
Read Copy Update

Paul E. McKenney
Linux Technology Center

IBM Beaverton
pmckenne@us.ibm.com, http://www.rdrop.com/users/paulmck

Dipankar Sarma
Linux Technology Center
IBM India Software Lab

dipankar@in.ibm.com

Andrea Arcangeli
SuSE Labs

andrea@suse.de

Andi Kleen
SuSE Labs
ak@suse.de

Orran Krieger
IBM T. J. Watson Research Center

okrieg@us.ibm.com, http://www.eecg.toronto.edu/̃ okrieg

Rusty Russell
Linux Technology Center

IBM Canberra
rusty@au.ibm.com

Abstract

Read-copy update is a mechanism for constructing
highly scalable algorithms for accessing and mod-
ifying read-mostly data structures, while avoiding
cacheline bouncing, memory contention, and dead-
locks that plague highly scalable operating system
implementations. In particular, code that per-
forms read-only accesses may be written without
any locks, atomic instructions, or writes to shared
cachelines, even in the face of concurrent updates.
We reported on the basic mechanism last year, and
have produced a number of LinuxTM patches imple-
menting and exploiting read copy update.

This paper evaluates performance of a number
of read copy update implementations for non-
preemptive Linux kernels, and outlines a new im-
plementation targeted to preemptive Linux kernels.

1 Introduction

The past year has seen much discussion of read-copy
update and the design and coding of a number of
read-copy-update implementations. These imple-
mentations make a number of different tradeoffs,
and this paper takes a first step towards evaluat-
ing them.

Comparison of read-copy update to other con-
current update mechanisms has been done else-
where [McK01b, Linder02a]. These comparisons
have shown that read-copy update can greatly sim-
plify and inprove performance of code accessing
read-mostly linked-list data structures (such as FD

The views expressed in this paper are the authors’
only, and should not be attributed to SuSE or
IBM.

management tables and dcache data structures).
Evaluation of read-copy update in other environ-
ments has shown that the read-copy update can also
improve performance of code modifying linked-list
data structures when there is a high system-wide
aggregate update rate across all such data struc-
tures [McK98a].

Section 2 fills in some background on read-copy
update. Section 3 gives an overview of the de-
sign choices of the Linux read-copy update non-
preemptive implementations. Section 4 compares
performance and complexity of these implementa-
tions, with emphasis on the grace-period latency
that determines the incremental memory overhead
compared to non-read-copy-update locking algo-
rithms. Section 5 overviews the implementations,
focusing on call rcu(), scheduler instrumentation,
and timer processing. Section 5 also describes
how the rcu algorithm may be adapted to a pre-
emptible kernel. Section 6 describes future plans,
Appendix A provides implementation details, and
Appendix B discusses memory ordering issues en-
countered when inserting into a read-copy-protected
data structure.

2 Background

This section gives a brief overview of read-copy up-
date, more details are available elsewhere [McK98a,
McK01a, McK01b]. Section 2.1 contains a glos-
sary of read-copy-update-related terms, Section 2.2
presents concepts, Section 2.3 presents the read-
copy-update API, Section 2.4 describes the IP route
cache patch that uses read-copy update, Section 2.5
describes the module race reduction patch that uses
read-copy update, and Section 2.6 gives an overview
of how read-copy update may be used in a preemp-
tive kernel.

2.1 Glossary

Live Variable: A variable that might be accessed
before it is modified, so that its current value
has some possibility of influencing future exe-
cution state.

Dead Variable: A variable that will be modified
before it is next accessed, so that its current

value cannot possibly have any influence over
future execution state.

Temporary Variable: A variable that is only live
inside a critical section. One example is a auto
variable used as a pointer while traversing a
linked list.

Permanent Variable: A variable that is live out-
side of critical sections. One example would be
the header for a linked list.1

Quiescent State: A point in the code where all of
the current entity’s temporary variables that
were in use before a specified time are dead.
In a non-preemptive Linux kernel, a context
switch is a quiescent state for CPUs. In a
preemptive Linux kernel, a voluntary context
switch is a quiescent state, but for threads. In
this paper, quiescent states are global events,
as opposed to being associated with a specific
data structure.

Grace Period: Time interval during which all en-
tities (CPUs or tasks, as appropriate) pass
through at least one quiescent state. Note that
any time interval containing a grace period is
itself a grace period.

The key point underlying read-copy update is that
if you remove all permanent-variable references to a
given item, then wait for a grace period to expire,
there can be no remaining references to that item.
The item can then be safely freed up. This process
is described in more detail in the next section.

2.2 Concepts

Read-copy update allows lock-free read-only access
to data structures that are being concurrently mod-
ified. The accessing code needs neither locks nor
atomic instructions, and can often be written as if
the data structure were unchanging, in a “CS 101”
style. Read-copy update is typically applied to
linked data structures where the read side code tra-
verses links through the data structure in a single
direction.

Without special action on the update side, the read
side would be prone to races with deletions, as illus-
trated in Figure 1, which shows two tasks searching

1Yes, it is possible for the same variable to be temporary
sometimes and permanent at other times. However, this can
lead to confusion, so is not generally recommended.

Search 1

Route
Cache
Element

Search 2

-

-

w

Search 1A Search 1B

Search 2A Search 2B

�
�
�
�
��� C

C
C
C
CCW �

�
�
�
���
!!!

C
C
C
C
CCW �

�
�
�
���

Figure 1: Race Between Deletion and Search

a list that contains an element that is concurrently
deleted by a third task (signified by the line labelled
”Route Cache Element”). To handle such race con-
ditions, the update side uses a two-phase update
discipline:

1. Remove permanent-variable pointers to the
item being deleted.

2. After a grace period has elapsed, free up the
item’s memory.

The grace period is not a fixed time duration, but
is instead inferred by checking for per-CPU quies-
cent states, such as context switches. Since ker-
nel threads are prohibited from holding locks across
a context switch, they also prohibited from hold-
ing pointers to data structures protected by those
locks across context switches–after all, the entire
data structure could well be deleted by some other
CPU at any time the lock is not held.

Therefore, a simple implementation of read-copy up-
date might declare the grace period over once it ob-
served each CPU performing a context switch. Now,
the first phase removed all global pointers to the
item being deleted, and kernel threads are not per-
mitted to hold references to the item across a con-
text switch. Therefore, CPUs that have performed
a context switch after the completion of the first
phase have no way to gain a reference to the item
being deleted. Thus, once all CPUs have performed
a context switch, it is safe to free up the item being
deleted from the list.

With this approach, searches already in progress
when the first phase executes might (or might not)

Search 1

Route
Cache
Element

Search 2

-

-

Grace Period w

Search 1A Search 1B

Search 2A Search 2B

�
�
�
�
��� C

C
C
C
CCW �

�
�
�
�� C

C
C
C
CW

C
C
C
C
CCW �

�
�
�
���

Figure 2: Read-Copy Update Handling Race

void synchronize_kernel(void);

struct rcu_head {

struct list_head list;

void (*func)(void *obj);

void *arg;

};

void call_rcu(struct rcu_head *head,

void (*func)(void *arg),

void *arg);

Figure 3: Read-Copy Update API

see the item being deleted. However, searches that
start after the first phase completes are guaranteed
to never reference this item. Therefore, the item
may be safely freed once all searches in progress at
the end of the first phase have completed, as shown
in Figure 2.

Efficient mechanisms for determining the duration
of the grace period are key to read-copy update.

2.3 Read-Copy Update API

Figure 3 shows the external API for read-copy up-
date. The synchronize kernel() function blocks
for a full grace period. This is a simple, easy-to-
use function, but imposes expensive context-switch
overhead on its caller. It may not be called with
locks held or from BH/IRQ context.

Another approach, taken by call rcu() is to sched-
ule a function to be called after the end of a full
grace period. Since call rcu() never sleeps, it may
be called with locks held or from BH (and perhaps
also IRQ) context. The call rcu() function uses

1 void delete(struct el *p)

2 {

3 spin_lock(&list_lock);

4 p->next->prev = p->prev;

5 p->prev->next = p->next;

6 spin_unlock(&list_lock);

7 call_rcu(&p->my_rcu_head, my_free, p);

8 }

Figure 4: Read-Copy Dequeue From Doubly-Linked
List

its struct rcu head argument to store the specified
callback function and argument, and the read-copy-
update subsystem then uses this struct to sched-
ule the callback invocation. An rcu head is often
placed within a structure being protected by read-
copy update.

A typical use of call rcu is shown in Figure 4,
where an element is deleted from a circular doubly
linked list with a header element. Here my free()
is a wrapper around kfree(), and the lock is used
only to serialize concurrent calls to delete(). Since
the element’s next and prev pointers are unaffected,
and since my free() is not called until a grace pe-
riod has elapsed, non-sleeping reading tasks may
traverse the list concurrently with the deletion of
the element without danger of a NULL pointer or a
pointer to the freelist. This is a common read-copy-
update idiom: kfree() is replaced by a call rcu()
to a function that is a wrapper around kfree().

2.4 Read-Copy Update and IP Route
Cache

Read-copy update has been used in a number of
OSes, including several patches to Linux [McK01b,
Linder02a]. This section describes how read-copy
update may be used in the Linux IP route cache.
This modification was done to validate the RCU im-
plementations, rather than in response to a known
performance problem in the IP route cache.

The Linux IP route cache uses a reader-writer lock,
so multiple searches may proceed in parallel. How-
ever, the multiple readers’ lock acquisitions result in
the cacheline bouncing. Read-copy update may be
used to eliminate this read side cacheline bouncing:

1. Delete all calls to read lock(),
read unlock(), read lock bh(), and

1 @@ -314,13 +314,13 @@

2 static inline void rt_free(

3 struct rtable *rt)

4 {

5 - dst_free(&rt->u.dst);

6 + call_rcu(&rt->u.dst.rcu_head,

7 (void (*)(void *))dst_free,

8 &rt->u.dst);

9 }

10

11 static inline void rt_drop(

12 struct rtable *rt)

13 {

14 ip_rt_put(rt);

15 - dst_free(&rt->u.dst);

16 + call_rcu(&rt->u.dst.rcu_head,

17 + (void (*)(void *))dst_free,

18 + &rt->u.dst);

19 }

Figure 5: dst free() Modifications

read unlock bh().

