
© 2013 IBM Corporation

Bare-Metal Multicore Performance
in a General-Purpose Operating System

(Now With Added Energy Efficiency!)

Paul E. McKenney, IBM Distinguished Engineer, Linux Technology Center
Member, IBM Academy of Technology

Real Time Linux Workshop, Lugano, Switzerland October 30, 2013

© 2013 IBM Corporation2

Linux Plumbers Conference, September 18 2013

Group Effort: Acknowledgments

 Josh Triplett: First prototype (LPC 2009)

 Frederic Weisbecker: Core kernel work and x86 port

 Steven Rostedt: Lots of code review and comments, tracing upgrades

 Christoph Lameter: Early adopter feedback

 Li Zhong: Power port

 Geoff Levand, Kevin Hilman: ARM port

 Peter Zijlstra: Scheduler-related review, comments, and work

 Paul E. McKenney: Read-copy update (RCU) work (fun with “Hotel California” interrupts!)

 Thomas Gleixner, Paul E. McKenney: “Godfathers”

 Ingo Molnar: Maintainer

 Other contributors:
– Avi Kivity, Chris Metcalf, Geoff Levand, Gilad Ben Yossef, Hakan Akkan, Lai Jiangshan, Max Krasnyansky,

Namhyung Kim, Paul Gortmaker, Paul Mackerras, Peter Zijlstra, Steven Rostedt, Zen Lin (and probably many more)

© 2013 IBM Corporation3

Linux Plumbers Conference, September 18 2013

There Used To Be Things You Could Count On...

© 2013 IBM Corporation4

Linux Plumbers Conference, September 18 2013

There Used To Be Things You Could Count On...

Like a scheduling-clock interrupt every jiffy on every CPU.

© 2013 IBM Corporation5

Linux Plumbers Conference, September 18 2013

There Used To Be Things You Could Count On...

© 2013 IBM Corporation6

Linux Plumbers Conference, September 18 2013

There Used To Be Things You Could Count On...

Like a scheduling-clock interrupt every jiffy on every CPU.

Whether you needed it or not.

© 2013 IBM Corporation7

Linux Plumbers Conference, September 18 2013

There Used To Be Things You Could Count On...

© 2013 IBM Corporation8

Linux Plumbers Conference, September 18 2013

There Used To Be Things You Could Count On...

Like a scheduling-clock interrupt every jiffy on every CPU.

Whether you needed it or not.

And especially, whether your battery needed it or not.

© 2013 IBM Corporation9

Linux Plumbers Conference, September 18 2013

There Used To Be Things You Could Count On...

© 2013 IBM Corporation10

Linux Plumbers Conference, September 18 2013

There Used To Be Things You Could Count On...

© 2013 IBM Corporation11

Linux Plumbers Conference, September 18 2013

There Used To Be Things You Could Count On...

Like a scheduling-clock interrupt every jiffy on every CPU.

Whether you needed it or not.

And especially, whether your battery needed it or not.

Of course, back then you needed a somewhat larger battery...

© 2013 IBM Corporation12

Linux Plumbers Conference, September 18 2013

There Used To Be Things You Could Count On...

Like a scheduling-clock interrupt every jiffy on every CPU.

Whether you needed it or not.

And especially, whether your battery needed it or not.

Of course, back then you needed a somewhat larger battery...

And, if your system was portable, a forklift.

© 2013 IBM Corporation13

Linux Plumbers Conference, September 18 2013

What We Need Instead...

© 2013 IBM Corporation14

Linux Plumbers Conference, September 18 2013

Before Linux's dyntick-idle System

CPU 1

CPU 0

Scheduling-Clock
Interrupts

Busy Period
Ends

But CPU Remains
in High-Power State

© 2013 IBM Corporation15

Linux Plumbers Conference, September 18 2013

Before Linux's dyntick-idle System

© 2013 IBM Corporation16

Linux Plumbers Conference, September 18 2013

Linux's dyntick-idle System

CPU 1

CPU 0

Scheduling-Clock
Interrupts

Enter Dyntick-Idle Mode
At End Of Busy Period

Dyntick-Idle Mode Enables
CPU Deep-Sleep States

Very Good For Energy Efficiency!!!

© 2013 IBM Corporation17

Linux Plumbers Conference, September 18 2013

Also: Avoid Unnecessary Usermode Interrupts

HPC and real-time applications can increase performance if
unnecessary scheduling-clock interrupts are omitted

And if there is only one runnable task on a given CPU, why
interrupt it?

