
© 2005 IBM Corporation1 10/02/05

Realtime Response on SMP Systems

Linux Realtime Response:

The CONFIG_PREEMPT Patch Set

© 2005 IBM Corporation2 10/02/05

Overview

Production Systems and Realtime Response
Isn't Realtime a Single-CPU Thing?
What Does Realtime Entail?
Linux Approaches to Realtime Response
CONFIG_PREEMPT_RT Patch
Priority Inversion and Reader-Writer Locking
Administrative Tools
Summary

© 2005 IBM Corporation3 10/02/05

Production Systems and Realtime Response

System Administrators Must:
1960: Keep system running
1970: Control user access to system
1980: Keep network running
1990: Keep system performing and scaling
2000: Keep cluster/datacenter running
2010: Keep system responding in real time
2020: Keep Internet responding in real time?

Or maybe just cluster/datacenter...

© 2005 IBM Corporation4 10/02/05

Why Realtime Response???

Moore's Law: AKA “because we can”
Cell phones are more powerful than 1970s mainframes, and
therefore can support “real” operating systems (see next slide)

Software “network effects”: common platform & software
“Nintendo Generation”

Grew up with sub-reflex response time from computers
Now are entering jobs controlling computer purchases

Human-computer interaction changes when response time
drops below about 100 milliseconds

Much more natural and fluid, much more productive
And can developed countries afford to continue to pay their
people to stare at hourglasses???

But this problem extends far above the operating system...
Delays accumulate across networks of machines

© 2005 IBM Corporation5 10/02/05

Moore's Law as Illustrated by Sequent Computers

© 2005 IBM Corporation6 10/02/05

OR

Isn't Realtime a Single-CPU Thing?

Historical Realtime:
•Few CPUs
•Latency Guarantees
•Non-Standard

Historical SMP:
•Many CPUs
•No Guarantees
•Standard (and OSS)

SMP Realtime:
•Many CPUs
•Latency Guarantees
•Standard (and OSS)

Convergence

•User Demand (DoD, Financial, Gaming, ...)
•Techological Changes Leading to Commodity SMP

•Hardware Multithreading
•Multi-Core Dies
•Tens to Hundreds of CPUs per Die – Or More

Today's Systems

Emerging Systems

But Not Both!!!

© 2005 IBM Corporation7 10/02/05

What Does Realtime Entail?

Quality of Service (Beyond “Hard”/“Soft”)
Services Supported

Probability of meeting deadline absent HW failure
Deadlines supported

Performance/Scalability for RT & non-RT Code
Amount of Global Knowledge Required
Fault Isolation
HW/SW Configurations Supported

“But Will People Use It?”

© 2005 IBM Corporation8 10/02/05

Linux Realtime Approaches (Violently Abbreviated)

Project Inspection API Complexity HW/SW Configs

All N/A None All

PREEMPT N/A None All

Nested OS RTOS + int-disable RTOS Good All

All RTOS RTOS Excellent Specialized

PREEMPT_RT None

OK All?

Small patch None All?

Quality of
Service

Fault
Isolation

Vanilla Linux
Kernel

10s of ms all
services

POSIX + RT
extensions

100s of us
Schd, Int

All spinlock
critsect, preempt-
& int-disable

POSIX + RT
extensions

~10 us
RTOS svs

Dual
environment

Dual-OS /
Dual-Core

<1 us RTOS
svcs

Dual
environment

10s of us
Schd, Int

All preempt- & int-
disable (most ints
in process ctxt)

POSIX + RT
extensions

“Modest”
patch

All (except some
drivers)

Migration
Between OSes

? us
RTOS svcs

All RTOS + int-
disable

RTOS (can
be POSIX)

Dual env.
(Fusion)

Migration
Within OS

? us
RTOS svcs

Scheduler + RT
syscalls

POSIX + RT
extensions

© 2005 IBM Corporation9 10/02/05

Examples of Linux Approaches

Nested OS:
RTLinux, L4Linux, I-pipe (latency from RTLinux)

Dual-OS/Dual-Core:
Huge numbers of real products, e.g., cell phones

Migration Between OSes:
RTAI-Fusion

Migration Within OS:
ARTiS (Asymmetric Real-Time Scheduling)

