
© 2009 IBM Corporation

Real-Time Response on Multicore Systems:
It is Bigger Than You Think

Paul E. McKenney, IBM Distinguished Engineer, Linux Technology Center (Linaro)

29 August 2012

2012 Linux Plumbers Conference, Scaling Microconference

© 2009 IBM Corporation2

The -rt Patchset Was Used in Production Early On

2006: aggressive real-time on 64-bit systems
–Real-time Linux kernel (x86_64, 4-8 processors, deadlines down to 70

microseconds, measured latencies less than 40 microseconds)
• I only did RCU. Ingo Molnar, Sven Dietrich, K. R. Foley, Thomas Gleixner,

Gene Heskett, Bill Huey, Esben Nielsen, Nick Piggin, Lee Revell, Steven
Rostedt, Michal Schmidt, Daniel Walker, and Karsten Wiese did the real
work, as did many others joining the project later on.

• Plus a huge number of people writing applications, supporting customers,
packaging distros, …

But some were not inclined to believe it, so...

Real-Time Response on Multicore Systems: It is Bigger Than You Think

© 2009 IBM Corporation3

The Writeup

Real-Time Response on Multicore Systems: It is Bigger Than You Think

© 2009 IBM Corporation4

“SMP and Embedded Real Time”

Real-Time Response on Multicore Systems: It is Bigger Than You Think

Five Real-Time Myths:
–Embedded systems are always uniprocessor systems
–Parallel programming is mind crushingly difficult
–Real time must be either hard or soft
–Parallel real-time programming is impossibly difficult
–There is no connection between real-time and enterprise systems

Source: Paul E. McKenney “SMP and Embedded Real Time”, Linux Journal, Feb 2007, http://www.linuxjournal.com/article/9361

© 2009 IBM Corporation5

“SMP and Embedded Real Time”

Real-Time Response on Multicore Systems: It is Bigger Than You Think

Five Real-Time Myths:
–Embedded systems are always uniprocessor systems
–Parallel programming is mind crushingly difficult
–Real time must be either hard or soft
–Parallel real-time programming is impossibly difficult
–There is no connection between real-time and enterprise systems

This message was not well-received in all quarters
–Despite cute cartoons...

Source: Paul E. McKenney “SMP and Embedded Real Time”, Linux Journal, Feb 2007, http://www.linuxjournal.com/article/9361

© 2009 IBM Corporation6

Real-Time Response on Multicore Systems: It is Bigger Than You Think

The Limits of Hard Real Time in the Hard Real World

You show me a hard real-time system,
and I will show you a hammer that will cause it to miss its deadlines.

© 2009 IBM Corporation7

Real-Time Response on Multicore Systems: It is Bigger Than You Think

But Do Hardware Failures Count?

Rest assured, sir, that should there be a failure,
it will not be due to software!

© 2009 IBM Corporation8

Real-Time Response on Multicore Systems: It is Bigger Than You Think

I Believe That “SMP and Embedded Real Time” Has
Stood the Test of Time

However, I Did Make One Big Error in
“SMP and Embedded Real Time”

© 2009 IBM Corporation9

Real-Time Response on Multicore Systems: It is Bigger Than You Think

Large Error in “SMP and Embedded Real Time”

February 8, 2012
–Dimitri Sivanic reports 200+ microsecond latency spikes from RCU
–My initial response, based on lots of experience otherwise:

• “You must be joking!!!”

© 2009 IBM Corporation10

Real-Time Response on Multicore Systems: It is Bigger Than You Think

Large Error in “SMP and Embedded Real Time”

February 8, 2012
–Dimitri Sivanic reports 200+ microsecond latency spikes from RCU
–My initial response, based on lots of experience otherwise:

• “You must be joking!!!”
–Further down in Dimitri's email: NR_CPUS=4096

© 2009 IBM Corporation11

Real-Time Response on Multicore Systems: It is Bigger Than You Think

Large Error in “SMP and Embedded Real Time”

February 8, 2012
–Dimitri Sivanic reports 200+ microsecond latency spikes from RCU
–My initial response, based on lots of experience otherwise:

• “You must be joking!!!”
–Further down in Dimitri's email: NR_CPUS=4096

• “You mean it took only 200 microseconds?”

© 2009 IBM Corporation12

Real-Time Response on Multicore Systems: It is Bigger Than You Think

Large Error in “SMP and Embedded Real Time”

February 8, 2012
–Dimitri Sivanic reports 200+ microsecond latency spikes from RCU
–My initial response, based on lots of experience otherwise:

• “You must be joking!!!”
–Further down in Dimitri's email: NR_CPUS=4096

• “You mean it took only 200 microseconds?”

