
2009 linux.conf.au Hobart, Tasmania, Australia

January 22, 2009 © 2006-2009 IBM Corporation

Using a Malicious User-Level RCU to
Torture RCU-Based Algorithms

Paul E. McKenney, Ph.D.
IBM Distinguished Engineer & CTO Linux
Linux Technology Center

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

Overview

 Why Concurrency?

 Hardware Issues with Concurrency

 RCU Fundamentals

 RCU Requirements

 Challenges for User-Level RCU

 A Pair of User-Level RCU Implementations

 Future Work and Summary

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

Why Concurrency?

 Higher performance (otherwise do sequential!)
 Acceptable productivity (machines now cheap)
 Reasonable generality (amortize development cost)

 Or because it is fun!!!
• (Though your manager/professor/SO/whatever might have a

different opinion on this point...)

 Software reliability goes without saying, aside from this
self-referential bullet point
• If it doesn't have to be reliable: “return 0;” is simple and fast

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

Concurrency Problem #1: Poor Performance

 This is a severe problem in cases where performance
was the only reason to exploit concurrency...

 Lots of effort, little (or no) result

 Why???

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

CPU Performance: The Marketing Pitch

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

CPU Performance: Memory References

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

CPU Performance: Pipeline Flushes

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

CPU Performance: Atomic Instructions

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

CPU Performance: Memory Barriers

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

CPU Performance: Cache Misses

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

And Don't Even Get Me Started on I/O...

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

CPU Performance: 4-CPU 1.8GHz Opteron 844

Operation Ratio
Clock period 0.6 1
Best-case CAS 37.9 63.2
Best-case lock 65.6 109.3
Single cache miss 139.5 232.5
CAS cache miss 306.0 510.0

Cost (ns)

Larger machines usually incur larger penalties...
(1) Use coarse-grained parallelism: embarrassingly parallel is good!
(2) Make use of low-cost operations: For example, user-level RCU

Need to
be here!

Typical synchronization
mechanisms do this a lot

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

What is RCU Fundamentally?

 Synchronization mechanism in Linux kernel

• Favors readers: extremely fast and deterministic RCU read-
side primitives (on the order of 1-10ns)
► Use RCU primarily useful in read-mostly situations

• Readers run concurrently with readers and updaters

• Updaters must synchronize with each other somehow
► Locks, atomic operations (but careful!!!), single update task...

 Three components of RCU:

• Publish-subscribe mechanism (for insertion)

• Wait for pre-existing RCU readers (for deletion)
► This is slow – multiple milliseconds

• Maintain multiple versions (for concurrent readers)

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

RCU List Insertion: Publication & Subscription

A gp

->a=?
->b=?
->c=?

gpgp gp

in
iti

al
iz

at
io

n

km
al

lo
c(

)

rc
u_

as
si

gn
_p

oi
nt

er
()

->a=1
->b=2
->c=3

->a=1
->b=2
->c=3

pp p

Key: All readers can access
Only pre-existing readers can access
Inaccessible to readers

Readers subscribe using rcu_dereference() within an rcu_read_lock()/rcu_read_unlock() pair

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

RCU List Deletion: Wait For Pre-Existing Readers

 Combines waiting for readers and multiple versions:
• Writer removes element B from the list (list_del_rcu())
• Writer waits for all readers to finish (synchronize_rcu())
• Writer can then free B (kfree())

readers?readers?

A

B

C

A

B

C

A

B

C

A

B

C

A

C
sy

nc
hr

on
iz

e_
rc

u(
)

lis
t_

de
l_

rc
u(

)

kf
re

e(
)

No more readers
referencing B!

One Version Two Versions One Version One Version

Readers subscribe using rcu_dereference() within an rcu_read_lock()/rcu_read_unlock() pair

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

RCU List Deletion: Wait For Pre-Existing Readers

Change Visible
to All Readers

Reader

Change Grace Period

Reader

Reader

Reader

Reader

Reader

Forbidden!

