
© 2006 IBM Corporation1 01/26/2006

Steamroller

2006 linux.conf.au Dunedin, New Zealand

“Steamroller” Testing

Paul E. McKenneyPaul E. McKenney
Distinguished EngineerDistinguished Engineer

IBM Linux Technology CenterIBM Linux Technology Center

Copyright © 2006 M. McKenney

© 2006 IBM Corporation2 01/26/2006

Steamroller

SMP Code: How to Know When it is Bug-Free?

Inspection
Manual
Automated (e.g., sparse)

Program analysis vs. model checking
Testing

Functional Testing
Stress Testing
Dynamic Validation (software, hardware)

Need all of these – but so what?

© 2006 IBM Corporation3 01/26/2006

Steamroller

Applying RCU to Linux Signal Path

Signal delivery read-acquires tasklist_lock
Degrades latency

Apply RCU to read-side code!!!
Straightforward application of “Reader-Writer-Lock/RCU
Analogy” design pattern, very naive
Expected failure – but code passed both kernbench and
LTP
No failure, nothing to debug – but can't be correct

Most UNIX® apps “learned” not to trust signal delivery too much!!!

Oleg Nesterov found some races (good eyes!!!),
but still need a good vicious test suite

A good test is more vicious than the users!!!

© 2006 IBM Corporation4 01/26/2006

Steamroller

Steamroller Testing: Taking a Leaf from History

One approach due to Jack Slingwine: force races
to happen!!! Rough pseudocode:
for (i = race_begin; i < race_end; i++) {
 retval = fork();
 if (retval == 0) {
 child();
 } else if (retval > 0) {
 for (j = 0; j < i; j++) continue;
 parent();
 } else {
 abort();
 }
}

In theory, forces every possible race to occur...
How to determine race_begin and race_end?

© 2006 IBM Corporation5 01/26/2006

Steamroller

Steamroller Schematic

Child Operation

Child OperationChild OperationChild OperationChild OperationChild OperationChild OperationChild OperationParent OperationParent OperationParent OperationParent OperationParent OperationParent OperationParent OperationParent OperationParent OperationParent OperationParent OperationParent OperationParent OperationParent OperationParent OperationParent OperationParent OperationParent Operation

Time

© 2006 IBM Corporation6 01/26/2006

Steamroller

Steamroller Testing: Example Output 1

Testing unicast signal against exit/wait:
mckenney@tux1:~/steamroller$./sig_exit
steamroller distribution: 73:10600:139

Verbose>=1 prints range:
mckenney@tux1:~/steamroller$./sig_exit --verbose 1
Race range: 9403:20566 spindelay units
steamroller distribution: 43:10515:605

Verbose>=2 prints progress every five seconds
mckenney@tux1:~/steamroller$./sig_exit --verbose 2
Race range: 9384:20174 spindelay units
steamroller: 9384 spindelay units
steamroller distribution: 61:10622:107

© 2006 IBM Corporation7 01/26/2006

Steamroller

Steamroller Testing: Example Output 2

Verbose>=2 for killpg vs. fork() storm:
mckenney@tux1:~/steamroller$./sigpg_forkstorm --verbose 2
Race range: 9561:56529 spindelay units
steamroller: 9561 spindelay units
steamroller: 17929 spindelay units
steamroller: 24842 spindelay units
steamroller: 31947 spindelay units
steamroller: 36858 spindelay units
steamroller: 40666 spindelay units
steamroller: 44745 spindelay units
steamroller: 49702 spindelay units
steamroller: 53958 spindelay units
steamroller distribution: 282:42457:4229

The fork storm self-limits, very useful if you have
subtly broken killpg...

© 2006 IBM Corporation8 01/26/2006

Steamroller

Steamroller Testing: Example Output 3

Verbose>=100 prints exponential and binary-
search probes (helps debug new tests):
mckenney@tux1:~/steamroller$./sig_exit --verbose 100
childdelay = 0 9:0:0
childdelay = 1 9:0:0
childdelay = 2 9:0:0
childdelay = 18205 0:9:0
childdelay = 27308 0:0:9
childdelay = 17699 0:10:0
childdelay = 12894 0:10:0
childdelay = 20390 0:0:10
childdelay = 20355 0:3:7
childdelay = 20372 0:1:9
childdelay = 20363 0:2:8
Race range: 9422:20372 spindelay units
steamroller: 9422 spindelay units
steamroller distribution: 29:10755:166

Exponential Search

 Binary Search

© 2006 IBM Corporation9 01/26/2006

Steamroller

Steamroller Testing: Complications...

Need to control what runs on which CPU

If parent and child run on same CPU, no race!

Interrupts, cache effects, &c perturb timings

All sorts of things perturb fork()s timings!!!

Process vs. pthread primitives

© 2006 IBM Corporation10 01/26/2006

Steamroller

Steamroller Testing: Addressing Complications

Need to control what runs on which CPU
If parent and child run on same CPU, no race!
Pass in cpuset to control child, force parent on
own CPU

Interrupts, cache effects, &c perturb timings, and
all sorts of things perturb fork()s timings!!!

