Steamroller

2006 linux.conf.au Du[)edin, New Zealand

“Steamroller” Testlng

Paul E. McKenney
S Dlstlngwshed Engineer

1 01/26/2006 © 2006 IBM Corporation

Steamroller

SMP Code: How to Know When it is Bug-Free?

= |nspection
= Manual
= Automated (e.qg., sparse)
= Program analysis vs. model checking
= Testing
= Functional Testing
= Stress Testing
= Dynamic Validation (software, hardware)

s Need all of these — but so what?

01/26/2006 © 2006 IBM Corporation

Steamroller

Applying RCU to Linux Signal Path

= Signal delivery read-acquires tasklist_lock
s Degrades latency

= Apply RCU to read-side code!!!

s Straightforward application of “Reader-Writer-Lock/RCU
Analogy” design pattern, very naive

s Expected failure — but code passed both kernbench and
LTP

s No failure, nothing to debug — but can't be correct
s Most UNIX® apps “learned” not to trust signal delivery too much!!!
= Oleg Nesterov found some races (good eyes!!!),

but still need a good vicious test suite
s A good test is more vicious than the users!!!

3 01/26/2006 © 2006 IBM Corporation

Steamroller

Steamroller Testing: Taking a Leaf from History

= One approach due to Jack Slingwine: force races
to happen!!! Rough pseudocode:

for (i = race_begin; i < race_end; i++) {
retval = fork();
if (retval == 0) {
child();
} elseif (retval > 0) {
for (j =0; j <1i; j++) continue;
parent () ;
} else {
abort ();
}
}

= |n theory, forces every possible race to occur...
= How to determine race_begin and race_end?

01/26/2006 © 2006 IBM Corporation

Steamroller

Steamroller Schematic

Time

01/26/2006 © 2006 IBM Corporation

Steamroller

Steamroller Testing: Example Output 1

= Testing unicast signal against exit/wait:
nckenney@uxl: ~/steanroller$./sig exit
steanrol |l er distribution: 73:10600: 139

Verbose>=1 prints range:
nckenney@uxl: ~/ steanroller$./sig exit --verbose 1
Race range: 9403: 20566 spindelay units

steanrol l er distribution: 43:10515: 605

Verbose>=2 prints progress every five seconds
nckenney@uxl: ~/steanroller$./sig exit --verbose 2

Race range: 9384: 20174 spindelay units

steanrol l er: 9384 spindelay units

steamrol ler distribution: 61:10622: 107

01/26/2006 © 2006 IBM Corporation

Steamroller

Steamroller Testing: Example Output 2

= Verbose>=2 for killpg vs. fork() storm:
nckenney@ ux1l: ~/ steanroller$./sigpg forkstorm--verbose 2
Race range: 9561: 56529 spindelay units
steanmrol ler: 9561 spindelay units
steanrol ler: 17929 spindelay units
steanrol l er: 24842 spindelay units
steanrol ler: 31947 spindelay units
steanrol l er: 36858 spindelay units
steanroller: 40666 spindelay units
steanrol l er: 44745 spindelay units
steanmrol ler: 49702 spindelay units
steanrol l er: 53958 spindelay units
steanrol l er distribution: 282:42457: 4229

= The fork storm self-limits, very useful if you have
subtly broken killpg...

7 01/26/2006 © 2006 IBM Corporation

Steamroller

Steamroller Testing: Example Output 3

= Verbose>=100 prints exponential and binary-
search probes (helps debug new tests):

nckenney@ uxl: ~/ steanroller$./sig exit --verbose 100

childdelay = 0 9:0:0 N

childdelay =1 9:0:0

childdelay = 2 9:0:0 > Exponential Search
chil ddelay = 18205 0:9:0

chil ddelay = 27308 0:0:9 »

childdelay = 17699 0:10:0)

childdelay = 12894 0:10:0

chi |l ddel ay = 20390 0:0:10 :

chil ddelay = 20355 0:3:7 > Binary Search
chil ddelay = 20372 0:1:9

chil ddelay = 20363 0:2:8 S

Race range: 9422:20372 spindelay units
steanroller: 9422 spindelay units
steanroller distribution: 29:10755: 166

8 01/26/2006 © 2006 IBM Corporation

Steamroller

Steamroller Testing: Complications...

= Need to control what runs on which CPU
= |f parent and child run on same CPU, no race!

= Interrupts, cache effects, &c perturb timings
= All sorts of things perturb fork()s timings!!!
= Process vs. pthread primitives

01/26/2006 © 2006 IBM Corporation

Steamroller

Steamroller Testing: Addressing Complications

s Need to control what runs on which CPU

= |f parent and

child run on same CPU, no race!

= Pass in cpuset to control child, force parent on

own CPU

= Interrupts, cache effects, &c perturb timings, and
all sorts of things perturb fork()s timings!!!