 If another task shows up, then we can interrupt the CPU

Until then, interrupting it only slows it down

© 2013 IBM Corporation18

Linux Plumbers Conference, September 18 2013

Also: Avoid Unnecessary Usermode Interrupts

© 2013 IBM Corporation19

Linux Plumbers Conference, September 18 2013

Also: Avoid Unnecessary Usermode Interrupts

HPC and real-time applications can increase performance if
unnecessary scheduling-clock interrupts are omitted

And if there is only one runnable task on a given CPU, why
interrupt it?

 If another task shows up, then we can interrupt the CPU

Until then, interrupting it only slows it down

Josh Triplett prototyped CONFIG_NO_HZ_FULL 2009

© 2013 IBM Corporation20

Linux Plumbers Conference, September 18 2013

Benchmark Results Before (Anton Blanchard)

© 2013 IBM Corporation21

Linux Plumbers Conference, September 18 2013

Benchmark Results After (Anton Blanchard)

Well worth going after...

© 2013 IBM Corporation22

Linux Plumbers Conference, September 18 2013

But There Were A Few Small Drawbacks...

User applications can monopolize CPU
– But if there is only one runnable task, so what???
– If new task awakens, interrupt the CPU, restart scheduling-clock interrrupts
– In the meantime, we have an “adaptive ticks usermode” CPU

No process accounting
– Use delta-based accounting, based on when process started running
– One CPU retains scheduling-clock interrupts for timekeeping purposes

RCU grace periods go forever, running system out of memory
– Inform RCU of adaptive-ticks usermode execution so that it ignores adaptive-

ticks user-mode CPUs, similar to its handling of dyntick-ticks CPUs

Frederic Weisbecker took on the task of fixing this (for x86-64)
– Geoff Levand and Kevin Hilman: Port to ARM
– Li Zhong: Port to PowerPC
– I was able to provide a bit of help with RCU

© 2013 IBM Corporation23

Linux Plumbers Conference, September 18 2013

How Does It Work?

KernelIdle Usermode Kernel Usermode

Scheduling
clock
interrupts

KernelIdle Usermode Kernel Usermode

Adaptive
Ticks

Second task awakens

One task per CPU

© 2013 IBM Corporation24

Linux Plumbers Conference, September 18 2013

Other Than Energy Efficiency, Looks Great!!!

But what is the problem with energy efficiency?

© 2013 IBM Corporation25

Linux Plumbers Conference, September 18 2013

Energy Efficiency and Timekeeping

Hardware oscillators drift

Requires periodic recalculation of time conversion
parameters

–Otherwise user applications get bad time data

One special case

© 2013 IBM Corporation26

Linux Plumbers Conference, September 18 2013

Energy Efficiency and Timekeeping

Hardware oscillators drift

Requires periodic recalculation of time conversion
parameters

–Otherwise user applications get bad time data

One special case:
–If all CPUs are idle, none of them care about accurate timekeeping
–Just need to recalculate time-conversion parameters when the first

CPU goes non-idle

© 2013 IBM Corporation27

Linux Plumbers Conference, September 18 2013

Energy Efficiency, Timekeeping, and Idle

CPU 1

CPU 0

T T

T

T
T

No need for time
parameter recalculation

© 2013 IBM Corporation28

Linux Plumbers Conference, September 18 2013

But If Running Userspace, Need Recalculation

© 2013 IBM Corporation29

Linux Plumbers Conference, September 18 2013

Energy Efficiency, Timekeeping, and Userspace

CPU 1

CPU 0

T T

T

T
T

Need time
parameter recalculation!!!

© 2013 IBM Corporation30

Linux Plumbers Conference, September 18 2013

Shut Down Almost All Scheduling-Clock Interrupts

 If all CPUs are idle, we can shut down all CPUs' scheduling-
clock interrupts

 If any CPU is non-idle, we need at least one CPU running the
scheduling-clock interrupt

 Initial approach: Require that CPU 0 always run the
scheduling-clock interrupt

© 2013 IBM Corporation31

Linux Plumbers Conference, September 18 2013

Shut Down Almost All Scheduling-Clock Interrupts

CPU 1

CPU 0

T T T T

Keep scheduling-clock
Interrupt on at least on CPU 0

T

© 2013 IBM Corporation32

Linux Plumbers Conference, September 18 2013

The Battery-Powered Embedded Folks Not Happy...