ReaderReader

So what happens if you try to extend an RCU read-side critical section across a grace period?

rcu_read_lock()

rcu_read_unlock()
RCU readers

concurrent with
updates

synchronize_rcu()

Time

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

RCU List Deletion: Wait For Pre-Existing Readers

Change Visible
to All Readers

Reader

Change Grace Period

Reader

Reader

Reader

Reader

Reader

Grace period
extends as
needed.

ReaderReader

A grace period is not permitted to end until all pre-existing readers have completed.

synchronize_rcu()

time

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

What Is RCU Fundamentally? (Summary)

 Relationship among RCU Components

Readers

ReclaimerMutator

ReadersReadersReaders

Lock Acquire

List Update
FreeFree

Remover IdentifiesRemover Identifies
Removed ObjectsRemoved Objects

Subscribe

Publish &
Retract

Wait for
RCU Readers

Maintain Multiple Versions

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

What is RCU's Usage?

 RCU is a:
• reader-writer lock replacement
• restricted reference-counting mechanism
• bulk reference-counting mechanism
• poor-man's garbage collector
• way of providing existence guarantees
• way of providing type-safe memory
• way of waiting for things to finish

 Use RCU in:

• read-mostly situations or

• for deterministic response from read-side primitives and from
asynchronous update-side primitives

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

What is RCU's Usage in the Linux Kernel?

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

What is RCU's Usage in the Linux Kernel?

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

Too Probe More Deeply into RCU...

 http://lwn.net/Articles/262464/http://lwn.net/Articles/262464/

• What is RCU, Fundamentally?

 http://lwn.net/Articles/263130/http://lwn.net/Articles/263130/

• What is RCU's Usage?

 http://lwn.net/Articles/264090/http://lwn.net/Articles/264090/

• What is RCU's API?

 http://www.rdrop.com/users/paulmck/RCU/http://www.rdrop.com/users/paulmck/RCU/

• Paul McKenney's RCU page.

http://lwn.net/Articles/262464/
http://lwn.net/Articles/263130/
http://lwn.net/Articles/264090/
http://www.rdrop.com/users/paulmck/RCU/

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

RCU Advantages and Disadvantages

 + Low-overhead linearly scaling read-side primitives
 + Deterministic read-side primitives (real time)
 + Deadlock-immune read-side primitives

• (But don't do synchronize_rcu() in read-side critical section!!!)
 + Less need to partition read-mostly data structures
 + Easier handling of new-reference/deletion races

 - High latency/overhead update-side primitives
• (But super-linear scaling due to batching implementations)

 - Freed memory goes cache-cold
• (Hence application to read-mostly data structures)

 - Updates run concurrently with readers
• (Common design patterns handle this issue)

 - Only runs in kernels
• And the Linux-kernel implementation is very forgiving!!!

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

Linux-Kernel RCU Implementations Too Forgiving!!!

 Preemptable-RCU experience is a case in point...
 5 May 2008: Alexey Dobriyan: oops from RCU code

• Running 170 parallel kernel builds on a 2-CPU x86 box

• Takes about two full days to fail

• I cannot reproduce, and cannot get .config from Alexey

 7 June 2008: Alexey tries rcutorture, which fails
• I still cannot reproduce, and still cannot get .config from Alexey

 24 June 2008: Nick Piggin: lockless-pagecache oops
• I cannot reproduce, and no .config from Nick, either

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

Linux-Kernel RCU Implementations Too Forgiving!!!

 July 10 2008: Nick Piggin finds bug
• Preemptable RCU broken unless CPU_HOTPLUG enabled

► My setup cheerfully and silently ignored disabling CPU_HOTPLUG!!!
► Unless I also disabled several other config parameters

• Result: synchronize_rcu() was completely ignoring rcu_read_lock()!!!
► Thus becoming a pure delay of a few tens of milliseconds

• It nevertheless ran 170 parallel kernel builds for about two days!!!
• Suppose someone forgets rcu_read_lock()? How to test???

