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Why Concurrency?

 Higher performance (otherwise do sequential!)
 Acceptable productivity (machines now cheap)
 Reasonable generality (amortize development cost)

 Or because it is fun!!!
• (Though your manager/professor/SO/whatever might have a 

different opinion on this point...)

 Software reliability goes without saying, aside from this 
self-referential bullet point
• If it doesn't have to be reliable: “return 0;” is simple and fast
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Concurrency Problem #1: Poor Performance

 This is a severe problem in cases where performance 
was the only reason to exploit concurrency...

 Lots of effort, little (or no) result

 Why???
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CPU Performance: The Marketing Pitch
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CPU Performance: Memory References



© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia  

IBM Linux Technology Center

CPU Performance: Pipeline Flushes
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CPU Performance: Atomic Instructions
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CPU Performance: Memory Barriers
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CPU Performance: Cache Misses
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And Don't Even Get Me Started on I/O...
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CPU Performance: 4-CPU 1.8GHz Opteron 844

Operation Ratio
Clock period 0.6 1
Best-case CAS 37.9 63.2
Best-case lock 65.6 109.3
Single cache miss 139.5 232.5
CAS cache miss 306.0 510.0

Cost (ns)

Larger machines usually incur larger penalties...
(1) Use coarse-grained parallelism: embarrassingly parallel is good!
(2) Make use of low-cost operations: For example, user-level RCU

Need to
be here!

Typical synchronization 
mechanisms do this a lot
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What is RCU Fundamentally?

 Synchronization mechanism in Linux kernel

• Favors readers: extremely fast and deterministic RCU read-
side primitives (on the order of 1-10ns)
► Use RCU primarily useful in read-mostly situations

• Readers run concurrently with readers and updaters

• Updaters must synchronize with each other somehow
► Locks, atomic operations (but careful!!!), single update task...

 Three components of RCU:

• Publish-subscribe mechanism (for insertion)

• Wait for pre-existing RCU readers (for deletion)
► This is slow – multiple milliseconds

• Maintain multiple versions (for concurrent readers)
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RCU List Insertion: Publication & Subscription
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Readers subscribe using rcu_dereference() within an rcu_read_lock()/rcu_read_unlock() pair
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RCU List Deletion: Wait For Pre-Existing Readers

 Combines waiting for readers and multiple versions:
• Writer removes element B from the list (list_del_rcu())
• Writer waits for all readers to finish (synchronize_rcu())
• Writer can then free B (kfree())
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referencing B!

One Version Two Versions One Version One Version

Readers subscribe using rcu_dereference() within an rcu_read_lock()/rcu_read_unlock() pair
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RCU List Deletion: Wait For Pre-Existing Readers

Change Visible
to All Readers

Reader

Change Grace Period

Reader

Reader

Reader

Reader

Reader

Forbidden!

ReaderReader

So what happens if you try to extend an RCU read-side critical section across a grace period?

rcu_read_lock()

rcu_read_unlock()
RCU readers 

concurrent with 
updates

synchronize_rcu()

Time
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RCU List Deletion: Wait For Pre-Existing Readers

Change Visible
to All Readers

Reader

Change Grace Period

Reader

Reader

Reader

Reader

Reader

Grace period
extends as
needed.

ReaderReader

A grace period is not permitted to end until all pre-existing readers have completed.

synchronize_rcu()

time
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What Is RCU Fundamentally?  (Summary)

 Relationship among RCU Components

Readers

ReclaimerMutator

ReadersReadersReaders

Lock Acquire  

List Update
FreeFree

Remover IdentifiesRemover Identifies
Removed ObjectsRemoved Objects

Subscribe

Publish &
Retract

Wait for 
RCU Readers

Maintain Multiple Versions
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What is RCU's Usage?

 RCU is a:
• reader-writer lock replacement
• restricted reference-counting mechanism
• bulk reference-counting mechanism
• poor-man's garbage collector
• way of providing existence guarantees
• way of providing type-safe memory
• way of waiting for things to finish

 Use RCU in:

• read-mostly situations or

• for deterministic response from read-side primitives and from 
asynchronous update-side primitives
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What is RCU's Usage in the Linux Kernel?
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What is RCU's Usage in the Linux Kernel?
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Too Probe More Deeply into RCU...

 http://lwn.net/Articles/262464/http://lwn.net/Articles/262464/

• What is RCU, Fundamentally?

 http://lwn.net/Articles/263130/http://lwn.net/Articles/263130/

• What is RCU's Usage?

 http://lwn.net/Articles/264090/http://lwn.net/Articles/264090/

• What is RCU's API?

 http://www.rdrop.com/users/paulmck/RCU/http://www.rdrop.com/users/paulmck/RCU/

• Paul McKenney's RCU page.