© 2013 IBM Corporation33

Linux Plumbers Conference, September 18 2013

The Battery-Powered Embedded Folks Not Happy...
We Must Shut Down All Scheduling-Clock Interrupts

© 2013 IBM Corporation34

Linux Plumbers Conference, September 18 2013

We Must Shut Down All Scheduling-Clock Interrupts:
Two Simple (But Broken) Approaches

Just count non-idle CPUs!!!
–Maintain an atomic counter
–When a CPU goes idle, atomically increment the counter
–When a CPU goes non-idle atomically decrement the counter

• This is a really bad idea on a system with lots of CPUs
• Memory contention will degrade scalability and performance – and in

extreme cases, hangs the system

Just scan CPUs looking for non-idle ones!!!
–Have the timekeeping kthread periodically scan CPUs: If all are idle,

turn off the scheduling-clock tick
• Vulnerable to race conditions, see next slide

© 2013 IBM Corporation35

Linux Plumbers Conference, September 18 2013

Scanning For Full-System Idle is Broken!

Scanning is subject to race conditions!

Example race scenario on a four-CPU system:
–CPU 0 goes idle (3 CPUs non-idle)
–Timekeeping kthread checks CPU 0, sees it idle
–CPU 1 goes idle (2 CPUs non-idle)
–CPU 0 goes non-idle (3 CPUs non-idle)
–Timekeeping kthread checks CPU 1, sees it idle
–CPU 2 goes idle (2 CPUs non-idle)
–CPU 1 goes non-idle (3 CPUs nonidle)
–Timekeeping kthread checks CPU 2, sees it idle
–CPU 3 goes idle (2 CPUs non-idle)
–CPU 2 goes non-idle (3 CPUs nonidle)
–Timekeeping kthread checks CPU 3, sees it idle
–Timekeeping CPU wrongly concludes that the entire system is idle!!!

© 2013 IBM Corporation36

Linux Plumbers Conference, September 18 2013

How To Efficiently Detect Full-System Idle?

 We have to give up something:
–Energy efficiency
–Scalability
–Determinism
–Full-system idle detection latency
–Sanity

© 2013 IBM Corporation37

Linux Plumbers Conference, September 18 2013

Opportunistic Idle on Large Systems?

© 2013 IBM Corporation38

Linux Plumbers Conference, September 18 2013

Opportunistic Idle on Large Systems?

Not s
o m

uch!!!

© 2013 IBM Corporation39

Linux Plumbers Conference, September 18 2013

How To Efficiently Detect Full-System Idle?

We have to give up something:
–Energy efficiency
–Scalability
–Determinism
–Full-system idle detection latency
–Sanity

© 2013 IBM Corporation40

Linux Plumbers Conference, September 18 2013

How To Efficiently Detect Full-System Idle?

We have to give up something:
–Energy efficiency
–Scalability
–Determinism
–Full-system idle detection latency
–Sanity: You cannot give up something that you do not have!!!

© 2013 IBM Corporation41

Linux Plumbers Conference, September 18 2013

How To Efficiently Detect Full-System Idle?

We have to give up something:
–Full-system idle detection latency

Use a state machine

Enter full-system-idle state more slowly on larger systems
–Forces more time between atomic updates of global variables on large

systems, maintaining a constant level of memory contention

Leverage RCU's pre-existing scan of idle CPUs
–If a CPU is idle, it does not respond to RCU grace periods
–RCU therefore scans CPUs, noting quiescent states on their behalf
–Also track last time each CPU went idle

© 2013 IBM Corporation42

Linux Plumbers Conference, September 18 2013

Full-System-Idle State Machine

Added twist: A timekeeping CPU being non-idle must not
prevent the system from entering full-system-idle state!

States:
–RCU_SYSIDLE_NOT: Some CPU is not idle.

• Return to this state any time a non-timekeeping CPU goes non-idle from
RCU_SYSIDLE_LONG or later state.

–RCU_SYSIDLE_SHORT: All CPUs idle for brief period.
• Advance here if scan finds all non-timekeeping CPUs idle.

–RCU_SYSIDLE_LONG: All CPUs idle for “long enough”.
• Advance here if in RCU_SYSIDLE_SHORT state long enough, and if all

CPUs remained idle throughout that time.
–RCU_SYSIDLE_FULL: All CPUs idle, ready for sysidle.

