
Sleepable Read-Copy Update

Paul E. McKenney

Linux Technology Center

IBM Beaverton

paulmck@us.ibm.com

July 8, 2008

Read-copy update (RCU) is a synchronization API
that is sometimes used in place of reader-writer locks.
RCU’s read-side primitives offer extremely low over-
head and deterministic execution time. These prop-
erties imply that RCU updaters cannot block RCU
readers, which means that RCU updaters can be ex-
pensive, as they must leave old versions of the data
structure in place to accommodate pre-existing read-
ers. Furthermore, these old versions must be re-
claimed after all pre-existing readers complete. The
Linux kernel offers a number of RCU implemen-
tations, the first such implementation being called
“Classic RCU”.

Classic RCU requires that read-side critical sec-
tions obey the same rules obeyed by the critical sec-
tions of pure spinlocks: blocking or sleeping of any
sort is strictly prohibited. This has frequently been
an obstacle to the use of RCU, and Paul has received
numerous requests for a “sleepable RCU” (SRCU)
that permits arbitrary sleeping (or blocking) within
RCU read-side critical sections. Paul had previously
rejected all such requests as unworkable, since arbi-
trary sleeping in RCU read-side could indefinitely ex-
tend grace periods, which in turn could result in arbi-
trarily large amounts of memory awaiting the end of
a grace period, which finally would result in disaster,
as fancifully depicted in Figure 1, with the most likely
disaster being hangs due to memory exhaustion. Af-
ter all, any concurrency-control primitive that could
result in system hangs — even when used correctly –
does not deserve to exist.

However, the realtime kernels that require spinlock

Figure 1: Sleeping While RCU Reading Considered
Harmful

critical sections be preemptible [3] also require that
RCU read-side critical sections be preemptible [2].
Preemptible critical sections in turn require that lock-
acquisition primitives block in order to avoid dead-
lock, which in turns means that both RCU’s and
spinlocks’ critical sections be able to block awaiting
a lock. However, these two forms of sleeping have
the special property that priority boosting and pri-
ority inheritance may be used to awaken the sleeping
tasks in short order.

Nevertheless, use of RCU in realtime kernels was
the first crack in the tablets of stone on which were
inscribed “RCU read-side critical sections can never
sleep”. That said, indefinite sleeping, such as block-

1

ing waiting for an incoming TCP connection, is
strictly verboten even in realtime kernels.

Quick Quiz 1: Why is sleeping prohibited within
Classic RCU read-side critical sections?

Quick Quiz 2: Why not permit sleeping in Classic
RCU read-side critical sections by eliminating con-
text switch as a quiescent state, leaving user-mode
execution and idle loop as the remaining quiescent
states?

1 SRCU Implementation

Strategy

The primary challenge in designing an SRCU is to
prevent any given task sleeping in an RCU read-side
critical section from blocking an unbounded num-
ber of RCU callbacks. SRCU uses two strategies to
achieve this goal:

1. refusing to provide asynchronous grace-period
interfaces, such as the Classic RCU’s call_

rcu() API, and

2. isolating grace-period detection within each sub-
system using SRCU.

The rationale for these strategies are discussed in the
following sections.

1.1 Abolish Asynchronous Grace-

Period APIs

The problem with the call_rcu() API is that a sin-
gle thread can generate an arbitrarily large number
of blocks of memory awaiting a grace period, as illus-
trated by the following:

1 while (p = kmalloc(sizeof(*p), GFP_ATOMIC))

2 call_rcu(&p->rcu, f);

In contrast, the analogous code using
synchronize_rcu() can have at most a single
block of memory per thread awaiting a grace period:

1 while (p = kmalloc(sizeof(*p),

2 GFP_ATOMIC)) {

3 synchronize_rcu();

4 kfree(&p->rcu, f);

5 }

Therefore, SRCU provides an equivalent to
synchronize_rcu(), but not to call_rcu().

1.2 Isolate Grace-Period Detection

In Classic RCU, a single read-side critical section
could indefinitely delay all RCU callbacks, for ex-
ample, as follows:

1 /* BUGGY: Do not use!!! */

2 rcu_read_lock();

3 schedule_timeout_interruptible(longdelay);

4 rcu_read_unlock();

This sort of behavior might be tolerated if RCU
were used only within a single subsystem that was
carefully designed to withstand long-term delay of
grace periods. It is the fact that a single RCU read-
side bug in one isolated subsystem can delay all users
of RCU that forced these long-term RCU read-side
delays to be abolished.

