
© 2013 IBM Corporation

Improving Energy Efficiency On Asymmetric
Multiprocessing Systems

Work done while assigned to Linaro,
Joint work with Dietmar Eggeman and Robin Randhawa (ARM Ltd.)

Paul E. McKenney, IBM Distinguished Engineer, Linux Technology Center
Member, IBM Academy of Technology

Linux Plumbers Conference, New Orleans, LA, USA September 19, 2013

© 2013 IBM Corporation2

Linux Plumbers Conference, September 20 2013

Overview

ARM big.LITTLE Architecture

ARM big.LITTLE Energy-Efficiency Strategy

Review: Morten Rasmussen Approach

RCU and big.LITTLE Energy Efficiency

© 2013 IBM Corporation3

Linux Plumbers Conference, September 20 2013

ARM big.LITTLE Architecture

© 2013 IBM Corporation4

Linux Plumbers Conference, September 20 2013

What is big.LITTLE?

 “Continuation of voltage/frequency scaling by other means”
–Low voltage and frequency: Per-transistor leakage dominates power
–Therefore need to reduce the number of transistors
–But need the full complement of transistors for good performance

Solution: Have two sets of CPUs
–Cortex A15: “big” CPUs with deep pipelines and many functional units

• Optimized for performance
–Cortex A7: “LITTLE” CPUs with short pipelines and few functional units

• Optimized for energy efficiency
–Get high performance and good energy efficiency

Two basic configurations:
–big.LITTLE switcher
–big.LITTLE MP (the focus of this talk)

© 2013 IBM Corporation5

Linux Plumbers Conference, September 20 2013

What is big.LITTLE MP?

Each physical CPU, whether big or LITTLE, is separately
visible to kernel and to applications

Allows any combination of big and LITTLE CPUs to be used
concurrently, but requires more awareness of big.LITTLE

–Emulation: Need software before hardware is available
–Applications: Need application awareness until kernel support
–Test workloads: Need to enable tests without big.LITTLE hardware
–CPU hotplug: There will be corner cases...
–Scheduler: Automation of CPU choice is the ideal

© 2013 IBM Corporation6

Linux Plumbers Conference, September 20 2013

ARM big.LITTLE Architecture

Cortex-A15 Cortex-A15

Cortex-A7 Cortex-A7 Cortex-A7

Twice as fast

~3 times more
energy efficient

big

LITTLE

© 2013 IBM Corporation7

Linux Plumbers Conference, September 20 2013

ARM big.LITTLE Architecture

Cortex-A15 Cortex-A15

Cortex-A7 Cortex-A7 Cortex-A7

Twice as fast

~3 times more
energy efficient

big

LITTLE

Unfortunately, the Linux kernel assumes all CPUs are similar...

© 2013 IBM Corporation8

Linux Plumbers Conference, September 20 2013

ARM big.LITTLE Schematic

© 2013 IBM Corporation9

Linux Plumbers Conference, September 20 2013

ARM big.LITTLE Energy-Efficiency Strategy

© 2013 IBM Corporation10

Linux Plumbers Conference, September 20 2013

ARM big.LITTLE Energy-Efficiency Strategy

Run on the LITTLE by default

Run on big if heavy processing power is required
–Power down big CPUs when not needed

 In other words, if feasible, run on LITTLE for efficiency, but
run on big if necessary to preserve user experience

–Use big CPUs for media processing, rendering, etc.
–This suggests that RCU callbacks should run on LITTLE CPUs,

possibly also for timers and other low-priority asynchronous events
–Key point: Goal of big.LITTLE scheduling is to distribute tasks

unevenly to handle different energy-efficiency and performance goals
–Unlike traditional SMP, it now matters where a task is scheduled

© 2013 IBM Corporation11

Linux Plumbers Conference, September 20 2013

Review: Morten Rasmussen Approach

© 2013 IBM Corporation12

Linux Plumbers Conference, September 20 2013

Without Morten Rasmussen Approach: Bad!!!