= Keep system quiet, run multiple times
= Use smart searching heuristics to locate race

= Shared varia
» Process vs. pt
= Working on t

ples to synchronize parent and child
Nread primitives

NIS one...

01/26/2006 © 2006 IBM Corporation

Steamroller

Steamroller Test Creation For Specific Races

How to Create New Steamroller
Tests for Specific Races...

01/26/2006 © 2006 IBM Corporation

Steamroller

Steamroller Program Structure

>Specific Tests

01/26/2006 © 2006 IBM Corporation

Steamroller

Steamroller Testing Recipe: Signal vs. exit() main

s Very simple mainprogram:
int main(int argc, char *argv[])

{

| ong chil dcpuset;
voi d *p;

chil dcpuset = steanroller_init(argc, argv);
p = (int *)mapnen(si zeof (struct sig test ctrl), -1);
search_and_steanrol ler(test _sig dfl__exit, p, childcpuset);

}

s steamroller_init(): parses args, calibrates spinloop, computes child
affinity mask (reserving one CPU for parent), and binding to
parent's CPU

s mapmem(): maps memory to be shared between parents and
children

s search_and_steamroller(): runs test on specified function
(test_sig_dfl __exit()), which must return STEAMROLLER_EARLY,
STEAMROLLER_RACED, or STEAMROLLER_LATE

13 01/26/2006 © 2006 IBM Corporation

Steamroller

Steamroller Testing Example: Signal vs. exit() test 1

Definitions and parent-child data structure:
#i ncl ude “steanroller.h”
struct sig_test _ctrl {
Int startfl ag;
I nt raced;
1
s Function declaration, local variables, and initialization:
Int test _sig dfl __exit(void *p, int parentspin, |long chil dcpuset)
{
int i1;
I nt pid;
I nt status;
struct sig test ctrl *stp = (struct sig test _ctrl *)p;

stp->startflag = O;
st p->raced = 0;

s General synchronization approach: fork() child, which affinities
itself to child cpuset, signals parent via stp->startflag. The parent
spins waiting for stp->startflag, then spins for specified parentspin.

01/26/2006 © 2006 IBM Corporation

Steamroller

Steamroller Testing Example: Signal vs. exit() test 2

s Child code:
If ((pid = fork()) == 0) {
sched_setaffinity(0, sizeof(childcpuset), &childcpuset);
stp->startflag = 1;
spi ndel ay(us2spi ndel ay(100));
st p->raced = 1;
_exit(0);
}
s Parent checks for fork() failure, then...

01/26/2006 © 2006 IBM Corporation

Steamroller

Steamroller Testing Example: Signal vs. exit() test 3

s Parent code:

1 while (stp->startflag == 0) conti nue; /[* Wait for child to start */
2 spi ndel ay(parentspin); [* Wait for specified spin tinme */
3if (waitpid(pid, &tatus, WNOHANG != 0) {
4 return STEAVROLLER LATE; [* Child died before we started */
51} else {
6 if (kill(pid, SIANT) !'=0) { /* Send racing kill() */
7 perror("kill");
8 exit(-1); /* Shoul d not happen */
9 }
10 wait(&status); /* How did child die? */
11 if (WFEXI TED(status)) {
12 return STEAMROLLER RACED; /[* child _exit() won the race */
13 } else if (WFSIGNALED(status)) {
14 if (stp->raced == 0) {
15 return STEAVMROLLER EARLY; /[* killed child before _exit() */
16 } else {
17 return STEAMROLLER RACED; /[* Kkill() won the race */
18 }
19 } else {
20 fprintf(stderr,
21 "strange exit after signal %d\n", status);
22 exit(-1); [* Shoul d not happen */
23}
24 }
1 [3 01/26/2006 © 2006 IBM Corporation

Steamroller

Steamroller Test Debugging: racescan()

voi d racescan(int (*f)(void *, int, |ong),
void *p, long childcpuset,
int start, int nult, int div,
int 1im
f. streamroller test function
p: pointer to shared memory for parent-child communications
childcpuset: CPUs for child. Function f will be called running on
the parent's CPU
start: spinloop count at which to start scan
mult: multiplier for exponential search
div: divider for exponential search
lim: spinloop count at which to stop
Prints out early/race/late summary for each spinloop count

01/26/2006 © 2006 IBM Corporation

Steamroller

Steamroller Test Debugging: racescan()

s Common problem: steamroller function never detects race
4 Sample output:

9:

COoORQWU OO

0:

e
©

PeLeeeLeeQ

@OOLOCD-DI—\OOO
L T T T T B |

child

- child
- child
- child
- child
- child
- child
- child
- child

child

HHHHHHHHFHHF

AN

8
16
32
64
128
256
512

. Test always reports either STEAMROLLER_EARLY or
STEAMROLLER_LATE, never STEAMROLLER_RACED

s Perhaps due to misinterpretation of error codes or having overly-
tight synchronization so that race cannot occur