2. Replace all calls to write lock(),
write unlock(), write lock bh(), and
write unlock bh() with the correspond-
ing member of the spin lock() family of
primitives.

3. Add rmb() primitives on the read side be-
tween the fetch of the pointer and its deref-
erencing. These should be replaced by
read barrier depends() when it becomes
available.

4. Replace all calls to dst free() with a call to
call rcu() which causes dst free() to be in-
voked after the end of a following grace period,
as shown in Figure 5.

This results in a significant decrease in
ip route output key() overhead during a work-
load that transmits a fixed number of random-sized
IP packets to a single destination, as shown in
Figure 6. This workload was run on an 8-CPU
700MHz PentiumTM III XeonTM with 1MB L2
cache and 6GB of memory.

Figure 7 shows the total non-idle kernel profile ticks
for this same workload. This data shows the IP
route cache speedup is real; it is not happening at
the expense of other processing in the system. The
overall speedup is quite small, as expected, given
that the change was not motivated by a known per-

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8

ip
_r

ou
te

_o
ut

pu
t_

ke
y

pr
of

ile
 ti

ck
s

Number of CPUs

base

rt_rcu

Figure 6: IP Route Cache Speedup Using rcu

50000

100000

150000

200000

250000

300000

350000

1 2 3 4 5 6 7 8

no
n-

id
le

 k
er

ne
l p

ro
fil

e
tic

ks

Number of CPUs

base

rt_rcu

Figure 7: IP Route Cache System Performance Us-
ing rcu

formance problem.2 More compelling Linux-based
read-copy-update results include a 30% improve-
ment for FD management [McK01b] and a 25% im-
provement for dcache management [Blanchard02a,
Linder02a]

2.5 Read-Copy Update and Module
Race Reduction

Linux 2.4 is subject to races between module un-
loading and use of that module. These races can
result in the racing code that is attempting to use
the module holding a reference to newly freed mem-
ory, most likely resulting in an “oops”.

One way to reduce the likelihood of these races oc-
curring is to wait for a grace period after removing
the module structure from the module list before
kfree()ing it in free module() [Kleen02a]. Races
can still occur, but the race’s window has been de-
creased substantially. The change is a one-liner (not
counting comments), as shown in Figure 8.

As noted earlier, this change does not address all the
module-unloading problems. However, we hope that
it can be a basis for a full solution. This approach
is now being used in production in SuSE Linux.

2.6 Read-Copy Update and Preemption

Preemption has recently been added to Linux in
2.5.4. The addition of preemption means that read
side kernel code is subject to involuntary context
switches. If not taken into account, this leads to pre-
mature flagging of the ends of grace periods. There
are two ways to handle preemption: (1) explicitly
disabling preemption over read side code segments,
and (2) considering only voluntary context switches
to be quiescent states.

Explicitly disabling preemption over read side code
segments adds unwanted overhead to reading pro-
cesses, and removes some of the latency benefits pro-
vided by preemption. In contrast, considering only
voluntary context switches to be quiescent states
allows the kernel to reap the full benefit of reduced
latency. This scheme for tracking only voluntary
context switches is inspired by the K42 implemen-

2However, we will be measuring this patch on various
workloads as Linux’s scaling continues to improve.

tation [Gamsa99].3 The main drawback is increased
length of grace periods. This paper focuses on the
voluntary context switches option and its effects.

3 Read-Copy Update Implementa-
tions

As noted earlier, the key to read-copy update is
a CPU-efficient mechanism for determining the re-
quired duration of the grace period. This mecha-
nism is permitted to overestimate the grace-period
duration, but the greater the overestimation, the
greater the amount of memory that will be con-
sumed by waiting callbacks. There are a number of
simple and efficient algorithms to determine grace-
period duration, and this paper reviews a number
of them.

There are a number of design parameters for a read-
copy update implementation:

1. Batching. Many implementations batch re-
quests, so that a single grace-period identifi-
cation can satisfy multiple requests. Batch-
ing is particularly important for implementa-
tions with heavyweight grace period identifica-
tion mechanisms. Although there have been
implementations without batching [McK01a],
all implementations described in this paper do
batching.

2. Deducing the length of the grace period. The
simplest mechanisms force a grace period by a
reschedule on all CPUs in non-preemptive ker-
nels. However, this approach is relatively ex-
pensive, particularly if extended to cope with
preemptible kernels. More efficient implemen-
tations use something like per-CPU quiescent-
state counters to deduce when the natural
course of events has resulted in the expiration
of a grace period.

3. Polling mechanism. Implementations that de-
duce when a grace period has ended must use
some mechanism to be informed of this event:

3K42’s extensive use of blocking locks and short-lived
threads results in use of thread termination rather than vol-
untary context switch as the K42 quiescent state. In addi-
tion, Linux migrates preempted tasks to other CPUs, which
requires special tracking of tasks that have been preempted
since their last voluntary context switch.

(a) Adding explicit checks to code corre-
sponding to quiescent states, for example,
rcu-sched’s hooks in the Linux scheduler
shown in Figure 29. Explicit checks al-
low fast response to quiescent states, but
add overhead when there are no read-copy
callbacks in flight.

(b) Adding counters to code corresponding to
quiescent states, and using kernel dae-
mons to check the counters, as shown in
Figure 13. This approach adds some com-
plexity, but greatly reduces the overhead
when there are no read-copy callbacks in
flight.

(c) As above, but use tasklets instead of ker-
nel daemons to do the checking. This fur-
ther reduces the overhead, but uses more
exotic features of Linux.

(d) As above, but use a per-CPU timer han-
dler [Sarma02a] instead of tasklets to do
the checking. It is not yet clear which of
tasklets and timer handlers are preferable.

If the implementation forces the end of the
grace period, it must similarly use a mechanism
for doing so:

(a) Scheduling a thread on each CPU in turn.
This has the advantage of immediacy, but
cannot be used from BH or IRQ, and gains
no performance benefit from batching.

(b) Reserving a kernel daemon that, upon re-
quest, schedules itself on each CPU in
turn. This permits batching and use from
BH and IRQ, but is more complex.

4. Request queuing. Requests may be queued
globally or on a per-CPU basis. Grace peri-
ods must of course always be detected globally,
but per-CPU queuing can reduce the CPU over-
head incurred by call rcu(). This is a classic
performance/complexity tradeoff. The correct
choice depends on the workload.

5. Quiescent state definition. For non-preemptive
kernels, context switch is a popular choice. For
preemptive Linux kernels (such as Linux 2.5),
voluntary context switch may instead be used.

6. Environments. If call rcu() use is prohibited
in the BH or IRQ contexts, then more kernel
functionality is available to the implementor of
call rcu(), and less overhead is incurred.

1 @@ -1065,6 +1066,12 @@

2 p->next = mod->next;

3 }

4 spin_unlock_irqrestore(&modlist_lock,

5 flags);

6

7 + /* Wait for all other cpus to go

8 + * through a context switch. This

9 + * doesn’t plug all module unload

10 + * races, but at least some of

11 + * them and makes the window much

12 + * smaller.

13 + */

14 + synchronize_kernel();

15

16 /* And free the memory. */

Figure 8: Module Unloading

Section 5 describes a number of Linux implementa-
tions of read-copy update, summarized in Table 1.

All the implementations in Table 1 except rcu-
preempt assume a run-to-block kernel. Section 5.7
describes rcu-preempt, which operates efficiently in
a preemptive kernel.

The “QS” column lists the quiescent states that each
algorithm tracks, “I” for idle-loop execution, “C” for
context switch, and “U” for user-mode execution.

The “BH/IRQ Safe” column indicates whether code
running in BH/IRQ context may safely delete ele-
ments of a read-copy-update-protected data struc-
ture that is accessed by base-level code with in-
terrupts enabled. The rcu-poll implementation is
BH safe, but is IRQ unsafe by choice, in order to
eliminate the overhead of interrupt disabling and
enabling that would otherwise be incurred on each
call to call rcu(). If a strong need arises for use
of call rcu() from IRQ context, trivial changes to
rcu-poll will render it IRQ safe.

The read-copy-update implementations discussed
in this paper choose different points in this de-
sign space. These implementations are freely avail-
able [LSE]. The X-rcu, rcu, and rcu-ltimer imple-
mentations are similar to the ptxTM implementa-
tion, using per-CPU timers, kernel daemons, and
architecture-dependent timer support, respectively.
The rcu-taskq implementation is an extremely com-
pact implementation in which a kernel task forces
per-CPU kernel daemons to run on their respec-
tive CPUs. The rcu-sched implementation uses ring
counters within the Linux scheduler, and boasts
an extremely low overhead call rcu() implemen-
tation. It is also the only known read-copy-update
implementation that uses absolutely no locks, in-
terrupt masking, memory barriers, or atomic in-
structions. The rcu-poll implementation is de-
signed for minimal overhead when there are no
outstanding read-copy callbacks, and boasts very
low call rcu() latencies. Finally, the rcu-preempt
implementation adapts the rcu implementation to
work correctly in preemptible kernels. We will adapt
some of the other implementations for preemptible
use, as well. These implementations are described
in more detail in Section 5 and Appendix A.

4 Performance and Complexity
Comparisons

Table 2 shows the amount of overhead incurred by
each implementation when there is no read-copy up-
date activity in the system. The rcu-taskq imple-
mentation does best by this measure, with abso-
lutely no overhead. The rcu-poll and rcu-preempt
are next, with but a single local non-atomic incre-
ment in the scheduler. The rcu-preempt also incurs
overhead on each preemption, as rcu-poll likely will
once it is adapted to run in a preemptive kernel. The
other implementations incur timer overhead under
idle conditions.