http://lwn.net/Articles/262464/
http://lwn.net/Articles/263130/
http://lwn.net/Articles/264090/
http://www.rdrop.com/users/paulmck/RCU/
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RCU Advantages and Disadvantages

 + Low-overhead linearly scaling read-side primitives
 + Deterministic read-side primitives (real time)
 + Deadlock-immune read-side primitives

• (But don't do synchronize_rcu() in read-side critical section!!!)
 + Less need to partition read-mostly data structures
 + Easier handling of new-reference/deletion races

  - High latency/overhead update-side primitives
• (But super-linear scaling due to batching implementations)

  - Freed memory goes cache-cold
• (Hence application to read-mostly data structures)

  - Updates run concurrently with readers
• (Common design patterns handle this issue)

  - Only runs in kernels
• And the Linux-kernel implementation is very forgiving!!!
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Linux-Kernel RCU Implementations Too Forgiving!!!

 Preemptable-RCU experience is a case in point...
 5 May 2008: Alexey Dobriyan: oops from RCU code

• Running 170 parallel kernel builds on a 2-CPU x86 box

• Takes about two full days to fail

• I cannot reproduce, and cannot get .config from Alexey

 7 June 2008: Alexey tries rcutorture, which fails
• I still cannot reproduce, and still cannot get .config from Alexey

 24 June 2008: Nick Piggin: lockless-pagecache oops
• I cannot reproduce, and no .config from Nick, either
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Linux-Kernel RCU Implementations Too Forgiving!!!

 July 10 2008: Nick Piggin finds bug
• Preemptable RCU broken unless CPU_HOTPLUG enabled

► My setup cheerfully and silently ignored disabling CPU_HOTPLUG!!!
► Unless I also disabled several other config parameters

• Result: synchronize_rcu() was completely ignoring rcu_read_lock()!!!
► Thus becoming a pure delay of a few tens of milliseconds

• It nevertheless ran 170 parallel kernel builds for about two days!!!
• Suppose someone forgets rcu_read_lock()?  How to test???

 From Nick's email:
• “Annoyed this wasn't a crazy obscure error in the algorithm I could fix :)  I 

spent all day debugging it and had to make a special test case (rcutorture 
didn't seem to trigger it), and a big RCU state logging infrastructure to log 
millions of RCU state transitions and events. Oh well.”

 Alexey's response did much to explain lack of .config
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RCU Requirements Summary

 Update-side primitive waits for pre-existing readers
• Contained update latency

 Low (deterministic) read-side overhead
• For debugging, need ability to force very short grace period

 Freely nestable read side primitives
• (Some uses can do not need this)

 Unconditional read-to-update upgrade
 Linear read-side scalability
 Independent of memory allocation
 Update-side scalability
 Some way of stress-testing algorithms using RCU!!!

 Note that an automatic garbage collector qualifies as 
an RCU implementation
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User-Level RCU Challenges

 Cannot portably identify CPU

 Cannot portably disable preemption

 No equivalent of in-kernel scheduling-clock interrupt

 Less control of application

• If you are writing a user-level library, the application you will 
link with might not even been thought of yet!

• So cannot necessarily rely on timely interaction with all threads

• Which every current RCU implementation requires...
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Addressing User-Level RCU Challenges

 Cannot portably identify CPU

• Focus instead on processes and/or threads

 Cannot portably disable preemption

• Avoid need for this by process/thread focus

 No equivalent of in-kernel scheduling-clock interrupt

• Drive grace periods from update-side primitives

• Or provide separate thread(s) for this purpose

 Less control of application

• “Learn to let go...”

• And provide optimized RCU implementations for applications 
that can periodically execute RCU code
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User-Level RCU: Trivial Approach

static void rcu_read_lock(void)
{
  atomic_inc(&rcu_ref_cnt);
  smp_mb();
}

static void rcu_read_unlock(void)
{
  smp_mb();
  atomic_dec(&rcu_ref_cnt);
}

Read-side cost?
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User-Level RCU: Trivial Approach

void synchronize_rcu(void)
{
  int t;

  smp_mb();
  while (atomic_read(&rcu_ref_cnt) != 0) {
      /*@@@ poll(NULL, 0, 10); */
    }
  }
  smp_mb();
}

Extremely fast grace-period latency in absence of readers, but...
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User-Level RCU: Super-Trivial Approach

static void rcu_read_lock(void)
{
  spin_lock(&rcu_gp_lock);
}

static void rcu_read_unlock(void)
{
  spin_unlock(&rcu_gp_lock);
}

Hey!  Who really needs read-side parallelism, anyway?
And deadlock immunity is overrated!!!