• Advance here from RCU_SYSIDLE_LONG if still idle on next scan.
–RCU_SYSIDLE_FULL_NOTED: Scheduling-clock tick disabled globally.

• Advance here when timekeeping ktheads sees RCU_SYSIDLE_FULL state.

© 2013 IBM Corporation43

Linux Plumbers Conference, September 18 2013

Full-System-Idle State Machine Schematic

R
C

U
_S

Y
S

ID
LE

_ F
U

LL
_N

O
T

E
D

R
C

U
_S

Y
S

ID
LE

_ F
U

L
L

R
C

U
_S

Y
S

ID
LE

_ L
O

N
G

R
C

U
_S

Y
S

ID
LE

_ S
H

O
R

T

R
C

U
_S

Y
S

ID
LE

_ N
O

T

Non-timekeeping CPU goes non-idle

Id
le

 s
ca

n

Id
le

 f
o

r
su

ff
ic

i e
n

t
ti

m
e

Id
le

 s
ca

n

T
ic

k
tu

r n
ed

 o
ff

Protect against memory contention

Wake
timekeeping
kthread

© 2013 IBM Corporation44

Linux Plumbers Conference, September 18 2013

How Long Idle in RCU_SYSIDLE_SHORT State?

CPU going idle records the time

RCU remembers most recent idle time when scanning CPUs

Advance to RCU_SYSIDLE_LONG only if it has been
sufficiently long since the last CPU went idle

–Increases linearly with increasing numbers of CPUs
–Adjusted by HZ and number of CPUs per rcu_node structure

© 2013 IBM Corporation45

Linux Plumbers Conference, September 18 2013

How Long Is “Sufficiently Long”, Anyway?

© 2013 IBM Corporation46

Linux Plumbers Conference, September 18 2013

Avoiding Non-Idle Races

Bad scenario: Timekeeping CPU turns off all scheduling-clock
interrupts, then does not notice a CPU going non-idle

Avoid this as follows:
–CPU going non-idle will force scheduling-clock interrupts back on

unless it sees the current state as either RCU_SYSIDLE_NOT or
RCU_SYSIDLE_SHORT

–This means that there is at least one remaining scan (from
RCU_SYSIDLE_LONG to RCU_SYSIDLE_FULL): During this scan,
the CPU will be detected as non-idle, forcing state back to
RCU_SYSIDLE_NOT

–This requires careful use of atomic operations and memory barriers

Be careful, getting this right is harder than it looks!

© 2013 IBM Corporation47

Linux Plumbers Conference, September 18 2013

Avoiding Non-Idle Races

Any CPU can drive it back down to RCU_SYSIDLE_NOT
–It does so when it goes non-idle, but only if state has advanced to

RCU_SYSIDLE_LONG or further
–Uses atomic xchg() operation after updating state: If returns

RCU_SYSIDLE_FULL_NOTED, wakes up timekeeping CPU

Only one task advances the state
–After each scan finds all CPUs idle, with optional time constraint
–Uses cmpxchg(), upon failure assumes CPU went non-idle

 If CPU going non-idle sees RCU_SYSIDLE_SHORT, state
might advance to RCU_SYSIDLE_LONG

–But memory barriers guarantee that timekeeping (or grace-period)
kthread will see nonidle on next scan

© 2013 IBM Corporation48

Linux Plumbers Conference, September 18 2013

Sounds Complex! Did You Mechanically Verify This?

© 2013 IBM Corporation49

Linux Plumbers Conference, September 18 2013

Sounds Complex! Did You Mechanically Verify This?

Well, I tried via goto-cc/goto-instrument/satabs:

Bug report to the authors (who have been responsive)
–Array allocation problem, fix is on the way...

Maybe fall back on Promela/spin
–In addition to reviews, stress tests, and informal proof of correctness

Murphy says that there are bugs!

Performing pointer analysis for concurrency-aware abstraction
satabs: value_set.cpp:1183: void value_sett::assign(const exprt&, const exprt&, const
namespacet&, bool): Assertion `base_type_eq(rhs.type(), type, ns)' failed.
Aborted (core dumped)

© 2013 IBM Corporation50

Linux Plumbers Conference, September 18 2013

To Probe More Deeply Into Adaptive Ticks

Documentation/timers/NO_HZ.txt

 Is the whole system idle?
– http://lwn.net/Articles/558284/

 (Nearly) full tickless operation in 3.10
– http://lwn.net/Articles/549580/

 “The 2012 realtime minisummit” (LWN, CPU isolation discussion)
– http://lwn.net/Articles/520704/