An important figure of merit for a read-copy-update
implementation is the grace period latency. The
greater the latency, the more memory is waiting
on the internal lists for the current grace period to
end. On the other hand, longer latency results in
higher efficiency, since the per-callback-batch pro-
cessing is done less frequently, spreading the over-
head over more call rcu() requests. The best
tradeoff depends on the workload: systems with
very infrequent call rcu() invocations would pre-
fer small latency in order to conserve memory, while
systems with very frequent call rcu() invocations
would prefer larger latencies in order to amortize
the overhead of detecting a grace period over more
call rcu() invocations.

This latency depends on worst-case kernel code-
path length, the workload, and the details of the
read-copy-update implementation. Figure 9 shows
the call rcu() latency for the different read-copy
update algorithms as a function of offered load to
the dbench benchmark. It was run on an 8-CPU
700MHz Xeon system with 1MB L2 caches and 6GB
of memory using the dcache-rcu patch [LSE]. The
winner by far is rcu-poll, which keeps latencies be-
low 10 milliseconds (and below 250 microseconds
on an idle system) by allowing quiescent states to
be detected in parallel and by its aggressive forc-
ing of scheduling when a grace period is required
(see Figure 10, which shows the same data on a
semilog plot). Therefore, rcu-poll is preferable on
systems that invoke call rcu() infrequently. The
X-rcu, rcu-ltimer, and rcu implementations have
larger latencies that are well bounded as the num-
ber of clients increase. These algorithms are thus
preferable on systems that have very high rates of
call rcu() invocation.

Name Batch? Deduce Poll Queuing QS BH/IRQ Safe
X-rcu Yes counters timers per-CPU IC Yes
rcu Yes counters daemons per-CPU C Yes
rcu-poll Yes counters tasklet global C BH Only
rcu-ltimer Yes counters tasklets per-CPU IUC Yes
rcu-taskq Yes No daemons global C Yes
rcu-sched Yes counter ring N/A per-CPU-rrupt IC Yes
rcu-preempt Yes counters timers per-CPU IC Yes

Table 1: Read-Copy Implementations

RCU Idle Memory Refs
Name Switch Preempt Timer Timer Type
X-rcu 1 local 8 local + 1 global + 1 timer 50ms per CPU
rcu 1 local 2 local + 1 global read + 1 global

write + 1 timer + #CPU * up()
50ms global

rcu-poll 1 local
rcu-ltimer 1 local 7 local + 1 global + 1 tasklet per CPU
rcu-taskq
rcu-sched 1 global read
rcu-preempt 1 local 6 local

Table 2: Read-Copy Idle Overhead

The rcu-sched algorithm exhibited very large laten-
cies (14.5 seconds at 8 clients and 57.7 seconds at 4
clients), which we are investigating. The rcu-taskq
algorithm’s latencies increases with increasing num-
bers of clients, because this algorithm requires the
CPUs to pass through quiescent states sequentially,
and because keventd (which runs the taskq’s) runs
at low priority.

Read-copy update can pose a tradeoff between la-
tency and overhead, since increased latency in-
creases the number of callbacks that are serviced
by a single grace period. To evaluate this trade-
off, Figure 11 compares the performance of the chat
benchmark with 20 rooms and 500 messages on
a 4-CPU 700MHz Pentium III Xeon system with
1MB L2 caches and 1GB memory. This benchmark
was run using the read-copy-update-based IP-route-
cache and FD management patches [LSE]. These re-
sults show little sensitivity to the read-copy-update
algorithm. We are collecting more data on other
workloads.

Table 3 shows the number of lines in each algo-
rithm’s patch. The “All Archs” column gives the
size of the patch applied to all architectures cur-
rently in the kernel, while the “One Arch” column

gives the size of each patch applied to only one ar-
chitecture. Architecture-independent patches will
have the same number in both columns. The rcu-
taskq implementation is the simplest, and so might
be a good place to start looking at read-copy-update
implementations.

The rcu-ltimer patch works only on the i386 ar-
chitecture, so the figure for “All Archs” is an esti-
mate based on the i386-specific portion of the patch,
which simply invokes RCU PROCESS CALLBACKS()
from the smp local timer interrupt() function.
The rcu-sched patch contains code to guard against
architectures that shut down their CPUs when idle.

Size of Unified Diffs
Name All Archs One Arch
rcu-taskq-2.5.3-1.patch 237 237
rcu-poll-2.5.3-1.patch 378 378
X-rcu-2.5.3-4.patch 424 424
rcu-sched-2.5.3-1.patch 575 333
rcu-2.5.3-2.patch 603 603
rcu-preempt-2.5.8-3.patch 682 682
rcu-ltimer-2.5.3-1.patch 742 514

Table 3: Read-Copy Implementation Complexity

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

ca
ll_

rc
u(

)
la

te
nc

y
(s

ec
)

Number of dbench clients

X-rcu

rcu

rcu-ltimer

rcu-poll

rcu-sched

rcu-taskq

Figure 9: call rcu() Latency Under dbench Load

0.0001

0.001

0.01

0.1

1

10

100

0 5 10 15 20 25 30

ca
ll_

rc
u(

)
la

te
nc

y
(s

ec
)

Number of dbench clients

X-rcu

rcu
rcu-ltimer

rcu-poll

rcu-sched

rcu-taskq

Figure 10: call rcu() Latency Under dbench Load
(logscale)

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 1 2 3 4 5 6 7 8

m
es

sa
ge

s
pe

r
se

co
nd

Number of CPUs

X-rcu

rcu

rcu-ltimer

rcu-poll

rcu-sched

rcu-taskq

base

Figure 11: RCU Performance on Chat Benchmark

5 Read-Copy Update Implementa-
tion Overviews

The following sections summarize the call rcu()
implementation, the quiescent-state instrumenta-
tion (usually in the scheduler), and the high-level
timer processing. More details on the more-complex
implementations may be found in Appendix A, and
patches for each may be found on the Linux Scala-
bility Effort website [LSE].

5.1 X-rcu

X-rcu is loosely based on the ptx read-copy-update
implementation. It uses a per-CPU context switch
counter to instrument this quiescent state, uses per-
CPU queues to track callbacks, and per-CPU timers
to track quiescent states as needed to find the end of
grace periods. The timers further check for running
from idle, which is a second quiescent state. Di-
pankar Sarma implemented this variant to evaluate
the use of timers rather than the kernel daemons or
architecture-dependent timer hooks used by the rcu
and rcu-ltimer implementations.

This implementation depends on patches that have
not yet appeared in 2.4, 2.5, or both. The required
patches include:

1. Rusty Russell’s per-CPU data area
patch [Russell02a] permits more natural
maintenance of per-CPU data. It permits
the context switch counter to be maintained
separately from the rest of the per-CPU state,
which avoids some nasty header file cyclic
dependencies between interrupt.h, fs.h, and
sched.h. This separation means that rcupdate.h
need not include interrupt.h, which makes it
easier to include rcupdate.h in lower-level
kernel subsystems, such as dcache. This patch
recently was accepted into the Linux 2.5 kernel.

2. Per-CPU timer support [Sarma02a]. This
patch enhances Ingo Molnar’s smptimers patch
to guarantee that timers queued in a CPU al-
ways get executed on the same CPU where they
were enqueued. This guarantee allows per-CPU
quiescent state checking to be performed in a
clean and architecture independent way. In ad-
dition, timers have significantly lower overhead
than kernel daemons.

1 void call_rcu(struct rcu_head *head,

2 void (*func)(void *arg),

3 void *arg)

4 {

5 unsigned long flags;

6

7 head->func = func;

8 head->arg = arg;

9 local_irq_save(flags);

10 list_add_tail(&head->list,

11 &this_cpu(rcu_nextlist));

12 local_irq_restore(flags);

13 }

Figure 12: X-rcu call rcu() Implementation

1 @@ -685,6 +686,7 @@

2 switch_tasks:

3 prefetch(next);

4 prev->work.need_resched = 0;

5 + per_cpu(rcu_qsctr, prev->cpu)++;

6

7 if (likely(prev != next)) {

8 rq->nr_switches++;

Figure 13: X-rcu Scheduler Instrumentation

The call rcu() function constructs the call-
back and enqueues it onto the current CPU’s
rcu nextlist, as shown in Figure 12.

Figure 13 shows how the scheduler is instrumented.
The added line 5 compiles to a local increment, with
no locking, atomic operations, or cacheline bounc-
ing.

Figure 14 shows the processing done by the per-
CPU timer handler, currently set up to execute ev-
ery 5 jiffies on each CPU. This code detects idle-loop
execution and counts this as a quiescent state. It
then invokes rcu process callbacks() to advance
callbacks as ends of grace periods are detected. This
callback advancement is described in Appendix A.1.

1 static void rcu_percpu_tick(void)

2 {

3 /* Check for idle loop */

4 if (task_idle(current))

5 this_cpu(rcu_qsctr)++;

6 rcu_process_callbacks();

7 }

Figure 14: X-rcu Timer Processing

1 void call_rcu(struct rcu_head *head,

2 void (*func)(void *arg),

3 void *arg)

4 {

5 int cpu = cpu_number_map(

6 smp_processor_id());

7 unsigned long flags;

8

9 head->func = func;

10 head->arg = arg;

11 local_irq_save(flags);

12 list_add_tail(&head->list,

13 &RCU_nxtlist(cpu));

14 local_irq_restore(flags);

15 tasklet_schedule(&RCU_tasklet(cpu));

16 }

Figure 15: rcu call rcu() Implementation

5.2 rcu

The rcu patch is also based on the ptx algorithm.
Unlike the X-rcu patch described in Section 5.1, rcu
has minimal dependencies on other patches. It is
otherwise quite similar, using per-CPU queues of
callbacks and context-switch counters instrument-
ing the quiescent states. However, it uses per-CPU
kernel daemons to periodically check for the end of
grace periods, which means that it cannot easily
check for the CPU having been idle. These dae-
mons are awakened by a timer that is scheduled only
when there is at least one callback in the system.
Dipankar Sarma implemented this variant to evalu-
ate use of kernel daemons rather than architecture-
dependent timer hooks.

The call rcu() function simply constructs the
callback, enqueues it onto the current CPU’s
RCU nxtlist, then schedules the current CPU’s
tasklet, as shown in Figure 15.