void synchronize_rcu(void)
{
  spin_lock(&rcu_gp_lock);
  spin_unlock(&rcu_gp_lock);
}
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Other Approaches

 Split counter (http://lwn.net/Articles/253651/)
• A pair of reference counters plus an index selecting “current”
• rcu_read_lock() increments rcu_ref_cnt[current]
• rcu_read_unlock() decrements whatever the corresponding rcu_read_lock() 

incremented
• synchronize_rcu() complements current, then waits until rcu_ref_cnt[!current] 

decrements down to zero
• But requires coordinated access to current and rcu_ref_cnt[] element

► Provided in Linux kernel by interrupt disabling and scheduling-clock rrupt
► Neither of which are available to user-level code
► Would require expensive explicit locks at user level!!!

• Memory contention on rcu_ref_cnt[current]

 Use per-thread lock
• rcu_read_lock() acquires its thread's lock
• rcu_read_unlock() releases it
• synchronize_rcu() acquires & immediately releases each lock
• Reduces the deadlock vulnerabilities, also read-side overhead

► Too bad about signal handlers using RCU, though...

http://lwn.net/Articles/253651/
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Other Approaches

 Per-thread split counter (http://lwn.net/Articles/253651/)
• A pair of reference counters plus an index selecting “current”
• rcu_read_lock() increments rcu_ref_cnt[threadidx][current]
• rcu_read_unlock() decrements whatever the corresponding rcu_read_lock() 

incremented
• synchronize_rcu() complements current, then waits until all of the 

rcu_ref_cnt[][!current] counters decrement down to zero

 What is wrong with this approach?

http://lwn.net/Articles/253651/
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User-Level RCU: Simple “Hands-Free” Approach

rcu_gp_ctr

rcu_reader_gprcu_reader_gprcu_reader_gprcu_reader_gp

Even Values

Odd for RS CS

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

“Vacation” won't
stall grace

periods



© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia  

IBM Linux Technology Center

User-Level RCU: Simple “Hands-Free” Code

static void rcu_read_lock(void)
{
  __get_thread_var(rcu_reader_gp) = rcu_gp_ctr + 1;
  smp_mb();
}

static void rcu_read_unlock(void)
{
  smp_mb();
  __get_thread_var(rcu_reader_gp) = rcu_gp_ctr;
}
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User-Level RCU: Simple “Hands-Free” Code

void synchronize_rcu(void)
{
  int t;

  smp_mb();
  spin_lock(&rcu_gp_lock);
  rcu_gp_ctr += 2;
  smp_mb();
  for_each_thread(t) {
    while ((per_thread(rcu_reader_gp, t) & 0x1) &&
           ((per_thread(rcu_reader_gp, t) - rcu_gp_ctr) < 0)) {
      /*@@@ poll(NULL, 0, 10); */
    }
  }
  spin_unlock(&rcu_gp_lock);
  smp_mb();
}
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How Does This Solution Measure Up?

 Update-side primitive wait for pre-existing RCU readers

 Low (deterministic) read-side overhead

 Freely nestable read side primitives

 Unconditional read-to-update upgrade

 Linear read-side scalability

 Independent of memory allocation

 Update-side scalability
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User-Level RCU: Nestable Approach
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User-Level RCU: Nestable Code

static void rcu_read_lock(void)
{
  long tmp;

  tmp = __get_thread_var(rcu_reader_gp);
  if ((tmp & RCU_GP_CTR_NEST_MASK) == 0) 
    tmp = rcu_gp_ctr; 
  tmp++;
  __get_thread_var(rcu_reader_gp) = tmp;
  smp_mb();
}

static void rcu_read_unlock(void)
{
  long tmp;

  smp_mb();
  __get_thread_var(rcu_reader_gp)--;
}
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User-Level RCU: Nestable Code

void synchronize_rcu(void)
{
  int t;

  smp_mb();
  spin_lock(&rcu_gp_lock);
  rcu_gp_ctr += RCU_GP_CTR_BOTTOM_BIT;
  smp_mb();
  for_each_thread(t) {
    while (rcu_gp_ongoing(t) &&
           ((per_thread(rcu_reader_gp, t) - rcu_gp_ctr) < 0)) {
      /*@@@ poll(NULL, 0, 10); */
    }           
  }     
  spin_unlock(&rcu_gp_lock);
  smp_mb();
}
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How Does Nestable Solution Measure Up?