 From Nick's email:
• “Annoyed this wasn't a crazy obscure error in the algorithm I could fix :) I

spent all day debugging it and had to make a special test case (rcutorture
didn't seem to trigger it), and a big RCU state logging infrastructure to log
millions of RCU state transitions and events. Oh well.”

 Alexey's response did much to explain lack of .config

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

RCU Requirements Summary

 Update-side primitive waits for pre-existing readers
• Contained update latency

 Low (deterministic) read-side overhead
• For debugging, need ability to force very short grace period

 Freely nestable read side primitives
• (Some uses can do not need this)

 Unconditional read-to-update upgrade
 Linear read-side scalability
 Independent of memory allocation
 Update-side scalability
 Some way of stress-testing algorithms using RCU!!!

 Note that an automatic garbage collector qualifies as
an RCU implementation

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

User-Level RCU Challenges

 Cannot portably identify CPU

 Cannot portably disable preemption

 No equivalent of in-kernel scheduling-clock interrupt

 Less control of application

• If you are writing a user-level library, the application you will
link with might not even been thought of yet!

• So cannot necessarily rely on timely interaction with all threads

• Which every current RCU implementation requires...

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

Addressing User-Level RCU Challenges

 Cannot portably identify CPU

• Focus instead on processes and/or threads

 Cannot portably disable preemption

• Avoid need for this by process/thread focus

 No equivalent of in-kernel scheduling-clock interrupt

• Drive grace periods from update-side primitives

• Or provide separate thread(s) for this purpose

 Less control of application

• “Learn to let go...”

• And provide optimized RCU implementations for applications
that can periodically execute RCU code

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

User-Level RCU: Trivial Approach

static void rcu_read_lock(void)
{
 atomic_inc(&rcu_ref_cnt);
 smp_mb();
}

static void rcu_read_unlock(void)
{
 smp_mb();
 atomic_dec(&rcu_ref_cnt);
}

Read-side cost?

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

User-Level RCU: Trivial Approach

void synchronize_rcu(void)
{
 int t;

 smp_mb();
 while (atomic_read(&rcu_ref_cnt) != 0) {
 /*@@@ poll(NULL, 0, 10); */
 }
 }
 smp_mb();
}

Extremely fast grace-period latency in absence of readers, but...

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

User-Level RCU: Super-Trivial Approach

static void rcu_read_lock(void)
{
 spin_lock(&rcu_gp_lock);
}

static void rcu_read_unlock(void)
{
 spin_unlock(&rcu_gp_lock);
}

Hey! Who really needs read-side parallelism, anyway?
And deadlock immunity is overrated!!!

void synchronize_rcu(void)
{
 spin_lock(&rcu_gp_lock);
 spin_unlock(&rcu_gp_lock);
}

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

Other Approaches

 Split counter (http://lwn.net/Articles/253651/)
• A pair of reference counters plus an index selecting “current”
• rcu_read_lock() increments rcu_ref_cnt[current]
• rcu_read_unlock() decrements whatever the corresponding rcu_read_lock()

incremented
• synchronize_rcu() complements current, then waits until rcu_ref_cnt[!current]

decrements down to zero
• But requires coordinated access to current and rcu_ref_cnt[] element

► Provided in Linux kernel by interrupt disabling and scheduling-clock rrupt
► Neither of which are available to user-level code
► Would require expensive explicit locks at user level!!!

• Memory contention on rcu_ref_cnt[current]

 Use per-thread lock
• rcu_read_lock() acquires its thread's lock
• rcu_read_unlock() releases it
• synchronize_rcu() acquires & immediately releases each lock
• Reduces the deadlock vulnerabilities, also read-side overhead

► Too bad about signal handlers using RCU, though...

http://lwn.net/Articles/253651/

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

Other Approaches

 Per-thread split counter (http://lwn.net/Articles/253651/)
• A pair of reference counters plus an index selecting “current”
• rcu_read_lock() increments rcu_ref_cnt[threadidx][current]
• rcu_read_unlock() decrements whatever the corresponding rcu_read_lock()

incremented
• synchronize_rcu() complements current, then waits until all of the

rcu_ref_cnt[][!current] counters decrement down to zero

 What is wrong with this approach?