The scheduler is instrumented as shown in Fig-
ure 16. As with X-rcu, this is a local increment
without locking, atomic instructions, or cacheline
bouncing, but, due to the lack of a per-CPU data
area, array-indexing instructions are required.

The code that performs periodic RCU processing is
shown in Figure 17. UP kernels invoke it directly
from the timeout handler, while SMP kernels invoke
it from krcud daemons that are awakened by the
timeout handler.

1 @@ -685,6 +686,7 @@

2 switch_tasks:

3 prefetch(next);

4 prev->work.need_resched = 0;

5 + RCU_qsctr(prev->cpu)++;

6

7 if (likely(prev != next)) {

8 rq->nr_switches++;

Figure 16: rcu Scheduler Instrumentation

1 static void rcu_percpu_tick_common(void)

2 {

3 rcu_process_callbacks(0);

4 }

Figure 17: rcu Timer Processing

Details of rcu’s callback processing are discussed in
Appendix A.2.

5.3 rcu-poll

The rcu-poll algorithm was written by Andrea Ar-
cangeli and Dipankar Sarma. It appears in the “-aa”
series of kernels and in recent SuSE releases. Unlike
the X-rcu and rcu algorithms, rcu-poll uses a single
set of lists to process read-copy-update callbacks,
which are processed by a single tasklet. This re-
sults in more cacheline bouncing than do the other
algorithms, but is considerably shorter and simpler,
and, as noted earlier, boasts extremely short aver-
age grace-period latencies and low incremental over-
heads when there are no read-copy update callbacks
in flight.

The call rcu() function constructs the callback,
enqueues it onto a global rcu nxtlist, then sched-
ules the tasklet, as shown in Figure 18.

The scheduler is instrumented in much the same
way as for the previous algorithms, as shown in Fig-
ure 19.

Periodic RCU processing is handled by a single
tasklet, whose body is shown in Figure 20. This
tasklet invokes rcu prepare polling() to snap-
shot each CPU’s quiescent state counters if polling
is not yet in progress and if there are pending call-
backs. If polling has already been started, it in-
stead invokes rcu polling() to check to see if the
grace period has ended. This ensures all CPUs have

1 void call_rcu(struct rcu_head *head,

2 void (*func)(void *arg),

3 void *arg)

4 {

5 head->func = func;

6 head->arg = arg;

7

8 spin_lock_bh(&rcu_lock);

9 list_add(&head->list, &rcu_nxtlist);

10 spin_unlock_bh(&rcu_lock);

11

12 tasklet_hi_schedule(&rcu_tasklet);

13 }

Figure 18: rcu-poll call rcu() Implementation

1 @@ -685,6 +686,7 @@

2 switch_tasks:

3 prefetch(next);

4 prev->work.need_resched = 0;

5 + RCU_quiescent(prev->cpu)++;

6

7 if (likely(prev != next)) {

8 rq->nr_switches++;

Figure 19: rcu-poll Scheduler Instrumentation

passed through their quiescent states via the context
switch.

Details of rcu-poll’s callback processing are dis-
cussed in Appendix A.3.

5.4 rcu-ltimer

The rcu-ltimer implementation is sim-
ilar to X-rcu and rcu, but it inserts
calls to RCU PROCESS CALLBACKS() into
do timer() and into the architecture-specific
smp local timer interrupt() functions, instead
of using timers or a kernel daemon to check for
the ends of grace periods. This allows rcu-ltimer
to count user-mode execution as a quiescent state,
in addition to the idle loop and context switch.
The current patch is fully implemented only on the
i386 architecture. Dipankar Sarma implemented
this variant to obtain the closest analog to the ptx
implementation.

The call rcu() function constructs the callback
and enqueues it onto a per-CPU RCU nxtlist, as
shown in Figure 21.

1 static void rcu_process_callbacks(

2 unsigned long data)

3 {

4 int stop;

5

6 spin_lock(&rcu_lock);

7 if (!rcu_polling_in_progress)

8 stop = rcu_prepare_polling();

8 else

9 stop = rcu_polling();

10 spin_unlock(&rcu_lock);

11

12 if (!stop)

13 tasklet_hi_schedule(&rcu_tasklet);

14 }

Figure 20: rcu-poll Tasklet Body

1 void call_rcu(struct rcu_head *head,

2 void (*func)(void *arg),

3 void *arg)

4 {

5 int cpu = cpu_number_map(

6 smp_processor_id());

7

8 head->func = func;

9 head->arg = arg;

10 local_bh_disable();

11 list_add_tail(&head->list,

12 &RCU_nxtlist(cpu));

13 local_bh_enable();

14 }

Figure 21: rcu-ltimer call rcu() Implementation

1 @@ -685,6 +686,7 @@

2 switch_tasks:

3 prefetch(next);

4 prev->work.need_resched = 0;

5 + RCU_qsctr(prev->cpu)++;

6

7 if (likely(prev != next)) {

8 rq->nr_switches++;

Figure 22: rcu-ltimer Scheduler Instrumentation

1 #define RCU_PROCESS_CALLBACKS(cpu,regs) \

2 do { \

3 if (user_mode(regs) || idle_cpu(cpu)) \

4 RCU_qsctr(cpu)++; \

5 if ((RCU_tasklet(cpu).state & \

6 ((1 << TASKLET_STATE_SCHED) | \

7 (1 << TASKLET_STATE_RUN))) \

8 == 0) \

9 tasklet_schedule(

10 &RCU_tasklet(cpu)); \

11 } while(0)

Figure 23: rcu-ltimer Timer Processing

The scheduler is instrumented in much the same
way as for the previous algorithms, as shown in Fig-
ure 22.

Periodic RCU processing is handled by per-CPU
tasklets, which are invoked as shown in Figure 23.
Lines 3-4 note a quiescent state if the CPU was in-
terrupted from user mode or the idle loop. Lines
5-10 schedule this CPU’s tasklet if it is not already
either scheduled or running. This tasklet invokes
rcu process callbacks(), which is described in
more detail in Appendix A.4.

5.5 rcu-taskq

Dipankar Sarma implemented the rcu-taskq algo-
rithm to obtain a minimal efficient implementa-
tion. And this implementation does in fact have the
smallest patch, using a single task and a global set of
callback queues. The task forces each of a set of per-
CPU kernel daemons to schedule itself; when each
done so, the grace period has expired. This imple-
mentation thus directly forces quiescent states, un-
like the other implementations, which instead mea-
sure naturally occurring quiescent states. Its grace-
period latency increases with increasing load on the
system, as noted earlier, but is the only implemen-

1 void call_rcu(struct rcu_head * head,

2 void (*func)(void * arg),

3 void * arg)

4 {

5 unsigned long flags;

6 int start = 0;

7

8 head->func = func;

9 head->arg = arg;

10

11 spin_lock_irqsave(&rcu_lock, flags);

12 if (list_empty(&rcu_wait_list))

13 start = 1;

14 list_add(&head->list, &rcu_wait_list);

15 spin_unlock_irqrestore(&rcu_lock, flags);

16

17 if (start)

18 schedule_task(&rcu_task);

19 }

Figure 24: rcu-taskq call rcu() Implementation

tation with absolutely zero load on the system when
there are no read-copy callbacks in flight.

Figure 24 shows the call rcu() implementation.
Lines 8-9 initialize the callback, lines 11 and 15 han-
dle locking, lines 12-13 record the initial list state,
and line 14 adds the callback to the rcu wait list.
Lines 17-18 start the task if lines 12-13 found the
list initially empty.

The task started by call rcu() invokes the func-
tion process pending rcus(), shown in Figure 25.
Lines 8-10 snapshot rcu wait list into a local list.
Line 13 then invokes wait for rcu() to wait for a
full grace period to elapse. Finally, lines 15-23 in-
voke the callbacks from the local list.

Figure 26 shows wait for rcu(). Lines 6-10
awaken the krcud daemons for the other CPUs, and
lines 11-13 wait for these daemons to respond.

Figure 27 shows the code for the krcud daemons.
Lines 6-20 initialize the daemon, set its prior-
ity high, blocking signals, binding to the corre-
sponding CPU, setting the task name, initializing
the task name, and informing the spawn krcud()
task that the daemon is ready to process re-
quests. Lines 22-26 process each request, alter-
nately sleeping on the krcud sema and waking up
the process pending rcus() task.

1 static void process_pending_rcus(

2 void *arg)

3 {

4 LIST_HEAD(rcu_current_list);

5 struct list_head * entry;

6

7 spin_lock_irq(&rcu_lock);

8 list_splice(&rcu_wait_list,

9 rcu_current_list.prev);

10 INIT_LIST_HEAD(&rcu_wait_list);

11 spin_unlock_irq(&rcu_lock);

12

13 wait_for_rcu();

14

15 while ((entry = rcu_current_list.prev)

16 != &rcu_current_list) {

17 struct rcu_head * head;

18

19 list_del(entry);

20 head = list_entry(entry,

21 struct rcu_head, list);

22 head->func(head->arg);

23 }

24 }

Figure 25: rcu-taskq process pending rcus() Imple-
mentation

1 static void wait_for_rcu(void)

2 {

3 int cpu;

4 int count;

5

6 for (cpu = 0; cpu < smp_num_cpus; cpu++) {

7 if (cpu == smp_processor_id())

8 continue;

9 up(&krcud_sema(cpu));

10 }

11 count = 0;

12 while (count++ < smp_num_cpus - 1)

13 down(&rcu_sema);

14 }

Figure 26: rcu-taskq wait for rcu() Implementation

1 static int krcud(void * __bind_cpu)

2 {

3 int bind_cpu = *(int *) __bind_cpu;

4 int cpu = cpu_logical_map(bind_cpu);

5

6 daemonize();

7 current->policy = SCHED_FIFO;

8 current->rt_priority = 1001 +

9 sys_sched_get_priority_max(SCHED_FIFO);

10

11 sigfillset(¤t->blocked);

12

13 /* Migrate to the right CPU */

14 set_cpus_allowed(current, 1UL << cpu);

15

16 sprintf(current->comm,

17 "krcud_CPU%d", bind_cpu);

18 sema_init(&krcud_sema(cpu), 0);

19

20 krcud_task(cpu) = current;

21

22 for (;;) {

23 while (down_interruptible(

24 &krcud_sema(cpu)));

25 up(&rcu_sema);

26 }

27 }

Figure 27: rcu-taskq krcud() Implementation

5.6 rcu-sched

The rcu-sched implementation was developed by
Rusty Russell [Russell01d], with a goal of minimiz-
ing call rcu() overhead. It uses a ring of per-
CPU counters, and each CPU sets its counter to
one greater than that of its neighbor on each pass
through the scheduler when read-copy-update call-
backs are pending. Thus, when a given CPU sees
its neighbor’s counter change, it is guaranteed that
each CPU has passed through the scheduler (a qui-
escent state) since the given CPU last incremented
its own counter.