The large error: I was thinking in terms of 4-8 CPUs, maybe
eventually as many as 16-32 CPUs

–More than two orders of magnitude too small!!!

© 2009 IBM Corporation13

Real-Time Response on Multicore Systems: It is Bigger Than You Think

RCU Initialization

struct rcu_state

struct
rcu_node

struct
rcu_node

struct
rcu_node

struct
rcu_data

CPU 15

struct
rcu_data

CPU 0

struct
rcu_data
CPU 4095

struct
rcu_data
CPU 4080

Level 0: 1 rcu_node

Level 1: 4 rcu_nodes

Level 2: 256 rcu_nodes

Total: 261 rcu_nodes

© 2009 IBM Corporation14

Real-Time Response on Multicore Systems: It is Bigger Than You Think

RCU Initialization, CONFIG_RCU_FANOUT=64

struct rcu_state

struct
rcu_node

struct
rcu_node

struct
rcu_node

struct
rcu_data

CPU 63

struct
rcu_data

CPU 0

struct
rcu_data
CPU 4095

struct
rcu_data
CPU 4032

Level 0: 1 rcu_node

Level 2: 64 rcu_nodes

Total: 65 rcu_nodes

Decreases latency
from 200+ to 60-70
microseconds.
“Barely acceptable”
to users. But we can
do better...

© 2009 IBM Corporation15

Move Grace-Period Initialization Into a kthread

Real-Time Response on Multicore Systems: It is Bigger Than You Think

struct rcu_state

struct
rcu_node

struct
rcu_node

struct
rcu_node

struct
rcu_data

CPU 63

struct
rcu_data

CPU 0

struct
rcu_data
CPU 4095

struct
rcu_data
CPU 4032

Preemption opportunity
between each rcu_node
structure's initialization,
negligible latency

© 2009 IBM Corporation16

Move Grace-Period Initialization Into a kthread

Real-Time Response on Multicore Systems: It is Bigger Than You Think

struct rcu_state

struct
rcu_node

struct
rcu_node

struct
rcu_node

struct
rcu_data

CPU 63

struct
rcu_data

CPU 0

struct
rcu_data
CPU 4095

struct
rcu_data
CPU 4032

Preemption opportunity
between each rcu_node
structure's initialization,
negligible latency

But this represents a large
change, so validating...

© 2009 IBM Corporation17

Coping With 4096-CPU System Scarcity

Real-Time Response on Multicore Systems: It is Bigger Than You Think

© 2009 IBM Corporation18

Other Possible Issues

Real-Time Response on Multicore Systems: It is Bigger Than You Think

© 2009 IBM Corporation19

Other Possible Issues

Real-Time Response on Multicore Systems: It is Bigger Than You Think

The synchronize_*_expedited() primitives loop over all CPUs
– Parallelize? Optimize for dyntick-idle state?

The rcu_barrier() primitives loop over all CPUs
– Parallelize? Avoid running on other CPUs?

Should force_quiescent_state() make use of state in non-leaf
rcu_node structures to limit scan?

– This actually degrades worst-case behavior

Grace-period initialization and cleanup loops over all rcu_node
structures

– Parallelize?

NR_CPUS=4096 on small systems (RCU handles at boot)

 Interactions with scheduler (remember 3.0?)

© 2009 IBM Corporation20

Conclusions

Real-Time Response on Multicore Systems: It is Bigger Than You Think

© 2009 IBM Corporation21

Conclusions

Real-Time Response on Multicore Systems: It is Bigger Than You Think

They say that the best way to predict the future is to invent it

© 2009 IBM Corporation22

Conclusions

Real-Time Response on Multicore Systems: It is Bigger Than You Think

They say that the best way to predict the future is to invent it
–I am here to tell you that even this method is not foolproof

© 2009 IBM Corporation23

Conclusions

Real-Time Response on Multicore Systems: It is Bigger Than You Think

They say that the best way to predict the future is to invent it
–I am here to tell you that even this method is not foolproof

SMP, real time, and energy efficiency are each well known
–The real opportunities for new work involve combinations of them

Some need for 10s-of-microseconds latency on 4096 CPUs
–Translates to mainstream need on tens or hundreds of CPUs