One way around this issue is for grace-period detec-
tion to be performed on a subsystem-by-subsystem
basis, so that a lethargic RCU reader will delay grace
periods only within that reader’s subsystem. Since
each subsystem can have only a bounded number of
memory blocks awaiting a grace period, and since the
number of subsystems is also presumably bounded,
the total amount of memory awaiting a grace period
will also be bounded. The designer of a given subsys-
tem is responsible for: (1) ensuring that SRCU read-
side sleeping is bounded and (2) limiting the amount
of memory waiting for synchronize_srcu().1

This is precisely the approach that SRCU takes, as
described in the following section.

2 SRCU API and Usage

The SRCU API is shown in Figure 2. The following
sections describe how to use it.

1For example, an SRCU-protected hash table might have a

lock per hash chain, thus allowing at most one block per hash

chain to be waiting for synchronize_srcu().

2

int init_srcu_struct(struct srcu_struct *sp);
void cleanup_srcu_struct(struct srcu_struct *sp);
int srcu_read_lock(struct srcu_struct *sp);
void srcu_read_unlock(struct srcu_struct *sp, int idx);
void synchronize_srcu(struct srcu_struct *sp);
long srcu_batches_completed(struct srcu_struct *sp);

Figure 2: SRCU API

2.1 Initialization and Cleanup

Each subsystem using SRCU must create an struct

srcu_struct, either by declaring a variable of this
type or by dynamically allocating the memory, for
example, via kmalloc(). Once this structure is
in place, it must be initialized via init_srcu_

struct(), which returns zero for success or an error
code for failure (for example, upon memory exhaus-
tion).

If the struct srcu_struct is dynamically allo-
cated, then cleanup_srcu_struct() must be called
before it is freed. Similarly, if the struct srcu_

struct is a variable declared within a Linux ker-
nel module, then cleanup_srcu_struct() must be
called before the module is unloaded. Either way, the
caller must take care to ensure that all SRCU read-
side critical sections have completed (and that no
more will commence) before calling cleanup_srcu_

struct(). One way to accomplish this is described
in Section 2.4.

2.2 Read-Side Primitives

The read-side srcu_read_lock() and srcu_read_

unlock() primitives are used as shown:

1 idx = srcu_read_lock(&ss);

2 /* read-side critical section. */

3 srcu_read_unlock(&ss, idx);

The ss variable is the struct srcu_struct whose
initialization was described in Section 2.1, and the
idx variable is an integer that in effect tells srcu_

read_unlock() the grace period during which the
corresponding srcu_read_lock() started.

This carrying of an index is a departure from the
RCU API, which, when required, stores the equiva-
lent information in the task structure. However, since

a given task could potentially occupy an arbitrarily
large number of nested SRCU read-side critical sec-
tions, SRCU cannot reasonably store this index in
the task structure.

2.3 Update-Side Primitives

The synchronize_srcu() primitives may be used as
shown below:

1 list_del_rcu(p);

2 synchronize_srcu(&ss);

3 kfree(p);

As one might expect by analogy with Classic RCU,
this primitive blocks until until after the completion
of all SRCU read-side critical sections that started
before the synchronize_srcu() started, as shown
in Table 1. Here, CPU 1 need only wait for the
completion of CPU 0’s SRCU read-side critical sec-
tion. It need not wait for the completion of CPU 2’s
SRCU read-side critical section, because CPU 2 did
not start this critical section until after CPU 1 began
executing synchronize_srcu(). Finally, CPU 1’s
synchronize_srcu() need not wait for CPU 3’s
SRCU read-side critical section, because CPU 3 is
using s2 rather than s1 as its struct srcu_struct.
CPU 3’s SRCU read-side critical section is thus re-
lated to a different set of grace periods than those of
CPUs 0 and 2.

The srcu_batches_completed() primitive may
be used to monitor the progress of a given struct

srcu_struct’s grace periods. This primitive is used
in “torture tests” that validate SRCU’s operation.

2.4 Cleaning Up Safely

Cleaning up SRCU safely can be a challenge, but for-
tunately many uses need not do so. For example,
uses in operating-system kernels that are initialized
at boot time need not be cleaned up. However, uses
within loadable modules must clean up if the corre-
sponding module is to be safely unloaded.

