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CPU Hotplug Offline Process

CPU_DOWN_PREPARE
L L Failed
Failed
» CPU_DOWN_FAILED
cpu_hotplug.lock held

All other CPUs spinning with
interrupts off while outgoing CPU
is in CPU_DYING notifiers |

cpu_add_remove_lock held



CPU Hotplug Online Process

CPU_UP_PREPARE
Succeeded L L Failed
Failed
CPU_STARTING » CPU_UP_CANCELLED
Succeededi
CPU_ONLINE |
cpu_hotplug.lock held



CPU Hotplug Is Not Atomic

Scheduler
IPls RCU
Valid notifier order for online: Reality will intrude...
* IPIs  RCU depends on scheduler
« RCU e Circular dependency!
« Scheduler Must further decompose RCU and

Must reverse order for offline scheduler interaction



Source of CPU-Hotplug Latency

Cpu up l&ency measwrement
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Source: Vincent Guittot (https://wiki.linaro.org/WorkingGroups/PowerManagement/Doc/Hotplug), reproduced by Silas Boyd-Wickizer


https://wiki.linaro.org/WorkingGroups/PowerManagement/Doc/Hotplug

Parking Per-CPU kthreads

 Thomas Gleixner patchset:

« kthread create_on_cpu(...)

« kthread_should park(void)

« kthread park(struct task_struct *k)
kthread unpark(struct task_struct *k)

e kthread parkme(void)

 smpboot_register percpu_thread(struct smp_hotplug_thread *plug_thread);

« smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread);
smpboot_thread check parking(struct smpboot_thread data *td);

. ThIS approach should remove per-CPU kthread
creation overhead

e Also move notification to kthreads, offline in kthread



for each _online cpul()

* More than 300 uses of this primitive
* To many to reliably classify by hand
» Silas Boyd-Wickizer automating classification

» Uses “sparse” static-analysis tool for Linux kernel

» |everage sparse “address spaces”

- ldentify usage contexts

- For example, uses protected by get_online_cpus() need
not change when CPU offline moves away from

stop_machine()



Alternative Approaches Considered

» Continue using existing CPU hotplug
* Not feasible: slow, unreliable, disruptive to real time

* Modify CPU hotplug to reverse offline notifier
order

 Doesn't help with kthread creation overhead
« Dump CPU hotplug in favor of something new

e Still need to clear all current and future work from
each CPU, so similar complexity required

e Plus still need CPU hotplug for failing hardware



Possible Issues With Approach

» Old-style interrupt controllers
» Scheduler-RCU circular dependency

» Early-boot initialization (before kthreads can be
created)

 X86 MTRRs on hyperthreaded systems still
require quiesce (but faster than CPU _DYING)

» Scanning online CPUs and changing
for _each online cpu() semantics
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