Keep system quiet, run multiple times
Use smart searching heuristics to locate race
Shared variables to synchronize parent and child

Process vs. pthread primitives
Working on this one...

© 2006 IBM Corporation11 01/26/2006

Steamroller

Steamroller Test Creation For Specific Races

How to Create New Steamroller
Tests for Specific Races...

© 2006 IBM Corporation12 01/26/2006

Steamroller

Steamroller Program Structure

steamroller.h
Common functions and

data definitions

sig_exec.c

sig_exit.c

sig_fork.c

sig_reparent.c

 Specific Tests

© 2006 IBM Corporation13 01/26/2006

Steamroller

Steamroller Testing Recipe: Signal vs. exit() main

Very simple mainprogram:
int main(int argc, char *argv[])
{
 long childcpuset;
 void *p;

 childcpuset = steamroller_init(argc, argv);
 p = (int *)mapmem(sizeof(struct sig_test_ctrl), -1);
 search_and_steamroller(test_sig_dfl__exit, p, childcpuset);
}

steamroller_init(): parses args, calibrates spinloop, computes child
affinity mask (reserving one CPU for parent), and binding to
parent's CPU
mapmem(): maps memory to be shared between parents and
children
search_and_steamroller(): runs test on specified function
(test_sig_dfl__exit()), which must return STEAMROLLER_EARLY,
STEAMROLLER_RACED, or STEAMROLLER_LATE

© 2006 IBM Corporation14 01/26/2006

Steamroller

Steamroller Testing Example: Signal vs. exit() test 1

Definitions and parent-child data structure:
#include “steamroller.h”
struct sig_test_ctrl {
 int startflag;
 int raced;
};

Function declaration, local variables, and initialization:
int test_sig_dfl__exit(void *p, int parentspin, long childcpuset)
{
 int i;
 int pid;
 int status;
 struct sig_test_ctrl *stp = (struct sig_test_ctrl *)p;

 stp->startflag = 0;
 stp->raced = 0;

General synchronization approach: fork() child, which affinities
itself to child cpuset, signals parent via stp->startflag. The parent
spins waiting for stp->startflag, then spins for specified parentspin.

© 2006 IBM Corporation15 01/26/2006

Steamroller

Steamroller Testing Example: Signal vs. exit() test 2

Child code:
 if ((pid = fork()) == 0) {
 sched_setaffinity(0, sizeof(childcpuset), &childcpuset);
 stp->startflag = 1;
 spindelay(us2spindelay(100));
 stp->raced = 1;
 _exit(0);
 }

Parent checks for fork() failure, then...

© 2006 IBM Corporation16 01/26/2006

Steamroller

Steamroller Testing Example: Signal vs. exit() test 3

Parent code:
 1 while (stp->startflag == 0) continue; /* Wait for child to start */
 2 spindelay(parentspin); /* Wait for specified spin time */
 3 if (waitpid(pid, &status, WNOHANG) != 0) {
 4 return STEAMROLLER_LATE; /* Child died before we started */
 5 } else {
 6 if (kill(pid, SIGINT) != 0) { /* Send racing kill() */
 7 perror("kill");
 8 exit(-1); /* Should not happen */
 9 }
 10 wait(&status); /* How did child die? */
 11 if (WIFEXITED(status)) {
 12 return STEAMROLLER_RACED; /* child _exit() won the race */
 13 } else if (WIFSIGNALED(status)) {
 14 if (stp->raced == 0) {
 15 return STEAMROLLER_EARLY; /* killed child before _exit() */
 16 } else {
 17 return STEAMROLLER_RACED; /* kill() won the race */
 18 }
 19 } else {
 20 fprintf(stderr,
 21 "strange exit after signal%d\n", status);
 22 exit(-1); /* Should not happen */
 23 }
 24 }

© 2006 IBM Corporation17 01/26/2006

Steamroller

Steamroller Test Debugging: racescan()

void racescan(int (*f)(void *, int, long),
 void *p, long childcpuset,
 int start, int mult, int div,
 int lim)

f: streamroller test function
p: pointer to shared memory for parent-child communications
childcpuset: CPUs for child. Function f will be called running on
the parent's CPU
start: spinloop count at which to start scan
mult: multiplier for exponential search
div: divider for exponential search
lim: spinloop count at which to stop
Prints out early/race/late summary for each spinloop count

© 2006 IBM Corporation18 01/26/2006

Steamroller

Steamroller Test Debugging: racescan()

Common problem: steamroller function never detects race
Sample output:
9:0:0 -- child # 1
9:0:0 -- child # 2
9:0:0 -- child # 4
8:0:1 -- child # 8
5:0:4 -- child # 16
3:0:6 -- child # 32
0:0:9 -- child # 64
1:0:8 -- child # 128
0:0:9 -- child # 256
0:0:9 -- child # 512

Test always reports either STEAMROLLER_EARLY or
STEAMROLLER_LATE, never STEAMROLLER_RACED