In some cases, such as the RCU torture mod-
ule, only a small known set of threads are using
the SRCU read-side primitives against a particular

3

CPU 0 CPU 1 CPU 2 CPU 3

1 i0=srcu_read_lock(&s1) i3=srcu_read_lock(&s2)

2 synchronize_srcu(&s1) enter

3 i2=srcu_read_lock(&s1)

4 srcu_read_unlock(&s1,i0)

5 synchronize_srcu(&s1) exit

6 srcu_read_unlock(&s1,i2)

Table 1: SRCU Update and Read-Side Critical Sections

struct srcu_struct. In these cases, the module-
exit code need only kill that set of threads, wait for
them to exit, and then clean up.

In other cases, for example, for device drivers,
any thread in the system might be using the SRCU
read-side primitives. Although one could apply the
method of the previous paragraph, this ends up being
equivalent to a full reboot, which can be unattractive.
Figure 3 shows one way that cleanup could be accom-
plished without a reboot.

1 int readside(void)
2 {
3 int idx;
4
5 rcu_read_lock();
6 if (nomoresrcu) {
7 rcu_read_unlock();
8 return -EINVAL;
9 }
10 idx = srcu_read_lock(&ss);
11 rcu_read_unlock();
12 /* SRCU read-side critical section. */
13 srcu_read_unlock(&ss, idx);
14 return 0;
15 }
16
17 void cleanup(void)
18 {
19 nomoresrcu = 1;
20 synchronize_rcu();
21 synchronize_srcu(&ss);
22 cleanup_srcu_struct(&ss);
23 }

Figure 3: SRCU Safe Cleanup

The readside() function overlaps an RCU and an
SRCU read-side critical section, with the former run-
ning from lines 5-11 and the latter running from lines
10-13. The RCU read-side critical section uses Pure
RCU [1] to guard the value of the nomoresrcu vari-
able. If this variable is set, we are cleaning up, and
therefore must not enter the SRCU read-side critical

section, so we return -EINVAL instead. On the other
hand, if we are not yet cleaning up, we proceed into
the SRCU read-side critical section.

The cleanup() function first sets the nomoresrcu

variable on line 19, but then must wait for all cur-
rently executing RCU read-side critical sections to
complete via the synchronize_rcu() primitive on
line 20. Once the cleanup() function reaches line 21,
all calls to readside() that could possibly have seen
nomorersrcu equal to zero must have already reached
line 11, and therefore already must have entered their
SRCU read-side critical section. All future calls to
readside() will exit via line 8, and will thus refrain
from entering the read-side critical section.

Therefore, once cleanup() completes its call to
synchronize_srcu() on line 21, all SRCU read-side
critical sections will have completed, and no new ones
will be able to start. It is therefore safe on line 22 to
call cleanup_srcu_struct() to clean up.

3 Implementation

This section describes SRCU’s data structures, ini-
tialization and cleanup primitives, read-side primi-
tives, and update-side primitives.

3.1 Data Structures

SRCU’s data structures are shown in Figure 4,
and are depicted schematically in Figure 5. The
completed field is a count of the number of grace
periods since the struct srcu was initialized, and
as shown in the diagram, its low-order bit is used
to index the struct srcu_struct_array. The per_

cpu_ref field points to the array, and the mutex field

4

is used to permit but one synchronize_srcu() at a
time to proceed.

1 struct srcu_struct_array {
2 int c[2];
3 };
4 struct srcu_struct {
5 int completed;
6 struct srcu_struct_array *per_cpu_ref;
7 struct mutex mutex;
8 };

Figure 4: SRCU Data Structures

0

1

2

3

GP ctr LSB

#

#

#

#

0 1CPU #

completed
per_cpu_ref
mutex

Low−Order Bit
}

struct srcu_struct

struct srcu_struct_array

Figure 5: SRCU Data-Structure Diagram

3.2 Initialization Implementation

SRCU’s initialization function, init_srcu_

struct(), is shown in Figure 6. This function simply
initializes the fields in the struct srcu_struct,
returning zero if initialization succeeds or -ENOMEM

otherwise.
SRCU’s cleanup functions are shown in Fig-

ure 7. The main cleanup function, cleanup_

srcu_struct() is shown on lines 19-29 of this fig-
ure, however, it immediately invokes srcu_readers_
active(), shown on lines 13-17 of this figure, to
verify that there are no readers currently using this
struct srcu_struct.

