

Cleaning Up Linux’s CPU Hotplug
For Real Time and Energy

Management

Thomas Gleixner (Linutronix)
Paul E. McKenney (IBM Linux Technology Center assigned to Linaro)
Vincent Guittot (ST-Ericsson assigned to Linaro)

CPU Hotplug Offline Process

CPU_DOWN_PREPARE

CPU_DYING CPU_DOWN_FAILED

FailedSucceeded

CPU_DEAD

CPU_POST_DEAD
All other CPUs spinning with
interrupts off while outgoing CPU
is in CPU_DYING notifiers

cpu_hotplug.lock held

cpu_add_remove_lock held

Succeeded

Failed

CPU Hotplug Online Process

CPU_UP_PREPARE

CPU_STARTING CPU_UP_CANCELLED

FailedSucceeded

CPU_ONLINE

cpu_hotplug.lock held

cpu_add_remove_lock held

Succeeded

Failed

CPU Hotplug Is Not Atomic

Scheduler

IPIs RCU

Valid notifier order for online:
● IPIs
● RCU
● Scheduler
Must reverse order for offline

Reality will intrude...
● RCU depends on scheduler
● Circular dependency!
Must further decompose RCU and
scheduler interaction

Source of CPU-Hotplug Latency

Source: Vincent Guittot (https://wiki.linaro.org/WorkingGroups/PowerManagement/Doc/Hotplug), reproduced by Silas Boyd-Wickizer

https://wiki.linaro.org/WorkingGroups/PowerManagement/Doc/Hotplug

Parking Per-CPU kthreads

● Thomas Gleixner patchset:
● kthread_create_on_cpu(...)
● kthread_should_park(void)
● kthread_park(struct task_struct *k)
● kthread_unpark(struct task_struct *k)
● kthread_parkme(void)
● smpboot_register_percpu_thread(struct smp_hotplug_thread *plug_thread);
● smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread);
● smpboot_thread_check_parking(struct smpboot_thread_data *td);

● This approach should remove per-CPU kthread
creation overhead
● Also move notification to kthreads, offline in kthread

for_each_online_cpu()

● More than 300 uses of this primitive
● To many to reliably classify by hand

● Silas Boyd-Wickizer automating classification
● Uses “sparse” static-analysis tool for Linux kernel
● Leverage sparse “address spaces”

– Identify usage contexts
– For example, uses protected by get_online_cpus() need

not change when CPU offline moves away from
stop_machine()

Alternative Approaches Considered

● Continue using existing CPU hotplug
● Not feasible: slow, unreliable, disruptive to real time

● Modify CPU hotplug to reverse offline notifier
order
● Doesn't help with kthread creation overhead

● Dump CPU hotplug in favor of something new
● Still need to clear all current and future work from

each CPU, so similar complexity required
● Plus still need CPU hotplug for failing hardware

Possible Issues With Approach

● Old-style interrupt controllers
● Scheduler-RCU circular dependency
● Early-boot initialization (before kthreads can be

created)
● X86 MTRRs on hyperthreaded systems still

require quiesce (but faster than CPU_DYING)
● Scanning online CPUs and changing

for_each_online_cpu() semantics

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

