time, loss of money, loss of accuracy, loss of life, ...
–But be careful – refusing to fix “minor” bugs can build a wall of bugs

preventing your code from being adopted for new uses

© 2017 IBM Corporation93

Multicore World, February 21, 2017

Creating a Wall of Bugs

Current Use Cases

© 2017 IBM Corporation94

Multicore World, February 21, 2017

Creating a Wall of Bugs: First Round of Testing

Current Use Cases

© 2017 IBM Corporation95

Multicore World, February 21, 2017

Creating a Wall of Bugs: Fix Relevant Bugs

Current Use Cases

© 2017 IBM Corporation96

Multicore World, February 21, 2017

Creating a Wall of Bugs: Second Round of Testing

Current Use Cases

© 2017 IBM Corporation97

Multicore World, February 21, 2017

Creating a Wall of Bugs: Fix Additional Relevant Bugs

Current Use Cases

© 2017 IBM Corporation98

Multicore World, February 21, 2017

New Use Cases

New
Use

Cases

Creating a Wall of Bugs: New Use Cases: Game Over!

Current Use Cases

© 2017 IBM Corporation99

Multicore World, February 21, 2017

Cautiously Optimistic For Future CBMC Version

(1)Either automatic translation or no translation required
– No translation required from C, discards irrelevant code quite well

(2)Correctly handle environment, including memory model
– SC, TSO and PSO, hopefully will do other memory models in the future

(3)Reasonable memory and CPU overhead
– OK for Tiny RCU and some tiny uses of concurrent RCU
– Jury is out for concurrent linked-list manipulations
– Progress needed in SAT and in mapping from code to SAT

(4)Map to source code line(s) containing the bug
– Yes, reasonably good backtrace capability

(5)Modest input outside of source code under test
– Yes, modest boilerplate required, can use existing assertions

(6)Find relevant bugs
– Jury still out

Kroening, Clarke, and Lerda, “A tool for checking ANSI-C programs”, Tools and Algorithms
for the Construction and Analysis of Systems, 2004, pp. 168-176.

© 2017 IBM Corporation100

Multicore World, February 21, 2017

A Few Questions/Objections You Might Have...

But C is Turing-complete and logic expressions are not!!!
–Yes, hence “bounded”. You can specify loop/recursion unrolling limits

But SAT is NP-complete!!!
–True, but there are now amazing heuristics for SAT
–1990: World-class solver handles 100 variables (three 32-bit variables)
–2015: x86 laptop does 2M variables. In ten seconds.

How CBMC possibly handle concurrency???
–Convert C program to SSA, wire reads to writes using memory model

 If this is really useful, why don't you apply it to RCU???
–I checked CBMC verification of SRCU into -rcu on December 31, 2016
–Implementation courtesy of Lance Roy

Has CBMC really found any RCU bugs???
–Yes, though only injected bugs used to test the verification
–That is, it has not yet found any bugs that I didn't already know about

	IBM Presentation Template Full Version
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Selecting a template
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100