© 2013 IBM Corporation13

Linux Plumbers Conference, September 20 2013

Review: Morten Rasmussen Approach

Based on Paul Turner's entity load-tracking patches

Strategy: Run all tasks on LITTLE cores unless:
–The task load is above a fixed threshold, and
–The task priority is default or higher

 Implementation:
–Set up big and LITTLE sched domains without load balancing
–When long-running high-priority task awakens, run it on a big core.
–Periodically check for high-priority tasks transitioning into long-running

mode, and migrate them to big CPUs

Performance results rival those on a system with all big cores
–(See next slide)

© 2013 IBM Corporation14

Linux Plumbers Conference, September 20 2013

With Morten Rasmussen Approach: Pretty Good!

© 2013 IBM Corporation15

Linux Plumbers Conference, September 20 2013

RCU and big.LITTLE Energy Efficiency

© 2013 IBM Corporation16

Linux Plumbers Conference, September 20 2013

What is RCU? (AKA Read-Copy Update)

For an overview, see http://lwn.net/Articles/262464/

For the purposes of this presentation, think of RCU as
something that defers work, with one work item per callback

–Each callback has a function pointer and an argument
–Callbacks are queued on per-CPU lists, invoked after “grace period”
–Deferring the work a bit longer than needed is OK, deferring too long is

bad (splat after 20 seconds) – but failing to defer long enough is fatal
–RCU allows extremely fast & scalable read-side access to shared data

rcu_datarcu_datarcu_datarcu_data

rcu_head

 ->next

 ->func

rcu_head

 ->next

 ->func

rcu_head

 ->next

 ->func

© 2013 IBM Corporation17

Linux Plumbers Conference, September 20 2013

RCU:
Tapping The Awesome Power of Procrastination

For Two Decades!!!

© 2013 IBM Corporation18

Linux Plumbers Conference, September 20 2013

RCU:
Tapping The Awesome Power of Procrastination

For Two Decades!!!

But Procrastination has a Dark Side...

© 2013 IBM Corporation19

Linux Plumbers Conference, September 20 2013

Procrastination's Dark Side: Eventually Must Do Work

CPU 0
Callback Invoked

Grace Period

Likely waking up a big CPU, needlessly
chewing up lots of energy!!!

call_rcu():
Queue Callback

© 2013 IBM Corporation20

Linux Plumbers Conference, September 20 2013

Two Ways Of Conserving Energy

Offload RCU callbacks to LITTLE CPUs

Use RCU_FAST_NO_HZ to reduce wakeups

© 2013 IBM Corporation21

Linux Plumbers Conference, September 20 2013

Base Case

big CPU
CB

Grace Period

LITTLE CPU

Busy

Busy Busy Busy

call_rcu()

© 2013 IBM Corporation22

Linux Plumbers Conference, September 20 2013

1: ARM big.LITTLE With RCU Callback Offloading

CB

Busy Busy Busy

big CPU

CB

Grace Period

LITTLE CPU

Busy

call_rcu()

Slower...
But 3x better

energy efficiency

© 2013 IBM Corporation23

Linux Plumbers Conference, September 20 2013

1: ARM big.LITTLE With Reduced Wakeups

big CPU
CB

Grace Period

LITTLE CPU

Busy

Busy Busy Busy

call_rcu() Must wait for fourth “jiffy”

© 2013 IBM Corporation24

Linux Plumbers Conference, September 20 2013

Results Summary

Actual energy measurements taken on real hardware.

© 2013 IBM Corporation25

Linux Plumbers Conference, September 20 2013

Summary: Which is Better?

Both produce real benefits
–Offloading gives slightly better wall-clock time
–Enforced idle gives slightly better energy efficiency
–Combining them does not help

Both are needed
–Offloading for real time and reduced OS jitter
–Enforced idle for SMP energy efficiency

Offloading other deferred operations may be helpful
–Timers, workqueues, ...

© 2013 IBM Corporation26

Linux Plumbers Conference, September 20 2013

Legal Statement

This work represents the view of the author and does not
necessarily represent the view of IBM.

 IBM and IBM (logo) are trademarks or registered trademarks
of International Business Machines Corporation in the United
States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.

© 2013 IBM Corporation27

Linux Plumbers Conference, September 20 2013

Questions?

	IBM Presentation Template Full Version
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