The srcu_readers_active() function simply re-
turns the sum of srcu_readers_active_idx() on

1 int init_srcu_struct(struct srcu_struct *sp)
2 {
3 sp->completed = 0;
4 mutex_init(&sp->mutex);
5 sp->per_cpu_ref =
6 alloc_percpu(struct srcu_struct_array);
7 return (sp->per_cpu_ref ? 0 : -ENOMEM);
8 }

Figure 6: SRCU Initialization

both possible indexes, while srcu_readers_active_

idx(), as shown on lines 1-11, sums up the per-CPU
counters corresponding to the specified index, return-
ing the result.

If the value returned from srcu_readers_

active() is non-zero, then cleanup_srcu_struct()

issues a warning on line 24 and simply returns on
lines 25 and 26, declining to destroy a struct srcu_

struct that is still in use. Such a warning always
indicates a bug, and given that the bug has been re-
ported, it is better to allow the system to continue
with a modest memory leak than to introduce possi-
ble memory corruption.

Otherwise, cleanup_srcu_struct() frees the ar-
ray of per-CPU counters and NULLs the pointer on
lines 27 and 28.

3.3 Read-Side Implementation

The code implementing srcu_read_lock() is shown
in Figure 8. This function has been carefully con-
structed to avoid the need for memory barriers and
atomic instructions.

Lines 4 and 11 disable and re-enable preemption,
in order to force the sequence of code to execute un-
preempted on a single CPU. Line 6 picks up the bot-
tom bit of the grace-period counter, which will be
used to select which rank of per-CPU counters is
to be used for this SRCU read-side critical section.
The barrier() call on line 7 is a directive to the
compiler that ensures that the index is fetched but
once,2 so that the index used on line 9 is the same
one returned on line 12. Lines 8-9 increment the se-

2Please note that, despite the name, barrier() has abso-

lutely no effect on the CPU’s ability to reorder execution of

both code and of memory accesses.

5

1 int srcu_readers_active_idx(struct srcu_struct *sp,
2 int idx)
3 {
4 int cpu;
5 int sum;
6
7 sum = 0;
8 for_each_possible_cpu(cpu)
9 sum += per_cpu_ptr(sp->per_cpu_ref, cpu)->c[idx];
10 return sum;
11 }
12
13 int srcu_readers_active(struct srcu_struct *sp)
14 {
15 return srcu_readers_active_idx(sp, 0) +
16 srcu_readers_active_idx(sp, 1);
17 }
18
19 void cleanup_srcu_struct(struct srcu_struct *sp)
20 {
21 int sum;
22
23 sum = srcu_readers_active(sp);
24 WARN_ON(sum);
25 if (sum != 0)
26 return;
27 free_percpu(sp->per_cpu_ref);
28 sp->per_cpu_ref = NULL;
29 }

Figure 7: SRCU Cleanup

lected counter for the current CPU.3 Line 10 forces
subsequent execution to occur after lines 8-9, in or-
der to prevent to misordering of any code in a non-
CONFIG_PREEMPT build, but only from the perspective
of an intervening interrupt handler. However, in a
CONFIG_PREEMPT kernel, the required barrier() call
is embedded in the preempt_enable() on line 11, so
the srcu_barrier() is a no-op in that case. Finally,
line 12 returns the index so that it may be passed in
to the corresponding srcu_read_unlock().

The code for srcu_read_unlock() is shown in Fig-
ure 9. Again, lines 3 and 7 disable and re-enable
preemption so that the whole code sequence executes
unpreempted on a single CPU. In CONFIG_PREEMPT

kernels, the preempt_disable() on line 3 contains
a barrier() primitive, otherwise, the barrier() is
supplied by line 4. Again, this directive forces the

3It is important to note that the smp_processor_id() prim-

itive has long-term meaning only if preemption is disabled. In

absence of preemption disabling, a potential preemption im-

mediately following execution of this primitive could cause the

subsequent code to execute on some other CPU.

1 int srcu_read_lock(struct srcu_struct *sp)
2 {
3 int idx;
4
5 preempt_disable();
6 idx = sp->completed & 0x1;
7 barrier();
8 per_cpu_ptr(sp->per_cpu_ref,
9 smp_processor_id())->c[idx]++;

10 srcu_barrier();
11 preempt_enable();
12 return idx;
13 }

Figure 8: SRCU Read-Side Acquisition

subsequent code to execute after the critical section
from the perspective of intervening interrupt han-
dlers. Lines 5 and 6 decrement the counter for this
CPU, but with the same index as was used by the
corresponding srcu_read_lock().