This implementation also maintains not just per-
CPU callback queues, but two sets of per-CPU-per-
IRQ callback queues. This allows the queues to be
accesses without the need for either locks (per-CPU)
or for interrupt masking (per-IRQ). One set of these
queues accumulates new callbacks from call rcu(),
while the other set holds callbacks waiting for the
end of the current grace period.

Finally, this implementation places checks in the
idle loop in order to ensure that idle CPUs do not
indefinitely delay the end of the grace period. This
has the beneficial side effect of causing idle-loop ex-
ecution to be a quiescent state without using the ac-
tive entities (tasklets, timers, kernel daemons) used
by the other implementations.

Figure 28 shows the call rcu() function. Lines
9-10 initialize the rcu head callback. Lines 11-14
determine the interrupt state, which is used later
as an index to the array of lists of callbacks. Lines
17-18 find the right queue for the callback. The
rcu batch[cpu].queueing is a bit that contains
the index of the half of the array that is accumulat-
ing new callbacks. The sense of this bit is reversed
in rcu batch done() at the end of each grace pe-
riod. Line 20 increments the number of pending
callbacks, which signals the scheduler to start look-
ing for a grace period, and lines 23-24 enqueues the
callback.

Figure 29 shows the first patch to the scheduler.
Lines 12-13 check to see if there are read-copy-
update callbacks pending, and, if so, branch to the
rcu process label in the second patch shown in Fig-
ure 30

Lines 8-10 of Figure 30 set local variable c to one
greater than the previous CPU’s ring counter. If

1 void call_rcu(struct rcu_head *head,

2 void (*func)(void *data),

3 void *data)

4 {

5 unsigned cpu = smp_processor_id();

6 unsigned state;

7 struct rcu_head **headp;

8

9 head->func = func;

10 head->data = data;

11 if (in_interrupt()) {

12 if (in_irq()) state = 2;

13 else state = 1;

14 } else state = 0;

15

16 /* Figure out which queue we’re on. */

17 headp = &rcu_batch[cpu].head[

18 rcu_batch[cpu].queueing][state];

19

20 atomic_inc(&rcu_pending);

21 /* Prepend to this CPU’s list:

22 no locks needed. */

23 head->next = *headp;

24 *headp = head;

25 }

Figure 28: rcu-sched call rcu() Implementation

1 @@ -634,10 +639,16 @@

2 prio_array_t *array;

3 list_t *queue;

4 int idx;

5 + int c, this_cpu;

6

7 if (unlikely(in_interrupt()))

8 BUG();

9 release_kernel_lock(prev,

10 smp_processor_id());

11 +

12 + if (unlikely(is_rcu_pending()))

13 + goto rcu_process;

14 +

15 +rcu_process_back:

16 spin_lock_irq(&rq->lock);

17

18 switch (prev->state) {

Figure 29: rcu-sched Scheduler Instrumentation,
Part 1

1 @@ -700,6 +711,23 @@

2 }

3 spin_unlock_irq(&rq->lock);

4

5 +rcu_process:

6 + /* Avoid cache line effects

7 + if value hasn’t changed */

8 + this_cpu = smp_processor_id();

9 + c = ring_count((this_cpu + 1) %

10 + smp_num_cpus) + 1;

11 + if (c != ring_count(this_cpu)) {

12 + /* Do subtraction to

13 + avoid int wrap corner case */

14 + if (c - finished_count(this_cpu)

15 + >= 0) {

16 + /* Avoid reentry: temporarily

17 + set finish_count

18 + far in the future */

19 + finished_count(this_cpu) =

20 + c + INT_MAX;

21 + rcu_batch_done();

22 + finished_count(this_cpu) =

23 + c + smp_num_cpus;

24 + }

25 + ring_count(this_cpu) = c;

26 + }

27 + goto rcu_process_back;

28 +

29 reacquire_kernel_lock(current);

30 return;

31 }

Figure 30: rcu-sched Scheduler Instrumentation,
Part 2

c is different than this CPU’s ring count, a grace
period has ended, and is handled by lines 16-23.
Line 11 checks for scheduler reentry, and if this has
not occurred, lines 19-23 invoke rcu batch done(),
protecting against scheduler re-entry by manipulat-
ing this CPU’s finished count. Line 25 updates
this CPU’s ring count, which will result in the next
CPU seeing the end of a grace period. Line 27 re-
turns control to the mainline scheduler.

Figure 31 shows how the idle loop is instrumented to
prevent architectures that shut down CPUs on idle
from indefinitely extending the grace period. The
other implementations get this effect through use of
timers or forced context switches.

Figure 32 shows rcu batch done(), which is in-
voked from the scheduler at the end of a grace
period. Line 7-8 pick up a pointer to this CPU’s
set of read-copy-update callback queues. Lines 11-
22 invoke all the callbacks in each of this CPU’s

1 @@ -84,7 +85,8 @@

2 get into the scheduler unnecessarily. */

3 long oldval = xchg(

4 ¤t->work.need_resched, -1UL);

5 if (!oldval)

6 - while (current->work.need_resched < 0);

7 + while (current->work.need_resched < 0

8 + && !is_rcu_pending());

9 schedule();

10 check_pgt_cache();

11 }

Figure 31: rcu-sched Idle Loop Instrumentation

callback queues (one for each possible IRQ level)
that was waiting for the current grace period to ex-
pire (selected by !mybatch->queueing), and empty
each list. Line 25 swaps the sets of queues, so that
the callbacks previously waiting for a new grace pe-
riod to begin are now waiting for the now-current
grace period, and the newly emptied queues will now
accept new callbacks registered by future calls to
call rcu().

5.7 Preemptible Algorithm

With the addition of preemption to the Linux ker-
nel, read-copy update must also handle preemption.
Rusty Russell [Russell01b] produced such a patch,
but it requires scanning all tasks on the runqueue,
a job made more complex by the addition of the
multi-queue scheduler.

Dipankar Sarma created a prototype preemptible
algorithm that is similar to rcu,4 but adds per-
CPU counts of preempted tasks, which operate in
a manner in some ways similar to the generation
mechanism in K42 [Gamsa99]. The key concept is
that a preemptible kernel must track tasks rather
than CPUs. However, to avoid potentially expensive
scans of the task list or the runqueues, the tasks are
tracked on a per-CPU basis. When a task returns
from a voluntary context switch (or is created), it
is implicitly associated with the CPU that it starts
running on. No matter how many times the task is
preempted, from a read-copy-update perspective, it
remains affiliated with that CPU, even if it is mi-
grated to other CPUs. Once it performs a voluntary
context switch, it gives up its affiliation.

4However, as noted earlier, this preemptible version of rcu
has greatly reduced CPU overhead when there are no read-
copy callbacks in the system.

1 void rcu_batch_done(void)

2 {

3 struct rcu_head *i, *next;

4 struct rcu_batch *mybatch;

5 unsigned int q;

6

7 mybatch =

8 &rcu_batch[smp_processor_id()];

9 /* Call callbacks: probably delete

10 themselves, may schedule. */

11 for (q = 0; q < 3; q++) {

12 for (i = mybatch->head[

13 !mybatch->queueing][q];

14 i;

15 i = next) {

16 next = i->next;

17 i->func(i->data);

18 atomic_dec(&rcu_pending);

19 }

20 mybatch->head[

21 !mybatch->queueing][q] = NULL;

22 }

23

24 /* Start queueing on this batch. */

25 mybatch->queueing = !mybatch->queueing;

26 }

Figure 32: rcu-sched rcu batch done()

However, no additional work is done (over that
done by a non-preemptible kernel running a non-
preemptible implementation of read-copy update)
until that task is preempted. The task then in-
crements a per-CPU counter, which remains incre-
mented until the task executes a voluntary context
switch, possibly by exiting. The task then decre-
ments that same per-CPU counter, even if the task
is running on some other CPU at the time.

Of course, if there is a lot of preemption, it might be
that a particular CPU always has at least one pre-
empted task affiliated with it. However, the end of a
grace period is marked not by the absence of tasks,
but by each of the tasks that was either running or
preempted at the start of the grace period having
either exited or voluntarily switched context.

This distinction is maintained by providing each
CPU with a pair of counters, a “next” counter that
is incremented by tasks returning from their volun-
tary context switch onto the corresponding CPU,
and a “current” counter that is only decremented.
Note that the “next” counter will be also decre-
mented whenever a task resumes execution quickly
enough after being preempted. The end of the grace

1 extern atomic_t

2 rcu_preempt_cntr[2] __per_cpu_data;

3 extern atomic_t

4 *curr_preempt_cntr __per_cpu_data;

5 extern atomic_t

6 *next_preempt_cntr __per_cpu_data;

Figure 33: rcu preempt Per-CPU Counters

period occurs when all CPUs’ “current” counters
reach zero.5 The roles of the counters in each pair
are now reversed in order to start the next grace
period, just after the base rcu portion of the algo-
rithm moves the callbacks in the rcu nextlist to
rcu currlist.

Each CPU’s pair of counters is as shown in
Figure 33, along with the pair of pointers
that handle the reversing of their roles. The
next preempt cntr pointer points to the ele-
ment of rcu preempt cntr[] that is atomically
incremented (by a new rcu preempt get() func-
tion) when task affiliated with this CPU is pre-
empted for the first time since its preceding vol-
untary context switch. The task records this
pointer in a new cpu preempt cntr pointer in
its task structure, which is initially NULL. Af-
ter the task resumes and voluntarily relinquishes
the CPU6, it atomically decrements the counter
pointed to by its cpu preempt cntr, using a
new rcu preempt put() function, then NULLs its
cpu preempt cntr pointer.