• Supporting this is not impossible

© 2009 IBM Corporation24

Conclusions

Real-Time Response on Multicore Systems: It is Bigger Than You Think

They say that the best way to predict the future is to invent it
–I am here to tell you that even this method is not foolproof

SMP, real time, and energy efficiency are each well known
–The real opportunities for new work involve combinations of them

Some need for 10s-of-microseconds latency on 4096 CPUs
–Translates to mainstream need on tens or hundreds of CPUs

• Supporting this is not impossible

There is still much work to be done on the Linux kernel
–But even more work required for open-source applications

The major large-system challenges are at the design level

© 2009 IBM Corporation25

Conclusions

Real-Time Response on Multicore Systems: It is Bigger Than You Think

They say that the best way to predict the future is to invent it
–I am here to tell you that even this method is not foolproof

SMP, real time, and energy efficiency are each well known
–The real opportunities for new work involve combinations of them

Some need for 10s-of-microseconds latency on 4096 CPUs
–Translates to mainstream need on tens or hundreds of CPUs

• Supporting this is not impossible

There is still much work to be done on the Linux kernel
–But even more work required for open-source applications

The major large-system challenges are at the design level
–Pity that design issues receive little emphasis in the CS curriculum!!!

© 2009 IBM Corporation26

Legal Statement

This work represents the view of the author and does not
necessarily represent the view of IBM.

 IBM and IBM (logo) are trademarks or registered trademarks
of International Business Machines Corporation in the United
States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.

Real-Time Response on Multicore Systems: It is Bigger Than You Think

© 2009 IBM Corporation27

Questions?

Real-Time Response on Multicore Systems: It is Bigger Than You Think

For more information:
http://www2.rdrop.com/users/paulmck/realtime/paper/bigrt.2012.07.10a.pdf

© 2009 IBM Corporation28

Backup

Real-Time Response on Multicore Systems: It is Bigger Than You Think

© 2009 IBM Corporation29

About That Single Global Lock...

Real-Time Response on Multicore Systems: It is Bigger Than You Think

© 2009 IBM Corporation30

About That Single Global Lock...

Real-Time Response on Multicore Systems: It is Bigger Than You Think

Grace-period operations are global events
–So if already running or being awakened, no action required

This situation can be handled by a variation on a tournament
lock (Graunke & Thakkar 1990)

© 2009 IBM Corporation31

About That Single Global Lock...

Real-Time Response on Multicore Systems: It is Bigger Than You Think

Grace-period operations are global events
–So if already running or being awakened, no action required

This situation can be handled by a variation on a tournament
lock (Graunke & Thakkar 1990)

–A variation that does not share the poor performance noted by
Graunke and Thakkar

© 2009 IBM Corporation32

Real-Time Response on Multicore Systems: It is Bigger Than You Think

Conditional Tournament Lock

struct rcu_state

struct
rcu_node

struct
rcu_node

struct
rcu_node

gp_flags

Checked at
each level

spin_trylock() at each level,
release at next level

© 2009 IBM Corporation33

Real-Time Response on Multicore Systems: It is Bigger Than You Think

Conditional Tournament Lock Code

 1 rnp = per_cpu_ptr(rsp>rda, raw_smp_processor_id())>mynode;
 2 for (; rnp != NULL; rnp = rnp>parent) {
 3 ret = (ACCESS_ONCE(rsp>gp_flags) & RCU_GP_FLAG_FQS) ||
 4 !raw_spin_trylock(&rnp>fqslock);
 5 if (rnp_old != NULL)
 6 raw_spin_unlock(&rnp_old>fqslock);
 7 if (ret) {
 8 rsp>n_force_qs_lh++;
 9 return;
 10 }
 11 rnp_old = rnp;
 12 }

© 2009 IBM Corporation34

Real-Time Response on Multicore Systems: It is Bigger Than You Think

Conditional Tournament Lock Code

 1 rnp = per_cpu_ptr(rsp>rda, raw_smp_processor_id())>mynode;
 2 for (; rnp != NULL; rnp = rnp>parent) {
 3 ret = (ACCESS_ONCE(rsp>gp_flags) & RCU_GP_FLAG_FQS) ||
 4 !raw_spin_trylock(&rnp>fqslock);
 5 if (rnp_old != NULL)
 6 raw_spin_unlock(&rnp_old>fqslock);
 7 if (ret) {
 8 rsp>n_force_qs_lh++;
 9 return;
 10 }
 11 rnp_old = rnp;
 12 }

Effectiveness TBD

	IBM Presentation Template Full Version
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