 “Interruption timer périodique” (Kernel Recipes, in French)
– https://kernel-recipes.org/?page_id=410

 “What Is New In RCU for Real Time” (RTLWS 2012)
– http://www.rdrop.com/users/paulmck/realtime/paper/RTLWS2012occcRT.2012.10.19e.pdf

• Slides 31-32

 “TODO”
– https://github.com/fweisbec/linux-dynticks/wiki/TODO

 “NoHZ tasks” (LWN)
– http://lwn.net/Articles/420544/

© 2013 IBM Corporation51

Linux Plumbers Conference, September 18 2013

Configuration Cheat Sheet (Subject to Change!)

CONFIG_NO_HZ_FULL=y Kconfig: enable adaptive ticks
–Implies dyntick-idle mode (specify separately via CONFIG_NO_HZ_IDLE=y)
–Specify which CPUs at compile time: CONFIG_NO_HZ_FULL_ALL=y

• But boot CPU is excluded, used as timekeeping CPU
–“full_nohz=” boot parameter: Specify adaptive-tick CPUs, overriding build-time Kconfig

• “full_nohz=1,3-7” says CPUs 1, 3, 4, 5, 6, and 7 are adaptive-tick
• Omitting “full_nohz=”: No CPUs are adaptive-tick unless CONFIG_NO_HZ_FULL_ALL=y
• Boot CPU cannot be adaptive-ticks, it will be used as timekeeping CPU regardless

–PMQOS to reduce idle-to-nonidle latency
• X86 can also use “idle=mwait” and “idle=poll” boot parameters, but note that these can cause thermal

problems and degrade energy efficiency, especially “idle=poll”

CONFIG_RCU_NOCB_CPU=y Kconfig: enable RCU offload
–Specify which CPUs to offload at build time:

• RCU_NOCB_CPU_NONE=y Kconfig: No offloaded CPUs (specify at boot time)
• RCU_NOCB_CPU_ZERO=y Kconfig: Offload CPU 0 (intended for randconfig testing)
• RCU_NOCB_CPU_ALL=y Kconfig: Offload all CPUs

–“rcu_nocbs=” boot parameter: Specify additional offloaded CPUs

CONFIG_NO_HZ_FULL_SYSIDLE=y: enable system-wide idle detection
–Still needs

How-to info for kthreads: Documentation/kernel-per-CPU-kthreads.txt

Available in 3.10-3.12

© 2013 IBM Corporation52

Linux Plumbers Conference, September 18 2013

Summary

General-purpose OS or bare-metal performance?
–Why not both?
–Work in progress gets us very close for CPU-bound workloads:

• Adaptive ticks userspace execution (early version in mainline)
• RCU callback offloading (version two in mainline)
• Interrupt, process, daemon, and kthread affinity
• Timer offloading

–Some restrictions:
• Need to reserve CPU(s) for housekeeping; 1-Hz residual tick
• Adaptive-ticks and RCU-callback-offloaded CPUs specified at boot time
• One task per CPU for adaptive-ticks usermode execution
• Global TLB-flush IPIs, cache misses, and TLB misses are still with us

–And can maintain energy efficiency as well!

© 2013 IBM Corporation53

Linux Plumbers Conference, September 18 2013

Summary

General-purpose OS or bare-metal performance?
–Why not both?
–Work in progress gets us very close for CPU-bound workloads:

• Adaptive ticks userspace execution (early version in mainline)
• RCU callback offloading (version two in mainline)
• Interrupt, process, daemon, and kthread affinity
• Timer offloading

–Some restrictions:
• Need to reserve CPU(s) for housekeeping; 1-Hz residual tick
• Adaptive-ticks and RCU-callback-offloaded CPUs specified at boot time
• One task per CPU for adaptive-ticks usermode execution
• Global TLB-flush IPIs, cache misses, and TLB misses are still with us

–And can maintain energy efficiency as well!

Extending Linux's reach further into extreme computing!!!

© 2013 IBM Corporation54

Linux Plumbers Conference, September 18 2013

Legal Statement

This work represents the view of the author and does not
necessarily represent the view of IBM.

 IBM and IBM (logo) are trademarks or registered trademarks
of International Business Machines Corporation in the United
States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.

© 2013 IBM Corporation55

Linux Plumbers Conference, September 18 2013

Questions?

	IBM Presentation Template Full Version
	Selecting a template
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