The curr preempt cntr pointer points to
the element of rcu preempt cntr[] that
next preempt cntr does not point to. This
element of the array contains the number of tasks
affiliated with this CPU that were first preempted
before the beginning of the current grace period,
and that must resume and voluntarily relinquish
a CPU before the current grace period can expire.
When this CPU becomes aware of the end of the
current grace period, it exchanges the values of
next preempt cntr and curr preempt cntr, so
that the elements of the rcu preempt cntr[] array
exchange roles.

5Unless one of the CPUs has been running a task continu-
ously since before the start of the grace period, but this case
is handled by the base rcu portion of the implementation.

6Possibly after having been preempted several more times
along the way. This is why the counter cannot be decre-
mented immediately when the task is resumed, but must in-
stead wait for the task to voluntarily relinquish the CPU.

The rest of the callback processing is very similar
to that of the rcu algorithm. The major difference
is that rcu check quiescent state() must check
that all tasks preempted on this CPU prior to the
current grace period have voluntarily relinquished
the CPU.

6 Conclusions and Future Plans

Andrea Arcangeli’s rcu-poll implementation exhibits
the best call rcu() latency, and is therefore a good
implementation for workloads that do not have high
aggregate call rcu() invocation rates. The longer
(but well-bounded) call rcu() latencies of the X-
rcu, rcu-ltimer, and rcu implementations may make
them preferable for systems with higher call rcu()
invocation rates.

We are continuing our work on preemptible read-
copy-update implementations, in order to obtain the
best implementation compatible with the 2.5 kernel.
Finally, we are continuing our measurements with
various workloads, which we expect will evolve as
the 2.5 kernel evolves. In particular, we will measure
performance under heavy call rcu() load.

7 Acknowledgments

We owe thanks to Martin Bligh and Hanna Linder
for their able assistance with the machines we used
to gather the data shown in this paper, and to Hans
Tannenberger and Gerrit Huizenga for arranging ac-
cess to these machines. We are especially grateful
to Maneesh Soni and Hanna Linder for their efforts
with read-copy update, and to Jonathan Appavoo
for many enlightening discussions. We are indebted
to Dan Frye, Randy Kalmeta, Vijay Sukthankar,
Hugh Blemings, and Manish Gupta for their sup-
port of this effort.

References

[Blanchard02a] A. Blanchard some RCU dcache
and ratcache results, Linux-Kernel Mailing
List, March 2002. http://marc.theaimsgroup.com/?l=linux-

kernel&m=101637107412972&w=2.

[Compaq01] Compaq Computer Corporation
Shared Memory, Threads, Interprocess Com-
munication, Ask The Wizard, August 2001.
http://www.openvms.compaq.com/wizard/

wiz 2637.html.

[Gamsa99] B. Gamsa, O. Kreiger, J. Appavoo, and
M. Stumm. Tornado: maximizing locality and
concurrency in a shared memory multiproces-
sor operating system, Proceedings of the 3rd
Symposium on Operating System Design and
Implementation, New Orleans, LA, February,
1999.

[Linder02a] H. Linder, D. Sarma, and Maneesh
Soni. Scalability of the Directory Entry Cache,
To appear in Ottawa Linux Symposium, June
2002.

[Kleen02a] A. Kleen Reduce Module
Races, kernel.org, January 2002.
ftp://ftp.us.kernel.org/pub/linux/kernel/people/andrea/kernels/

v2.4/v2.4.19pre7aa2/00 reduce-module-races-1.

[LSE] D. Sarma et al. Linux Scaling Effort
(LSE), SourceForge Project, April 2002.
http://prdownloads.sourceforge.net/lse/.

[McK98a] P. E. McKenney and J. D. Sling-
wine. Read-copy update: using execution his-
tory to solve concurrency problems, Paral-
lel and Distributed Computing and Systems,
October 1998. (revised version available at
http://www.rdrop.com/users/paulmck/rclockpdcsproof.pdf).

[McK01a] P. E. McKenney and D. Sarma.
Read-Copy Mutual Exclusion in Linux,
http://lse.sourceforge.net/locking/rcu/rcupdate doc.html,
February 2001.

[McK01b] P. E. McKenney, J. Appavoo, A.
Kleen, O. Krieger, R. Russell, D. Sarma,
M. Soni. Read-Copy Update, Ottawa Linux
Symposium, July 2001. (revised version
available at http://www.rdrop.com/users/paulmck/rclock/

rclock OLS.2001.05.01c.pdf).

[McK01c] P. E. McKenney, et al. RFC:
patch to allow lock-free traversal of lists
with insertion, LKML, October 2001.
http://www.ussg.iu.edu/hypermail/linux/kernel/0110.1/0239.html.

[McK01d] P. E. McKenney, et al. Data De-
pendencies and wmb(), LSE, October 2001.
http://lse.sourceforge.net/locking/wmbdd.html.

[Russell01b] R. Russell. Re: [PATCH
for 2.5] preemptible kernel,
http://www.uwsg.indiana.edu/hypermail/linux

/kernel/0103.3/1070.html, March 2001.

[Russell01d] R. Russell Re: 2.4.10pre7aa1,
Linux-Kernel Mailing List, September 2001.
http://www.ussg.iu.edu/hypermail/linux/kernel/0109.2/0021.html.

[Russell02a] R. Russell Re: [PATCH] per-cpu ar-
eas for 2.5.3-pre6, Linux-Kernel Mailing List,
February 2002. http://marc.theaimsgroup.com/?l=linux-

kernel&m=101255391528359&w=2.

[Sarma02a] D. Sarma [RFC][PATCH]
Ingo’s smptimers patch experiment,
Linux-Kernel Mailing List, Febru-
ary 2002. http://marc.theaimsgroup.com/?l=linux-

kernel&m=101301053225522&w=2.

[Sarma02b] D. Sarma [PATCH] memory barri-
ers, Linux-Kernel Mailing List, March 2002.
http://www.ussg.iu.edu/hypermail/linux/kernel/0203.2/1604.html.

8 Trademarks

Linux is a trademark of Linus Torvalds.

Pentium and Xeon are trademarks of Intel Corporation.

IBM and ptx are trademarks of International Business

Machines Corporation.

?

?

?

?

rcu donelist

rcu currlist

rcu nextlist

Invoke Callbacks

End of Grace Period

rcu currlist Empty

call rcu() Request

Figure 34: RCU Callback Flow

Appendix

A Implementation Details

These appendices contain more implementation de-
tails of the various algorithms.

A.1 X-rcu Callback Processing

This section describes the X-rcu callback processing.
The processing proceeds as shown in Figure 34.

The rcu process callbacks() function shown
in Figure 35 handles the overall flow. Lines
3-12 move callbacks from rcu currlist to
rcu donelist after the end of a grace pe-
riod. Line 14 invokes rcu move next batch()
(shown in Figure 36), which moves callbacks
from rcu nextlist to rcu currlist, initiating
grace-period detection if needed. Line 16 calls
rcu check quiescent state(), which checks to
see if the current CPU has passed through a quies-
cent state since the beginning of the current grace
period. Lines 18-22 call rcu invoke callbacks()
to invoke any callbacks in rcu donelist.

The rcu move next batch() function shown in
Figure 36 disables local interrupts (line 3), and
then checks to see if rcu currlist is empty and
rcu nextlist is not (lines 4-7). If so, it moves the

1 static void rcu_process_callbacks(void)

2 {

3 if (!list_empty(

4 &this_cpu(rcu_currlist)) &&

5 RCU_BATCH_GT(rcu_currbatch,

6 this_cpu(rcu_batch))) {

7 list_splice(

8 &this_cpu(rcu_currlist),

9 &this_cpu(rcu_donelist));

10 INIT_LIST_HEAD(

11 &this_cpu(rcu_currlist));

12 }

13

14 rcu_move_next_batch();

15

16 rcu_check_quiescent_state();

17

18 if (!list_empty(

19 &this_cpu(rcu_donelist))) {

20 rcu_invoke_callbacks(

21 &this_cpu(rcu_donelist));

22 }

23 }

Figure 35: X-rcu rcu process callbacks()

contents of rcu nextlist to rcu currlist (lines
8 and 9), then re-enables interrupts (line 12). It
then obtains a new RCU batch number (lines 18-
19) and registers it using rcu reg batch() (line 20,
see Figure 39 for this function’s definition) under
the rcu lock.

If lines 4-5 find rcu currlist to be nonempty,
rcu move next batch() simply re-enables inter-
rupts and returns (line 23).

The rcu check quiescent state() function
shown in Figure 37 checks to see if the current
CPU has gone through a quiescent state, and, if so,
publicizes it.

Lines 6-8 check to see if this CPU has already passed
through a quiescent state during the current grace
period, and, if so, line 6 simply returns. Lines 17-22
check to see if this is the first that this CPU has
heard of the current grace period, and, if so, lines
19-20 take a snapshot of this CPU’s context-switch
counter in rcu last qsctr and returns. Lines 23-
26 check to see if this CPU has passed through a
quiescent state since the snapshot, and, if not, line
25 simply returns.