http://lwn.net/Articles/253651/

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

User-Level RCU: Simple “Hands-Free” Approach

rcu_gp_ctr

rcu_reader_gprcu_reader_gprcu_reader_gprcu_reader_gp

Even Values

Odd for RS CS

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

“Vacation” won't
stall grace

periods

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

User-Level RCU: Simple “Hands-Free” Code

static void rcu_read_lock(void)
{
 __get_thread_var(rcu_reader_gp) = rcu_gp_ctr + 1;
 smp_mb();
}

static void rcu_read_unlock(void)
{
 smp_mb();
 __get_thread_var(rcu_reader_gp) = rcu_gp_ctr;
}

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

User-Level RCU: Simple “Hands-Free” Code

void synchronize_rcu(void)
{
 int t;

 smp_mb();
 spin_lock(&rcu_gp_lock);
 rcu_gp_ctr += 2;
 smp_mb();
 for_each_thread(t) {
 while ((per_thread(rcu_reader_gp, t) & 0x1) &&
 ((per_thread(rcu_reader_gp, t) - rcu_gp_ctr) < 0)) {
 /*@@@ poll(NULL, 0, 10); */
 }
 }
 spin_unlock(&rcu_gp_lock);
 smp_mb();
}

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

How Does This Solution Measure Up?

 Update-side primitive wait for pre-existing RCU readers

 Low (deterministic) read-side overhead

 Freely nestable read side primitives

 Unconditional read-to-update upgrade

 Linear read-side scalability

 Independent of memory allocation

 Update-side scalability

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

User-Level RCU: Nestable Approach

rcu_gp_ctr

rcu_reader_gprcu_reader_gprcu_reader_gprcu_reader_gp

“Fat bottom bit”

0

n

2n

3n

4n

5n

6n

7n

“Vacation” won't
stall grace

periods

0

nestnestnestnest

Must be in one quantity for atomicity.

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

User-Level RCU: Nestable Code

static void rcu_read_lock(void)
{
 long tmp;

 tmp = __get_thread_var(rcu_reader_gp);
 if ((tmp & RCU_GP_CTR_NEST_MASK) == 0)
 tmp = rcu_gp_ctr;
 tmp++;
 __get_thread_var(rcu_reader_gp) = tmp;
 smp_mb();
}

static void rcu_read_unlock(void)
{
 long tmp;

 smp_mb();
 __get_thread_var(rcu_reader_gp)--;
}

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

User-Level RCU: Nestable Code

void synchronize_rcu(void)
{
 int t;

 smp_mb();
 spin_lock(&rcu_gp_lock);
 rcu_gp_ctr += RCU_GP_CTR_BOTTOM_BIT;
 smp_mb();
 for_each_thread(t) {
 while (rcu_gp_ongoing(t) &&
 ((per_thread(rcu_reader_gp, t) - rcu_gp_ctr) < 0)) {
 /*@@@ poll(NULL, 0, 10); */
 }
 }
 spin_unlock(&rcu_gp_lock);
 smp_mb();
}

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

How Does Nestable Solution Measure Up?

 Update-side primitive wait for pre-existing RCU readers

 Low (deterministic) read-side overhead

 Freely nestable read side primitives

 Unconditional read-to-update upgrade

 Linear read-side scalability

 Independent of memory allocation

 Update-side scalability

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

RCU Torture Testing Data Structures

2 1 0 7 6 5 4 3

rcu_stress_current

synchronize_rcu();
rcu_stress_array[i]++;

rcu_stress_array[]

Readers

Updaters

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

RCU Torture Testing Data Structures

3 2 1 0 7 6 5 4

rcu_stress_current

rcu_stress_array[]