1 void srcu_read_unlock(struct srcu_struct *sp, int idx)
2 {
3 preempt_disable();
4 srcu_barrier();
5 per_cpu_ptr(sp->per_cpu_ref,
6 smp_processor_id())->c[idx]--;
7 preempt_enable();
8 }

Figure 9: SRCU Read-Side Release

The key point is that the a given CPU’s counters
can be observed by other CPUs only in cooperation
with that CPU’s interrupt handlers. These interrupt
handlers are responsible for ensuring that any needed
memory barriers are executed prior to observing the
counters.

3.4 Update-Side Implementation

The key point behind SRCU is that
synchronize_sched() blocks until all currently-
executing preempt-disabled regions of code complete.
The synchronize_srcu() primitive makes heavy
use of this effect, as can be seen in Figure 10.

Line 5 takes a snapshot of the grace-period counter.
Line 6 acquires the mutex, and lines 7-10 check to see
whether at least two grace periods have elapsed since
the snapshot, and, if so, releases the lock and returns

6

— in this case, someone else has done our work for
us. Otherwise, line 11 guarantees that any other CPU
that sees the incremented value of the grace period
counter in srcu_read_lock() also sees any changes
made by this CPU prior to entering synchronize_

srcu(). This guarantee is required to make sure that
any SRCU read-side critical sections not blocking the
next grace period have seen any prior changes.

Line 12 fetches the bottom bit of the grace-period
counter for later use as an index into the per-CPU
counter arrays, and then line 13 increments the grace-
period counter. Line 14 then waits for any currently-
executing srcu_read_lock() to complete, so that by
the time that we reach line 15, all extant instances of
srcu_read_lock() will be using the updated value
from sp->completed. Therefore, the counters sam-
pled in by srcu_readers_active_idx() on line 15
are guaranteed to be monotonically decreasing, so
that once their sum reaches zero, it is guaranteed
to stay there.

However, there are no memory barriers in the
srcu_read_unlock() primitive, so the CPU is within
its rights to reorder the counter decrement up into
the SRCU critical section, so that references to
an SRCU-protected data structure could in effect
“bleed out” of the SRCU critical section. This sce-
nario is addressed by the synchronize_sched() on
line 17, which blocks until all other CPUs executing
in preempt_disable() code sequences (such as that
in srcu_read_unlock()) complete these sequences.
Because completion of a given preempt_disable()

code sequence is observed from the CPU executing
that sequence, completion of the sequence implies
completion of any prior SRCU read-side critical sec-
tion. Any required memory barriers are supplied by
the code making the observation.

At this point, it is therefore safe to release the mu-
tex as shown on line 18 and return to the caller, who
can now be assured that all SRCU read-side criti-
cal sections sharing the same struct srcu_struct

will observe any update made prior to the call to
synchronize_srcu().

Quick Quiz 3: Why is it OK to assume that
updates separated by synchronize sched() will be
performed in order?

Quick Quiz 4: Why must line 17 in

1 void synchronize_srcu(struct srcu_struct *sp)
2 {
3 int idx;
4
5 idx = sp->completed;
6 mutex_lock(&sp->mutex);
7 if ((sp->completed - idx) >= 2) {
8 mutex_unlock(&sp->mutex);
9 return;

10 }
11 synchronize_sched();
12 idx = sp->completed & 0x1;
13 sp->completed++;
14 synchronize_sched();
15 while (srcu_readers_active_idx(sp, idx))
16 schedule_timeout_interruptible(1);
17 synchronize_sched();
18 mutex_unlock(&sp->mutex);
19 }

Figure 10: SRCU Update-Side Implementation

synchronize srcu() (Figure 10) precede the
release of the mutex on line 18? What would have to
change to permit these two lines to be interchanged?
Would such a change be worthwhile? Why or why
not?

4 SRCU Summary

SRCU provides an RCU-like set of primitives that
permit general sleeping in the SRCU read-side crit-
ical sections. However, it is important to note that
SRCU has been used only in prototype code, though
it has passed the RCU torture test. It will be very
interesting to see what use, if any, SRCU sees in the
future.

5 Answers to Quick Quizzes

Quick Quiz 1: Why is sleeping prohibited within
Classic RCU read-side critical sections?
Answer: Because sleeping implies a context switch,
which in Classic RCU is a quiescent state, and RCU’s
grace-period detection requires that quiescent states
never appear in RCU read-side critical sections.