Execution reaches line 29 when this CPU first deter-
mines that it has passed through a quiescent state

1 static void rcu_move_next_batch(void)

2 {

3 local_irq_disable();

4 if (!list_empty(

5 &this_cpu(rcu_nextlist)) &&

6 list_empty(

7 &this_cpu(rcu_currlist))) {

8 list_splice(&this_cpu(rcu_nextlist),

9 &this_cpu(rcu_currlist));

10 INIT_LIST_HEAD(

11 &this_cpu(rcu_nextlist));

12 local_irq_enable();

13

14 /*

15 * start the next batch of callbacks

16 */

17 spin_lock(&rcu_lock);

18 this_cpu(rcu_batch) =

19 rcu_currbatch + 1;

20 rcu_reg_batch(this_cpu(rcu_batch));

21 spin_unlock(&rcu_lock);

22 } else {

23 local_irq_enable();

24 }

25 }

Figure 36: X-rcu rcu move next batch()

in the current grace period. Lines 28-44 publish
this fact under the global rcu lock, which possibly
marks the end of the current grace period. Line 33
clears this CPU’s bit in rcu cpumask, which pub-
licizes the fact that this CPU has passed through
a quiescent state during the current grace period.
Lines 34-35 set rcu last qsctr to an invalid quan-
tity, which will indicate that this CPU is not yet
aware of the next grace period. If there are other
CPUs that have not yet passed through their qui-
escent states, then lines 36-41 release the rcu lock
and return. Execution reaches line 42 if this CPU
is the last one to detect that it has passed through
a quiescent state during the current grace period,
which marks the end of the grace period. Line 42
increments rcu currbatch, which signals the end of
the grace period. Line 43 invokes rcu reg batch()
to initiate a new grace period if needed, and line 36
releases the rcu lock.

Figure 38 shows rcu invoke callbacks(), which
simply loops through the list of callbacks, invoking
each in turn.

Figure 39 shows rcu reg batch(), which publicizes
the beginning of a new grace period, if needed.
Lines 4-7 check to see if the batch number of the

1 static void rcu_check_quiescent_state(void)

2 {

3 int cpu = cpu_number_map(

4 smp_processor_id());

5

6 if (!test_bit(cpu, &rcu_cpumask)) {

7 return;

8 }

9

10 /*

11 * May race with rcu per-cpu tick -

12 * in the worst case

13 * we may miss one quiescent state

14 * of that CPU. That is tolerable.

15 * So no need to disable interrupts.

16 */

17 if (this_cpu(rcu_last_qsctr) ==

18 RCU_QSCTR_INVALID) {

19 this_cpu(rcu_last_qsctr) =

20 this_cpu(rcu_qsctr);

21 return;

22 }

23 if (this_cpu(rcu_qsctr) ==

24 this_cpu(rcu_last_qsctr)) {

25 return;

26 }

27

28 spin_lock(&rcu_lock);

29 if (!test_bit(cpu, &rcu_cpumask)) {

30 spin_unlock(&rcu_lock);

31 return;

32 }

33 clear_bit(cpu, &rcu_cpumask);

34 this_cpu(rcu_last_qsctr) =

35 RCU_QSCTR_INVALID;

36 if (rcu_cpumask != 0) {

37 /* All CPUs haven’t gone

38 through a quiescent state */

39 spin_unlock(&rcu_lock);

40 return;

41 }

42 rcu_currbatch++;

43 rcu_reg_batch(rcu_maxbatch);

44 spin_unlock(&rcu_lock);

45 }

Figure 37: X-rcu rcu check quiescent state()

1 static inline void rcu_invoke_callbacks(

2 struct list_head *list)

3 {

4 struct list_head *entry;

5 struct rcu_head *head;

6

7 while (!list_empty(list)) {

8 entry = list->next;

9 list_del(entry);

10 head = list_entry(entry,

11 struct rcu_head, list);

12 head->func(head->arg);

13 }

14 }

Figure 38: X-rcu rcu invoke callbacks()

1 static inline void rcu_reg_batch(

2 rcu_batch_t newbatch)

3 {

4 if (RCU_BATCH_LT(rcu_maxbatch,

5 newbatch)) {

6 rcu_maxbatch = newbatch;

7 }

8 if (RCU_BATCH_LT(rcu_maxbatch,

9 rcu_currbatch) ||

10 (rcu_cpumask != 0)) {

11 return;

12 }

13 rcu_cpumask = cpu_online_map;

14 }

Figure 39: X-rcu rcu reg batch()

requested grace period is larger than that of the
largest-numbered grace period that has been re-
quested thus far (the RCU BATCH LT() macro han-
dles wraparound). If so, line 6 publicizes the new
maximum batch number. If the largest-numbered
grace period requested thus far has already com-
pleted or if a grace period is currently in progress,
lines 8-12 simply return. Otherwise, line 13 sets
rcu cpumask to indicate that all CPUs need to pass
through a quiescent state, which publicizes the start
of a new grace period.

A.2 rcu Callback Processing

The rcu algorithm’s callback processing is very sim-
ilar to that of the X-rcu algorithm, shown in Ap-
pendix A.1. Differences include:

1 static int rcu_prepare_polling(void)

2 {

3 int stop;

4 int i;

5

6 #ifdef DEBUG

7 if (!list_empty(&rcu_curlist))

8 BUG();

9 #endif

10

11 stop = 1;

12 if (!list_empty(&rcu_nxtlist)) {

13 list_splice(&rcu_nxtlist, &rcu_curlist);

14 INIT_LIST_HEAD(&rcu_nxtlist);

15

16 rcu_polling_in_progress = 1;

17

18 for (i = 0; i < smp_num_cpus; i++) {

19 int cpu = cpu_logical_map(i);

20

21 rcu_qsmask |= 1UL << cpu;

22 rcu_quiescent_checkpoint[cpu] =

23 RCU_quiescent(cpu);

24 force_cpu_reschedule(cpu);

25 }

26 stop = 0;

27 }

28

29 return stop;

30 }

Figure 40: rcu-poll rcu prepare polling()

1. rcu must explicitly index into arrays contain-
ing per-CPU elements, while X-rcu directly ac-
cesses the per-CPU data area.

2. rcu’s rcu process callbacks() contains code
that clears the current CPU’s bit from
rcu active cpumask.

3. rcu’s rcu move next batch() contains
code that sets the current CPU’s bit in
rcu active cpumask and schedules the timer
if there are RCU callbacks active and the timer
is not already scheduled.

A.3 rcu-poll Callback Processing

Figure 40 shows the rcu prepare polling()
function. This function relies on
rcu process callbacks() (see Figure 20) ac-
quiring the rcu lock. Lines 12-27 check to see if
there are callbacks waiting in rcu nxtlist, and, if

1 static int rcu_polling(void)

2 {

3 int i;

4 int stop;

5

6 for (i = 0; i < smp_num_cpus; i++) {

7 int cpu = cpu_logical_map(i);

8

9 if (rcu_qsmask & (1UL << cpu))

10 if (rcu_quiescent_checkpoint[cpu]

11 != RCU_quiescent(cpu))

12 rcu_qsmask &= ~(1UL << cpu);

13 }

14

15 stop = 0;

16 if (!rcu_qsmask)

17 stop = rcu_completion();

18

19 return stop;

20 }

Figure 41: rcu-poll rcu polling()

so, starts a grace period. Lines 13-14 move the list
from rcu nxtlist to rcu curlist. Line 16 records
the fact that a grace period is now in progress.
Lines 18-25 mark each CPU (other than the current
one) as needing to go through a quiescent state,
take a snapshot of each CPU’s context-switch
counter, and expedite a context switch. Line
26 indicates that grace-period polling needs to
continue – if rcu nxtlist had been empty, polling
would cease until the next call rcu() invocation.

Figure 41 shows the rcu polling() function. Lines
6-13 check each CPU that has not yet been observed
passing through a quiescent state (as indicated by
the rcu qsmask check at line 9) to see if that
CPU’s RCU quiescent counter has advanced since
the rcu prepare polling() started the current
grace period. If it has, then that CPU has recently
passed through a quiescent state, so line 12 clears
its bit from rcu qsmask. Line 16 then checks to see
if all CPUs have now passed through their quies-
cent states. If so, line 17 invokes rcu completion()
to mark the end of the grace period. If another
grace period is required, rcu completion will have
started it, and will then return zero to signal that
grace-period polling should continue.

Figure 42 shows the rcu completion() function
that is invoked at the end of a grace period. Line
5 records the fact that a grace period is no longer
in progress, line 6 invokes rcu invoke callbacks()

1 static int rcu_completion(void)

2 {

3 int stop;

4

5 rcu_polling_in_progress = 0;

6 rcu_invoke_callbacks();

7

8 stop = rcu_prepare_polling();

9

10 return stop;

11 }

Figure 42: rcu-poll rcu completion()

1 static void rcu_invoke_callbacks(void)

2 {

3 struct list_head *entry;

4 struct rcu_head *head;

5

6 #ifdef DEBUG

7 if (list_empty(&rcu_curlist))

8 BUG();

9 #endif

10

11 entry = rcu_curlist.prev;

12 do {

13 head = list_entry(entry,

14 struct rcu_head, list);

15 entry = entry->prev;

16

17 head->func(head->arg);

18 } while (entry != &rcu_curlist);

19

20 INIT_LIST_HEAD(&rcu_curlist);

21 }

Figure 43: rcu-poll rcu invoke callbacks()

to invoke the callbacks, and line 8 starts a new grace
period, if required.

Figure 43 shows the rcu invoke callbacks() func-
tion. This is similar to that shown for X-rcu in Fig-
ure 38, but processes a single global list rather than
a per-CPU list, and removes elements from the list
in a slightly different manner.

A.4 rcu-ltimer Callback Processing

This implementation is closest to that in ptx, and
is thus driven from timer handlers, as noted in Sec-
tion 5.4. The rcu process callbacks() function,
shown in Figure 44 is invoked on every timer tick

1 static void rcu_process_callbacks(

2 unsigned long data)

3 {

4 int cpu = cpu_number_map(

5 smp_processor_id());

6

7 if ((!list_empty(&RCU_curlist(cpu)) &&

8 RCU_BATCH_LT(RCU_batch(cpu),

9 rcu_ctrlblk.curbatch)) ||

10 (list_empty(&RCU_curlist(cpu)) &&

11 !list_empty(&RCU_nxtlist(cpu))) ||

12 test_bit(cpu,

13 &rcu_ctrlblk.rcu_cpu_mask))

14 rcu_check_callbacks();

15 }

Figure 44: rcu-ltimer rcu process callbacks()

to process the per-CPU callback lists. This func-
tion invokes rcu check callbacks() if any of the
following are true:

1. There are callbacks in RCU curlist and the
corresponding grace period has expired (lines
7-9).

2. There are no callbacks in RCU curlist, but
there are some in RCU nxtlist waiting to start
a grace period (lines 10-11).