© 2005 IBM Corporation10 10/02/05

Related Patches & Components

High-Resolution Timers (HRT)
Avoids “three-millisecond shuffle”
Additional code provides fine-grained timers
“ktimers” seems to be superseding HRT

Variable idle Sleep Time (VST)
Suppress unneeded timer ticks, CONFIG_VST
Also helps virtualization/consolidation

Robust Mutexes / “fusyn”
Priority inheritance for user-level mutexes

Such as pthread_mutex

Isolcpus + interrupt-shielding patches & config
options

© 2005 IBM Corporation11 10/02/05

Other Patches That Might Appear. Someday.

Deterministic I/O
Disk I/O – or, more likely, Flash memory
Network protocols

Datagram protocols (UDP) relatively straightforward
“Reliable” protocols (TCP, SCTP) more difficult
Maintaining low network utilization is key workaround

Other Priority Inheritance
Across memory allocation

Boost priority of someone who is about to free...
Reader-writer locks with concurrent readers

Writer-to-reader boosting problematic
Across networks (automated cattle prod for users???)
Across RCU when OOM (this one is straightforward!)

© 2005 IBM Corporation12 10/02/05

CONFIG_PREEMPT_RT Patch: Philosophy

Leverage Linux Kernel's SMP Capability
Any code segment must be able to tolerate
interference from some other CPU

That is what SMP locking is all about, after all!!!
This property can be leveraged to support
“macho preemption”

But no need to actually remove a CPU
No high-overhead CPU-hotplug events, please!

© 2005 IBM Corporation13 10/02/05

CONFIG_PREEMPT_RT Patch: Philosophy

A

B

C

CPU 0 CPU 1

A

B

C

Task 0 Task 1

CPU 1

Preemption

Happy coincidence: that which helps scalability usually also helps realtime latency!!!

© 2005 IBM Corporation14 10/02/05

CONFIG_PREEMPT_RT Patch: Caveats

Some Changes Were Required
Spinlocks can now sleep

“Raw” spinlock facility for the few locks that cannot
tolerate sleeping (e.g., scheduler locks)

Must now explicitly protect per-CPU variables
Explicitly disable preemption or interrupts
Use get_cpu_var() API
Use DEFINE_PER_CPU_LOCKED() facility

Avoids realtime latency degradation
Interrupt handlers can now be preempted

As can “interrupt disable” code sequences
But Numerous SMP Bugs Were Located!

© 2005 IBM Corporation15 10/02/05

Preempting Interrupt Handlers: IRQ Threads

R
et

ur
n

Fr
om

In
te

rr
up

t

Mainline
Code

In
te

rr
up

t

IRQ Handler Mainline
Code

R
et

u r
n

Fr
om

In
te

rr
up

t

Mainline
Code

In
te

rr
up

t

IRQ Handler

Mainline
CodeIRQ

IRQ
Thread

© 2005 IBM Corporation16 10/02/05

Preempting Interrupt Handlers: IRQ Threads

R
et

u r
n

Fr
om

In
te

rr
up

t

Mainline
Code

In
te

rr
up

t

IRQ Handler

Mainline
CodeIRQ IRQ

Thread

Preempting Realtime Thread

© 2005 IBM Corporation17 10/02/05

In-Kernel Primitives

So what does it mean to disable interrupts???
Disabling preemption will do the trick

And so local_irq_disable() and friends disable preemption
But disabling preemption degrades latency, so use of locks is usually
preferable
Except that the scheduling-clock interrupt is still a “real” interrupt

Marked with SA_NODELAY
So raw_local_irq_disable() and friends disable “real” interrupts

Per-CPU variables prone to preemption, so “locked” per-CPU
variables

DEFINE_PER_CPU_LOCKED, DECLARE_PER_CPU_LOCKED,
get_per_cpu_locked, put_per_cpu_locked, per_cpu_lock,
per_cpu_locked

© 2005 IBM Corporation18 10/02/05

More In-Kernel Primitives

spinlock_t is preemptible and participates in priority inheritance
But the runqueue spinlocks cannot be preempted (why?)
So there is raw_spinlock_t for “pure spinlock”