Readers should see value of 0 and 1 only: otherwise, RCU is broken

Readers

Updaters

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

RCU Torture Testing: Updater Thread

 1 while (goflag == GOFLAG_RUN) {
 2 i = rcu_stress_idx + 1;
 3 if (i >= RCU_STRESS_PIPE_LEN)
 4 i = 0;
 5 p = &rcu_stress_array[i];
 6 p->pipe_count = 0;
 7 rcu_assign_pointer(rcu_stress_current, p);
 8 rcu_stress_idx = i;
 9 for (i = 0; i < RCU_STRESS_PIPE_LEN; i++)
 10 if (i != rcu_stress_idx)
 11 rcu_stress_array[i].pipe_count++;
 12 synchronize_rcu();
 13 n_updates++;
 14 }

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

Malice Testing: Reader Threads

 1 rcu_read_lock();
 2 p = rcu_dereference(rcu_stress_current);
 3 for (i = 0; i < 100; i++)
 4 garbage++;
 5 pc = p->pipe_count;
 6 rcu_read_unlock();

 1 rcu_read_lock();
 2 p = rcu_dereference(rcu_stress_current);
 3 for (i = 0; i < 100; i++)
 4 garbage++;
 5 rcu_read_unlock(); /* Malice. */
 6 pc = p->pipe_count; /* BUG!!! */

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

Performance and Level of Malice

RCU Variant
Performance Degree of Malice (Probability of Detection)

0 100 1,000 10,000
63 0.20458% 0.28930% 16.62725%

17,123 22.63980% 21.87630% 27.23635% 77.45645%
141 0.41581% 0.95454% 0.44058% 98.25215%
64 0.10677% 0.33591% 21.91355%
26
0

39,177 0.01351% 0.26418% 68.92650% 92.53230%
37,056 0.00023% 0.20246% 23.64110% 91.99550%

114 0.00020% 0.26680% 0.38274% 96.22135%
114 0.00005% 0.25493% 0.38453% 97.22010%
101 0.17684% 0.31986% 43.60365%

(ns, 64 CPUs)
rcu
rcu_lock
rcu_lock_percpu
rcu_nest
rcu_nest_qs
rcu_qs
rcu_rcg
rcu_rcpg
rcu_rcpl
rcu_rcpls
rcu_ts

Mean of three trials of 10-second duration.
1-2 significant decimal digits in results.

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

Future Work

 Implement full Linux-kernel RCU API

• Currently, just have the bare bones
► rcu_read_lock()
► rcu_read_unlock()
► synchronize_rcu()
► Prototype containing call_rcu()

 Choose a particular implementation for user-level
debugging of RCU algorithms

• But more experience will be needed

 Try it out on a real user-land application

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

Conclusions

 User-level RCU implementation possible, even for
library functions

 Extremely low grace-period latency

• Suggests use as a torture-test environment for RCU algorithms

• Subject of an upcoming presentation at linux.conf.au

• Though latency will increase with number of CPUs

 OK read-side overhead

• Less than 30% of the overhead of a single cache miss!

 Full RCU semantics

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

To Probe Deeper

 Other Parallel Algorithms and Tools
• http://www.rdrop.com/users/paulmck/scalability/

 What is RCU?
• Fundamentally: http://lwn.net/Articles/262464/
• Usage: http://lwn.net/Articles/263130/
• API: http://lwn.net/Articles/264090/
• Linux-kernel usage: http://www.rdrop.com/users/paulmck/RCU/linuxusage.html

• Other RCU stuff: http://www.rdrop.com/users/paulmck/RCU/

 Parallel Performance Programming (very raw draft)

• Contains source code for user-level RCU implementations
• git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git

http://www.rdrop.com/users/paulmck/scalability/
http://lwn.net/Articles/262464/
http://lwn.net/Articles/263130/
http://lwn.net/Articles/264090/
http://www.rdrop.com/users/paulmck/RCU/linuxusage.html
http://www.rdrop.com/users/paulmck/RCU/

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

Legal Statement

 This work represents the views of the authors and does
not necessarily represent the view of IBM.

 Linux is a copyright of Linus Torvalds.

 Other company, product, and service names may be
trademarks or service marks of others.

© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia

IBM Linux Technology Center

Backup