 Update-side primitive wait for pre-existing RCU readers

 Low (deterministic) read-side overhead

 Freely nestable read side primitives

 Unconditional read-to-update upgrade

 Linear read-side scalability

 Independent of memory allocation

 Update-side scalability
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RCU Torture Testing Data Structures

2 1 0 7 6 5 4 3

rcu_stress_current

synchronize_rcu();
rcu_stress_array[i]++;

rcu_stress_array[]

Readers

Updaters
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RCU Torture Testing Data Structures

3 2 1 0 7 6 5 4

rcu_stress_current

rcu_stress_array[]

Readers should see value of 0 and 1 only: otherwise, RCU is broken

Readers

Updaters
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RCU Torture Testing: Updater Thread

  1 while (goflag == GOFLAG_RUN) {
  2   i = rcu_stress_idx + 1;
  3   if (i >= RCU_STRESS_PIPE_LEN)
  4     i = 0;
  5   p = &rcu_stress_array[i];
  6   p->pipe_count = 0;
  7   rcu_assign_pointer(rcu_stress_current, p);
  8   rcu_stress_idx = i;
  9   for (i = 0; i < RCU_STRESS_PIPE_LEN; i++)
 10     if (i != rcu_stress_idx)
 11       rcu_stress_array[i].pipe_count++;
 12   synchronize_rcu();
 13   n_updates++;
 14 }
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Malice Testing: Reader Threads

  1     rcu_read_lock();
  2     p = rcu_dereference(rcu_stress_current);
  3     for (i = 0; i < 100; i++)
  4       garbage++;
  5     pc = p->pipe_count;
  6     rcu_read_unlock();

  1     rcu_read_lock();
  2     p = rcu_dereference(rcu_stress_current);
  3     for (i = 0; i < 100; i++)
  4       garbage++;
  5     rcu_read_unlock();   /* Malice. */
  6     pc = p->pipe_count;  /* BUG!!!  */
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Performance and Level of Malice

RCU Variant
Performance Degree of Malice (Probability of Detection)

0 100 1,000 10,000
63 0.20458% 0.28930% 16.62725%

17,123 22.63980% 21.87630% 27.23635% 77.45645%
141 0.41581% 0.95454% 0.44058% 98.25215%
64 0.10677% 0.33591% 21.91355%
26    
0     

39,177 0.01351% 0.26418% 68.92650% 92.53230%
37,056 0.00023% 0.20246% 23.64110% 91.99550%

114 0.00020% 0.26680% 0.38274% 96.22135%
114 0.00005% 0.25493% 0.38453% 97.22010%
101 0.17684% 0.31986% 43.60365%

(ns, 64 CPUs)
rcu 
rcu_lock 
rcu_lock_percpu 
rcu_nest 
rcu_nest_qs 
rcu_qs 
rcu_rcg 
rcu_rcpg 
rcu_rcpl 
rcu_rcpls 
rcu_ts 

Mean of three trials of 10-second duration.
1-2 significant decimal digits in results.
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Future Work

 Implement full Linux-kernel RCU API

• Currently, just have the bare bones
► rcu_read_lock()
► rcu_read_unlock()
► synchronize_rcu()
► Prototype containing call_rcu()

 Choose a particular implementation for user-level 
debugging of RCU algorithms

• But more experience will be needed

 Try it out on a real user-land application
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Conclusions

 User-level RCU implementation possible, even for 
library functions

 Extremely low grace-period latency

• Suggests use as a torture-test environment for RCU algorithms

• Subject of an upcoming presentation at linux.conf.au

• Though latency will increase with number of CPUs

 OK read-side overhead

• Less than 30% of the overhead of a single cache miss!

 Full RCU semantics



© 2006-2009 IBM Corporationlinux.conf.au 2009 Hobart, Tasmania, Australia  

IBM Linux Technology Center

To Probe Deeper

 Other Parallel Algorithms and Tools
• http://www.rdrop.com/users/paulmck/scalability/

 What is RCU?
• Fundamentally: http://lwn.net/Articles/262464/
• Usage: http://lwn.net/Articles/263130/
• API: http://lwn.net/Articles/264090/
• Linux-kernel usage: http://www.rdrop.com/users/paulmck/RCU/linuxusage.html

• Other RCU stuff: http://www.rdrop.com/users/paulmck/RCU/

 Parallel Performance Programming (very raw draft)

• Contains source code for user-level RCU implementations
• git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git

http://www.rdrop.com/users/paulmck/scalability/
http://lwn.net/Articles/262464/
http://lwn.net/Articles/263130/
http://lwn.net/Articles/264090/
http://www.rdrop.com/users/paulmck/RCU/linuxusage.html
http://www.rdrop.com/users/paulmck/RCU/
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Legal Statement

 This work represents the views of the authors and does 
not necessarily represent the view of IBM.

 Linux is a copyright of Linus Torvalds.

 Other company, product, and service names may be 
trademarks or service marks of others.
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