Ditto for rwlock_t and raw_rwlock_t
seqlock_t is preemptible, and participates in priority inheritance on
the update side
struct semaphore participates in priority inheritance

But priority inheritance does not make sense in event
mechanisms (why?)
So there is a struct compat_semaphore with no inheritance

Ditto for struct rw_semaphore and struct compat_rw_semaphore

© 2005 IBM Corporation19 10/02/05

Semaphores as Event Mechanisms

Semaphores have associated “count”, initialize to “1” for sleeplock
First task's “down()” proceeds
Second task's “down()” blocks until first task does “up()”
Any task doing a “down()” must eventually do an “up()”
So if blocked on down(), give priority to whoever succeeded on
last “down()” so that they get to their “up()” more quickly

Initialize count to “0” for event
First task's “down()” blocks: wait for event
Task that detects event does “up()”
How to tell which task will detect event?
And why would raising that task's priority make the event
happen more quickly???

“Are we there yet?”
Thus: priority-inheritance-immune compat_semaphore for events

© 2005 IBM Corporation20 10/02/05

Priority Inversion

Process P1 needs Lock L1, held by P2
Process P2 has been preempted by medium-
priority processes

Consuming all available CPUs
Process P1 is blocked by lower-priority processes

High-Priority
Process P1 Lock 1Acquire Low-Priority

Process P2Hold

Medium-Priority
Processes

Medium-Priority
Processes

Medium-Priority
Processes

Medium-Priority
Processes

(One Per CPU)

Preempt

© 2005 IBM Corporation21 10/02/05

Preventing Priority Inversion

Trivial solution: Prohibit preemption while holding locks
But degrades latency!!! Especially for sleeplocks!!!!

Simple solution: “Priority Inheritance”: P2 “inherits” P1's priority
But only while holding a lock that P1 is attempting to acquire
Standard solution, very heavily used

Either way, prevent the low-priority process from being preempted

High-Priority
Process P1 Lock 1Acquire Low-Priority

Process P2Hold

Medium-Priority
Processes

Medium-Priority
Processes

Medium-Priority
Processes

Medium-Priority
Processes

(One Per CPU)

Preempt

Priority Inheritance

© 2005 IBM Corporation22 10/02/05

Priority Inversion and Reader-Writer Locking

Process P1 needs Lock L1, held by P2, P3, and P4
Each of which is waiting on yet another lock

read-held by yet more low-priority processes
preempted by medium-priority processes

Process P1 will have a long wait, despite its high priority
Even given priority inheritance: many processes to boost!

And a great many processes might need to be priority-boosted
Further degrading P1's realtime response latency

High-Priority
Process P1

Lock 1

Write
Acquire Low-Priority

Process P3

Low-Priority
Process P2

Low-Priority
Process P4

Read
Hold

Read
Hold

Lock 2

Lock 4

Lock 3

Write
Acquire

Write
Acquire

Write
Acquire

Read Hold
Read Hold

Read Hold
Read Hold

Read Hold
Read Hold

Medium-Priority
Processes

Medium-Priority
Processes

Medium-Priority
Processes

Medium-Priority
Processes

(One Per CPU)

Preempt

© 2005 IBM Corporation23 10/02/05

Priority Inheritance and Reader-Writer Lock

Real-time operating systems have taken the following approaches to writer-to-
reader priority boosting:

Boost only one reader at a time
Reasonable on a single-CPU machine, except in presence of readers that can
block for other reasons.
Extremely ineffective on an SMP machine, as the writer must wait for readers
to complete serially rather than in parallel

Boost a number of readers equal to the number of CPUs
Works well even on SMP, except in presence of readers that can block for
other reasons (e.g., acquiring other locks)

Permit only one task at a time to read-hold a lock (PREEMPT_RT)
Very fast priority boosting, but severe read-side locking bottlenecks

All of these approaches have heavy bookkeeping costs
Priority boost propagates transitively through multiple locks
Processes holding multiple locks may receive multiple priority boosts to different
priority levels, actual boost must be to maximum level
Priority boost reduced (perhaps to intermediate level) when locks released

Need something better...
Linux provides RCU!

© 2005 IBM Corporation24 10/02/05

Priority Inversion and RCU: What is RCU?