3. This CPU has not yet passed through a qui-
escent state for the current grace period (line
12-13).

Figure 45 shows rcu check callbacks() advances
callbacks for the current CPU through the lists.
Lines 7-13 check to see if the grace period corre-
sponding to callbacks in this CPU’s RCU curlist
has expired, and, if so, moves the contents of this
list to the local variable list. Lines 15-29 check to
see if this CPU’s RCU curlist is empty and if there
are callbacks in this CPU’s RCU nxtlist waiting to
start a grace period, and, if so, moves them from
RCU nxtlist to RCU curlist on lines 17-19 and re-
quests a new grace period in lines 24-28. Line 30
then checks to see if this CPU has passed through
a quiescent state. Lines 31-32 invoke any callbacks
on local variable list.

Figure 46 shows rcu reg batch(), which schedules
a new grace period if required. Lines 4-7 check to see
if the new batch number is larger than the largest
seen thus far, and, if so, records the new maximum
batch number on line 6. Lines 8-10 check to see if

1 static void rcu_check_callbacks(void)

2 {

3 int cpu = cpu_number_map(

4 smp_processor_id());

5 LIST_HEAD(list);

6

7 if (!list_empty(&RCU_curlist(cpu)) &&

8 RCU_BATCH_GT(rcu_ctrlblk.curbatch,

9 RCU_batch(cpu))) {

10 list_splice(&RCU_curlist(cpu),

11 &list);

12 INIT_LIST_HEAD(&RCU_curlist(cpu));

13 }

14

15 if (!list_empty(&RCU_nxtlist(cpu)) &&

16 list_empty(&RCU_curlist(cpu))) {

17 list_splice(&RCU_nxtlist(cpu),

18 &RCU_curlist(cpu));

19 INIT_LIST_HEAD(&RCU_nxtlist(cpu));

20

21 /*

22 * start the next batch of callbacks

23 */

24 spin_lock(&rcu_ctrlblk.mutex);

25 RCU_batch(cpu) =

26 rcu_ctrlblk.curbatch + 1;

27 rcu_reg_batch(RCU_batch(cpu));

28 spin_unlock(&rcu_ctrlblk.mutex);

29 }

30 rcu_check_quiescent_state();

31 if (!list_empty(&list))

32 rcu_invoke_callbacks(&list);

33 }

Figure 45: rcu-ltimer rcu check callbacks()

1 static void rcu_reg_batch(

2 rcu_batch_t newbatch)

3 {

4 if (RCU_BATCH_LT(rcu_ctrlblk.maxbatch,

5 newbatch)) {

6 rcu_ctrlblk.maxbatch = newbatch;

7 }

8 if (RCU_BATCH_LT(rcu_ctrlblk.maxbatch,

9 rcu_ctrlblk.curbatch) ||

10 (rcu_ctrlblk.rcu_cpu_mask != 0)) {

11 return;

12 }

13 rcu_ctrlblk.rcu_cpu_mask =

14 cpu_online_map;

15 }

Figure 46: rcu-ltimer rcu reg batch()

the grace period corresponding to the largest batch
number has already expired (lines 8-9), or if a grace
period is already in progress (line 10), and, in ei-
ther case, simply returns. Otherwise, lines 13-14
record the fact that all CPUs need to go through a
quiescent state for the new grace period. As before,
the RCU BATCH LT() macros check for batch-number
wraparound.

Figure 47 shows how
rcu check quiescent state() checks that the
current CPU has passed through a quiescent state
since the beginning of the current grace period.
Lines 6-9 check to see if this CPU has already
passed through a quiescent state, and, if so, simply
returns. Lines 19-20 checks to see if this CPU is
unaware of the current grace period, and, if so,
snapshots the current quiescent-state counter on
lines 21-22 and then returns. Lines 25-28 checks to
see if this CPU has passed through a quiescent state
since it became aware of the current grace period,
and, if not, simply returns. Execution reaches line
30 the first time that this CPU realizes that it has
passed through a quiescent state since it became
aware of the current grace period. Lines 36 and 37
publish the fact that this CPU has passed through
a quiescent state. Lines 38-41 check to see if this
is the last CPU to pass through a quiescent state,
thus ending the grace period, and returning if not.
Line 42 publicizes the end of the grace period, and
line 43 invokes rcu reg batch() to start a new
grace period, if one is needed.

1 static void rcu_check_quiescent_state(void)

2 {

3 int cpu = cpu_number_map(

4 smp_processor_id());

5

6 if (!test_bit(cpu,

7 &rcu_ctrlblk.rcu_cpu_mask)) {

8 return;

9 }

10

11 /*

12 * Races with local timer interrupt -

13 * in the worst case

14 * we may miss one quiescent state

15 * of that CPU. That is

16 * tolerable. So no need

17 * to disable interrupts.

18 */

19 if (RCU_last_qsctr(cpu) ==

20 RCU_QSCTR_INVALID) {

21 RCU_last_qsctr(cpu) =

22 RCU_qsctr(cpu);

23 return;

24 }

25 if (RCU_qsctr(cpu) ==

26 RCU_last_qsctr(cpu)) {

27 return;

28 }

29

30 spin_lock(&rcu_ctrlblk.mutex);

31 if (!test_bit(cpu,

32 &rcu_ctrlblk.rcu_cpu_mask)) {

33 spin_unlock(&rcu_ctrlblk.mutex);

34 return;

35 }

36 clear_bit(cpu, &rcu_ctrlblk.rcu_cpu_mask);

37 RCU_last_qsctr(cpu) = RCU_QSCTR_INVALID;

38 if (rcu_ctrlblk.rcu_cpu_mask != 0) {

39 spin_unlock(&rcu_ctrlblk.mutex);

40 return;

41 }

42 rcu_ctrlblk.curbatch++;

43 rcu_reg_batch(rcu_ctrlblk.maxbatch);

44 spin_unlock(&rcu_ctrlblk.mutex);

45 }

Figure 47: rcu-ltimer rcu check quiescent state()

1 struct el *insert(long key, long data)

2 {

3 struct el *p;

4 p = kmalloc(sizeof(*p), GPF_ATOMIC);

5 spin_lock(&mutex);

6 p->next = head.next;

7 p->key = key;

8 p->data = data;

9 wmb();

10 head.next = p;

11 spin_unlock(&mutex);

12 }

13

14 struct el *search(long key)

15 {

16 struct el *p;

17 p = head.next;

18 while (p != &head) {

19 /* BUG ON ALPHA!!! */

20 if (p->key == key) {

21 return (p);

22 }

23 p = p->next;

24 };

25 return (NULL);

26 }

Figure 48: Insert and Lock-Free Search

B Memory Ordering Issues

This paper has heretofore focused on lock-free
search on lists subject to concurrent deletion. Inser-
tion poses additional problems on systems with very
weak memory ordering, as noted in recent discus-
sions on LKML [McK01c]. This appendix focuses
on these problems and some solutions.

Some of these problems may be addressed by using
the wmb() primitive as shown on line 9 of Figure 48.
This wmb() guarantees that the element initializa-
tion in lines 6-8 is not executed before the element
is added to the list on line 10. On many (but not
all) CPUs, this is sufficient, and the lock-free search
on lines 14-26 will then operate correctly.

However, some CPUs, such as Alpha, have ex-
tremely weak memory ordering such that the code
on line 20 of Figure 48 could see the old garbage
values that were present before the initialization on
lines 6-8.

Figure 49 shows how this can happen on an aggres-
sively parallel machine with partitioned caches, so

(w)mb Sequencing

Cache
Bank 0

Cache
Bank 1

Writing CPU Core

(w)mb Sequencing

Cache
Bank 0

Cache
Bank 1

Reading CPU Core

6
Interconnect

Figure 49: Why rmb() is Required

that alternating caches lines are processed by the
different partitions of the caches. Assume that the
list header head will be processed by cache bank 0
and that the new element will be processed by cache
bank 1. On Alpha, the wmb() will guarantee that
the cache invalidates performed by lines 6-8 of Fig-
ure 48 will reach the interconnect before that of
line 10 does, but makes absolutely no guarantee
about the order in which the new values will reach
the reading CPU’s core. For example, it is possi-
ble that the reading CPU’s cache bank 1 is very
busy, but cache bank 0 is idle. This could result in
the cache invalidates for the new element being de-
layed, so that the reading CPU gets the new value
for the pointer, but sees the old cached values for
the new element. See Compaq’s Alpha documen-
tation [Compaq01] for more information, or if you
think we are just making all this up.

This can be fixed in an implementation-independent
manner by inserting an rmb() between the pointer
fetch and dereference, as shown on line 19 of Fig-
ure 50. However, this imposes unneeded over-
head on systems (such as i386, IA64, PPC, and
SPARC) that respect data dependencies on the read
side. A read barrier depends() primitive has
been proposed to eliminate overhead no these sys-
tems [Sarma02b]. It is also possible to implement
a software barrier that could be used in place of
wmb(), which would force all reading CPUs to see
the writing CPU’s writes in order[McK01d]. How-
ever, this approach is deemed to impose excessive
overhead on extremely weakly ordered CPUs such
as Alpha.7

For the moment, rmb() should be used on lock-free
code paths traversing lists subject to concurrent in-
sertion.

7CPUs that respect data dependencies would define such
a barrier to simply be wmb().

1 struct el *insert(long key, long data)

2 {

3 struct el *p;

4 p = kmalloc(sizeof(*p), GPF_ATOMIC);

5 spin_lock(&mutex);

6 p->next = head.next;

7 p->key = key;

8 p->data = data;

9 wmb();

10 head.next = p;

11 spin_unlock(&mutex);

12 }

13

14 struct el *search(long key)

15 {

16 struct el *p;

17 p = head.next;

18 while (p != &head) {

19 rmb();

20 if (p->key == key) {

21 return (p);

22 }

23 p = p->next;

24 };

25 return (NULL);

26 }

Figure 50: Safe Insert and Lock-Free Search