Perhaps due to misinterpretation of error codes or having overly-
tight synchronization so that race cannot occur

© 2006 IBM Corporation19 01/26/2006

Steamroller

Steamroller Test Strategy

Steamroller Internals

© 2006 IBM Corporation20 01/26/2006

Steamroller

Steamroller Internals: search_and_steamroller()

search_and_steamroller() code:
 1 void search_and_steamroller(int (*f)(void *, int, long),
 2 void *p, long childcpuset)
 3 {
 4 int before;
 5 int after;
 6 int resulttab[3];
 7
 8 if (!racepowersearch(f, p, childcpuset, 0, 3, 2, INT_MAX, 10,
 9 &before, &after)) {
 10 fprintf(stderr, "Failed to bracket race.\n");
 11 }
 12 steamroller(f, p, childcpuset, before, after, resulttab);
 13 printf("steamroller distribution: %d:%d:%d\n",
 14 resulttab[0], resulttab[1], resulttab[2]);
 15 }

racepowersearch() finds the race window using binary search. with
initial range from 0 to INT_MAX, using factor-of-1.5 power search
steamroller() then cycles between the specified bounds
Printing the number before, during, and after important diagnostic

© 2006 IBM Corporation21 01/26/2006

Steamroller

Steamroller Internals: racepowersearch() 1

racepowersearch() code initial search:
 1 for (i = start; i < lim; i = i * mult / div + 1) {
 2 raceeval(f, p, childcpuset, i, 9, resulttab);
 3 if (resulttab[STEAMROLLER_EARLY] >= 7) {
 4 early = i;
 5 foundbefore = 1;
 6 } else if (resulttab[STEAMROLLER_LATE] >= 7) {
 7 if (foundbefore) {
 8 late = i;
 9 foundafter = 1;
 10 break;
 11 } else {
 12 return 0;
 13 }
 14 }
 15 }

Return failure if cannot bound the race window
Note statistical determination of boundary – seven of nine

May need more flexibility/configurability longer term

© 2006 IBM Corporation22 01/26/2006

Steamroller

Steamroller Internals: racepowersearch() 2

racepowersearch() code find lower bound of race window:
 1 race = late;
 2 do {
 3 cur = (early + race) / 2;
 4 if (racevote(f, p, childcpuset,
 5 cur, 10, STEAMROLLER_EARLY, 9)) {
 6 early = cur;
 7 } else {
 8 race = cur;
 9 }
 10 } while (race - early > eps);
 11 *before = early;

Similar code locates the upper bound of race window.
In this case, racevote() returns true if 9 of 10 evaluations of
function “f” return STEAMROLLER_EARLY

© 2006 IBM Corporation23 01/26/2006

Steamroller

Steamroller Testing

Discussion

© 2006 IBM Corporation24 01/26/2006

Steamroller

Steamroller Testing: Experience

Steamroller produced hangs on RCU signal
patches that passed kernbench and LTP
But straightforward fixes were quite intrusive!!!

Maintain per-tasklist lock for state changes

Signal delivery acquires lock for thread, process,
or process group, depending on scope of signal

However, was later “inspired” to create a much
simpler patch that was clearly correct
Continuing to use it for testing realtime LinuxTM
kernels

© 2006 IBM Corporation25 01/26/2006

Steamroller

Steamroller Testing: Limitations & Future Directions 1

Only tests two operations at a time
I have seen races involving up to five operations
And probably more that I gave up on!!!
But pairs covers a “good and sufficient” set
And can always run a background test

Keep it simple and focused!

Works well when testing a small change

Test the change against the related operations

© 2006 IBM Corporation26 01/26/2006

Steamroller

Steamroller Testing: Limitations & Future Directions 2

Combinatorial explosion
I was hoping to write single tests and pair them
But race detection is quite specific to each pair...
Hopefully will come up with a better way...

State-based races can elude steamroller
Large race windows results in slow steamrolling
No explicit pthreads support

Can make the steamroller function fork a
pthreads child
Or add additional pthreads APIs to steamroller.h
Hoping for a third option...

© 2006 IBM Corporation27 01/26/2006

Steamroller

Steamroller Testing: Limitations & Future Directions 3

Hard to detect memory leaks
Can use instrumentation if leak suspected, but...

Tracks down races, but does not necessarily help
isolate the actual problem

Reproducible test case valuable nonetheless
Subtle memory corruption caused by a bug
exposed by steamroller might take some time to
become visible

Again, reproducible test case valuable
nonetheless

© 2006 IBM Corporation28 01/26/2006

Steamroller

Legal Statement

This work represents the view of the author and
does not necessarily represent the view of IBM.
UNIX is a registered trademark of The Open Group
in the United States and other countries.
Linux is a trademark of Linus Torvalds in the
United States, other countries, or both.
Other company, product, or service names may be
trademarks or service marks of others.

© 2006 IBM Corporation29 01/26/2006

Steamroller

Questions?

http://www.rdrop.com/users/paulmck/projects/steamroller/

Copyright © 2006 M. McKenney