01/26/2006 © 2006 IBM Corporation

Steamroller

Steamroller Test Strategy

Steamroller Internals

01/26/2006 © 2006 IBM Corporation

Steamroller

Steamroller Internals: search_and_steamroller()

s search_and_steamroller() code:

1 void search_and_steanroller(int (*f)(void *, int, long),

{

15 }

void *p, long childcpuset)

i nt before;
int after;
int resulttab[3];

if (!'racepowersearch(f, p, childcpuset, 0, 3, 2, INT_MAX, 10,
&before, &after)) {
fprintf(stderr, "Failed to bracket race.\n");

steamrol ler(f, p, childcpuset, before, after, resulttab);
printf("steanroller distribution: %d: %l: %\ n",
resulttab[0], resulttab[1l], resulttab[2]);

s racepowersearch() finds the race window using binary search. with
initial range from 0 to INT_MAX, using factor-of-1.5 power search

s steamroller() then cycles between the specified bounds

s Printing the number before, during, and after important diagnostic

20

01/26/2006 © 2006 IBM Corporation

Steamroller

Steamroller Internals: racepowersearch() 1

s racepowersearch() code initial search:

1 for (i =start; i <lim i =1 * mult / div + 1) {
2 raceeval (f, p, childcpuset, i, 9, resulttab);
3 I f (resulttab] STEAMROLLER EARLY] >= 7) {

4 early = 1i;

5 f oundbefore = 1;

6 } else if (resulttab] STEAMROLLER LATE] >= 7) {
7 I f (foundbefore) {

8 late = i;

9 foundafter = 1;

10 br eak;

11 } else {

12 return O;

13 }

14 }

15 }

s Return failure if cannot bound the race window
s Note statistical determination of boundary — seven of nine
s May need more flexibility/configurability longer term

01/26/2006 © 2006 IBM Corporation

Steamroller

Steamroller Internals: racepowersearch() 2

racepowersearch() code find lower bound of race window:

1 race = | ate;

2 do {

3 cur = (early + race) / 2;

4 i f (racevote(f, p, childcpuset,

5 cur, 10, STEAMROLLER EARLY, 9)) {
6 early = cur;

7 } else {

8 race = cur,

9 }

10 } while (race - early > eps);
11 *before = early;

s Similar code locates the upper bound of race window.

s |n this case, racevote() returns true if 9 of 10 evaluations of
function “f’ return STEAMROLLER_EARLY

01/26/2006 © 2006 IBM Corporation

\ Steamroller

Steamroller Testing

Discussion

01/26/2006 © 2006 IBM Corporation

Steamroller

Steamroller Testing: Experience

= Steamroller produced hangs on RCU signal
patches that passed kernbench and LTP

= But straightforward fixes were quite intrusive!!!
= Maintain per-tasklist lock for state changes

= Signal delivery acquires lock for thread, process,
or process group, depending on scope of signal

= However, was later “inspired” to create a much
simpler patch that was clearly correct

» Continuing to use it for testing realtime Linux™
kernels

01/26/2006 © 2006 IBM Corporation

Steamroller

Steamroller Testing: Limitations & Future Directions

— | L ||
np
i

= Only tests two operations at a time
= | have seen races involving up to five operations
= And probably more that | gave up on!!!
s But pairs covers a “good and sufficient” set
= And can always run a background test

= Keep it simple and focused!
= Works well when testing a small change
= Test the change against the related operations

01/26/2006 © 2006 IBM Corporation

Steamroller

Steamroller Testing: Limitations & Future Directions

N | L ||

= Combinatorial explosion
= | was hoping to write single tests and pair them
= But race detection is quite specific to each pairr...
s Hopefully will come up with a better way...

= State-based races can elude steamroller
= | arge race windows results in slow steamrolling
= No explicit pthreads support
= Can make the steamroller function fork a
pthreads child

= Or add additional pthreads APIs to steamroller.h
= Hoping for a third option...

01/26/2006 © 2006 IBM Corporation

Steamroller

Steamroller Testing: Limitations & Future Directions

W ol

= Hard to detect memory leaks
= Can use instrumentation if leak suspected, but...
= Tracks down races, but does not necessarily help
Isolate the actual problem

= Reproducible test case valuable nonetheless

= Subtle memory corruption caused by a bug
exposed by steamroller might take some time to
become visible

= Again, reproducible test case valuable
nonetheless

01/26/2006 © 2006 IBM Corporation

Steamroller

Legal Statement

= This work represents the view of the author and
does not necessarily represent the view of IBM.

= UNIX is a registered trademark of The Open Group
In the United States and other countries.

= Linux is a trademark of Linus Torvalds in the
United States, other countries, or both.

= Other company, product, or service names may be
trademarks or service marks of others.

01/26/2006 © 2006 IBM Corporation

Steamroller

http://www.rdrop.com/users/paulmck/projects/steamroller/

01/26/2006 © 2006 IBM Corporation

