Cleaning Up Linux’s CPU Hotplug
For Real Time and Energy
Management

Thomas Gleixner (Linutronix)
Paul E. McKenney (IBM Linux Technology Center assigned to Linaro)
Vincent Guittot (ST-Ericsson assigned to Linaro)

CPU Hotplug Offline Process

CPU_DOWN_PREPARE
L L Failed
Failed
» CPU_DOWN_FAILED
cpu_hotplug.lock held

All other CPUs spinning with
interrupts off while outgoing CPU
is in CPU_DYING notifiers |

cpu_add_remove_lock held

CPU Hotplug Online Process

CPU_UP_PREPARE
Succeeded L L Failed
Failed
CPU_STARTING » CPU_UP_CANCELLED
Succeededi
CPU_ONLINE |
cpu_hotplug.lock held

CPU Hotplug Is Not Atomic

Scheduler
IPls RCU
Valid notifier order for online: Reality will intrude...
* IPIs RCU depends on scheduler
« RCU e Circular dependency!
« Scheduler Must further decompose RCU and

Must reverse order for offline scheduler interaction

Source of CPU-Hotplug Latency

Cpu up l&ency measwrement

4 5e+06
Cpu_up durdion 1400
1e+06 ach up duraion
) [y)
7 T 7 1
35e+06 | o (2] o o 4 1200
5 5 & ©
— w0 (. oo
Je+l6 = = = 1 1000
2 5ot 3
50 T 4 800 5
£ E
% 2e+lb E
5 1 600 B
15e+lB [
4 400
le+06
500000 4 200
D 1 1 1 1 D

0 50 100 egige 150 200 250

Source: Vincent Guittot (https://wiki.linaro.org/WorkingGroups/PowerManagement/Doc/Hotplug), reproduced by Silas Boyd-Wickizer

https://wiki.linaro.org/WorkingGroups/PowerManagement/Doc/Hotplug

Parking Per-CPU kthreads

 Thomas Gleixner patchset:

« kthread create_on_cpu(...)

« kthread_should park(void)

« kthread park(struct task_struct *k)
kthread unpark(struct task_struct *k)

e kthread parkme(void)

 smpboot_register percpu_thread(struct smp_hotplug_thread *plug_thread);

« smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread);
smpboot_thread check parking(struct smpboot_thread data *td);

. ThIS approach should remove per-CPU kthread
creation overhead

e Also move notification to kthreads, offline in kthread

for each _online cpul()

* More than 300 uses of this primitive
* To many to reliably classify by hand
» Silas Boyd-Wickizer automating classification

» Uses “sparse” static-analysis tool for Linux kernel

» |everage sparse “address spaces”

- ldentify usage contexts

- For example, uses protected by get_online_cpus() need
not change when CPU offline moves away from

stop_machine()

Alternative Approaches Considered

» Continue using existing CPU hotplug
* Not feasible: slow, unreliable, disruptive to real time

* Modify CPU hotplug to reverse offline notifier
order

 Doesn't help with kthread creation overhead
« Dump CPU hotplug in favor of something new

e Still need to clear all current and future work from
each CPU, so similar complexity required

e Plus still need CPU hotplug for failing hardware

Possible Issues With Approach

» Old-style interrupt controllers
» Scheduler-RCU circular dependency

» Early-boot initialization (before kthreads can be
created)

 X86 MTRRs on hyperthreaded systems still
require quiesce (but faster than CPU _DYING)

» Scanning online CPUs and changing
for _each online cpu() semantics

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