Analogous to reader-writer lock, but readers acquire no locks
Readers therefore cannot block writers
Reader-to-writer priority inversion is therefore impossible

Writers break updates into “removal” and “reclamation” phases
Removals do not interfere with readers
Reclamations deferred until all readers drop references

Readers cannot obtain references to removed items
RCU used in production for over a decade by IBM (and Sequent)
IBM recently adapted RCU for realtime use in Linux

Readers

ReclaimerRemover

ReadersReadersReaders

Remover Identifies Removed Objects

Readers Indicate When DoneReaders and Updaters
Use Memory Barriers
As Needed by CPU

Architectures
(Linux Handles This)

© 2005 IBM Corporation25 10/02/05

Priority Inversion and RCU

Process P1 needs Lock L1, but P2, P3, and P4 now use RCU
P2, P3, and P4 therefore need not hold L1
Process P1 thus immediately acquires this lock
Even though P2, P3, and P4 are preempted by the per-CPU medium-
priority processes

No priority inheritance required
Except if low on memory: permit reclaimer to free up memory

Excellent realtime latencies: medium-priority processes can run
High-priority process proceeds despite low-priority process preemption
If sufficient memory...

High-Priority
Process P1

Lock 1
Acquire

Low-Priority
Process P3

Low-Priority
Process P2

Low-Priority
Process P4

RCU

RCU

RCU

Lock 2

Lock 4

Lock 3

Write
Acquire

Write
Acquire

Write
Acquire

RCU
RCU

RCU
RCU

RCU
RCU

Medium-Priority
Processes

Medium-Priority
Processes

Medium-Priority
Processes

Medium-Priority
Processes

(One Per CPU)

Preempt

© 2005 IBM Corporation26 10/02/05

Realtime and RCU

RCU exploited in PREEMPT_RT patchset to reduce latencies
“kill()” system-call RCU prototype provided large reduction in
latency
Expect similar benefits for pthread_cond_broadcast() and
pthread_cond_signal()

Current PREEMPT_RT realtime Linux provides relatively few
realtime services

Process scheduling, interrupts, some signals
Increasing the number of realtime services will likely require
additional exploitation of RCU

And will likely require that RCU readers be priority-boosted when
low on memory

© 2005 IBM Corporation27 10/02/05

Provable Realtime Guarantees

Linux approaches to realtime reduce amount of code that must be
inspected in order to derive realtime guarantees

In PREEMPT_RT patchset, only need to inspect code with:
Interrupts disabled
Preemption disabled
High-latency hardware interactions

However, commercial market is primarily soft realtime rather than
hard realtime

Needed soft-realtime guarantees established via testing

© 2005 IBM Corporation28 10/02/05

Tools and Systems Administration

Linux has plenty of fault-isolation tools
“ps”, “top”, network monitoring, memory consumption, resource
limits, error logging, ...
Intent: find functional and performance problems

Linux will need latency-isolation tools
Determine what is imposing poor latency

Report and/or fix problem
Avoid using problematic part of system

These are starting to appear...

© 2005 IBM Corporation29 10/02/05

Tools & Systems Administration: CONFIG Options

CRITICAL_PREEMPT_TIMING: measure maximum time that
preemption is disabled
CRITICAL_IRQSOFF_TIMING: measure maximum time that
hardware interrupts are disabled
DETECT_SOFTLOCKUP: dump stack of any process spending
more than 10 seconds in kernel without rescheduling
LATENCY_TRACE: record function-call traces of long-latency
events
RT_DETECT_DEADLOCK: find deadlock cycles
RTC_HISTOGRAM: generate latency histograms
WAKEUP_TIMING: measure maximum time from when high-
priority task is awakened until it actually starts running

© 2005 IBM Corporation30 10/02/05

Summary

Realtime requirements will start appearing more widely
SMP systems starting to support realtime, courtesy of commodity
realtime (multicore, multithreaded) SMP hardware
Systems administrators will start needing to worry about realtime
latency

Just as they started worrying about users, networks,
performance, clustering, and so on...

Tools to measure and manage latency are starting to appear, but
are in their infancy

Computing will continue to be exciting!!!