Quick Quiz 2: Why not permit sleeping in
Classic RCU read-side critical sections by elimi-
nating context switch as a quiescent state, leaving

7

user-mode execution and idle loop as the remaining
quiescent states?
Answer: This would mean that a system undergo-
ing heavy kernel-mode execution load (e.g., due to
kernel threads) might never complete a grace period,
which would cause it to exhaust memory sooner or
later.

Quick Quiz 3: Why is it OK to assume that
updates separated by synchronize sched() will be
performed in order?
Answer: Because this property is required for the
synchronize sched() aspect of RCU to work at all.
For example, consider a code sequence that removes
an object from a list, invokes synchronize sched(),
then frees the object. If this property did not hold,
then that object might appear to be freed before
it was removed from the list, which is precisely the
situation that synchronize sched() is supposed to
prevent!

Quick Quiz 4: Why must line 17 in
synchronize srcu() (Figure 10) precede the
release of the mutex on line 18? What would have to
change to permit these two lines to be interchanged?
Would such a change be worthwhile? Why or why
not?
Answer: Suppose that the order was re-
versed, and that CPU 0 has just reached
line 13 of synchronize srcu(), while both
CPU 1 and CPU 2 start executing another
synchronize srcu() each, and CPU 3 starts
executing a srcu read lock(). Suppose that
CPU 1 reaches line 6 of synchronize srcu() just
before CPU 0 increments the counter on line 13.
Most importantly, suppose that CPU 3 executes
srcu read lock() out of order with the following
SRCU read-side critical section, so that it acquires
a reference to some SRCU-protected data structure
before CPU 0 increments sp->completed, but
executes the srcu read lock() after CPU 0 does
this increment.

Then CPU 0 will not wait for CPU 3 to complete
its SRCU read-side critical section before exiting the
“while” loop on lines 15-16 and releasing the mutex
(remember, the CPU could be reordering the code).

Now suppose that CPU 2 acquires the mutex next,
and again increments sp->completed. This CPU
will then have to wait for CPU 3 to exit its SRCU
read-side critical section before exiting the loop on
lines 15-16 and releasing the mutex. But suppose
that CPU 3 again executes out of order, completing
the srcu read unlock() prior to executing a final
reference to the pointer it obtained when entering
the SRCU read-side critical section.

CPU 1 will then acquire the mutex, but see that
the sp->completed counter has incremented twice,
and therefore take the early exit. The caller might
well free up the element that CPU 3 is still referencing
(due to CPU 3’s out-of-order execution).

To prevent this perhaps improbable,
but entirely possible, scenario, the final
synchronize sched() must precede the mutex
release in synchronize srcu().

Another approach would be to change to compar-
ison on line 7 of synchronize srcu() to check for
at least three increments of the counter. However,
such a change would increase the latency of a “bulk
update” scenario, where a hash table is being up-
dated or unloaded using multiple threads. In the
current code, the latency of the resulting concurrent
synchronize srcu() calls would take at most two
SRCU grace periods, while with this change, three
would be required.

More experience will be required to determine
which approach is really better. For one thing,
there must first be some use of SRCU with multiple
concurrent updaters.

Acknowledgements

I owe thanks to Oleg Nesterov and Alan Stern for
discussions that helped shape SRCU, and to Josh
Triplett for a thorough and careful review. I am in-
debted to Daniel Frye for his support of this effort.

8

References

[1] McKenney, P. E. Exploiting Deferred Destruc-

tion: An Analysis of Read-Copy-Update Tech-

niques in Operating System Kernels. PhD thesis,
OGI School of Science and Engineering at Oregon
Health and Sciences University, 2004. Available:
http://www.rdrop.com/users/paulmck/RCU/

RCUdissertation.2004.07.14e1.pdf [Viewed
October 15, 2004].

[2] McKenney, P. E., and Sarma, D. To-
wards hard realtime response from the linux
kernel on SMP hardware. In linux.conf.au 2005

(Canberra, Australia, April 2005). Available:
http://www.rdrop.com/users/paulmck/RCU/

realtimeRCU.2005.04.23a.pdf [Viewed May
13, 2005].

[3] Molnar, I. Index of /mingo/realtime-preempt.
Available: http://people.redhat.com/mingo/

realtime-preempt/ [Viewed February 15, 2005],
February 2005.

9

