Real Time Linux Technology

Paul E. McKenney
IBM Distinguished Engineer, Linux Technology Center
How I Got Here
Non-Real-Time Interlude

• Business-application programming

• *Real-time programming (building control, security, acoustic navigation)*

• Systems administration (1986-8)

• Internet routing and congestion avoidance protocol (1988-1990)

• Parallel and NUMA algorithms, DYNIX/ptx, Digital Unix, AIX, Linux (1990-2004)
 – Some exposure to realtime via the MontaVista-lead PREEMPT effort interactions with RCU (2002-2004)

• *Return to realtime:*
 – *Parallel realtime algorithms in Linux (2004-present)*
Why Parallel Realtime?
Emergence of SMP Embedded Realtime Systems

Traditional Systems

Traditional Realtime: Few CPUs
Latency Guarantees Non-Standard

OR

Traditional SMP: Many CPUs No Guarantees
Standard (and OSS)

But Not Both!!!

Emerging Systems

SMP Realtime: Many CPUs
Latency Guarantees Standard (and OSS)

Convergence

• User Demand (DoD, Financial, Gaming, ...)
• Technological Changes Leading to Commodity SMP
 • Commodity Hardware Multithreading
 • Commodity Multi-Core Dies
 • Tens to Hundreds of CPUs per Die – Or More
Real-Time Regimes
Real-Time Regimes

- Non-Realtime Java
- Realtime Java (w/GC)
- Linux 2.4 Kernel
- Realtime Java (no GC)
- Linux -rt Patchset
- Specialty RTOSes
- Hand-Coded Assembly
- Custom Digital Hardware
- Custom Analog Hardware

Times:
- 1s
- 100ms
- 10ms
- 1ms
- 100us
- 10us
- 1us
- 100ns
- 10ns
- 1ns
- 100ps
Preemption
Vanilla Linux Kernel

Linux Process
Linux Process
Linux Process
RT Linux Process
RT Linux Process
RT Linux Process

Linux Kernel

CPU 0
CPU 1
Linux Kernel CONFIG_PREEMPT Build

CPU 0

CPU 1

Linux Process
Linux Process
Linux Process

RT Linux Process
RT Linux Process
RT Linux Process

Linux Kernel

Critical Sections
Interrupt Handlers
Interrupt-Disable
Preempt-Disable

Sched-Clock
Interrupt
Linux Kernel CONFIG_PREEMPT Build

- Linux Process
- Linux Process
- Linux Process
- Linux Process
- RT Linux Process
- RT Linux Process
- RT Linux Process

- Critical Sections
 - Interrupt Handlers
 - Interrupt-Disable
 - Preempt-Disable

- Reduced

CPU 0 CPU 1
Timers and -rt Patchset
Linux Timer Wheel at 1KHz
Linux Timer Wheel at 100KHz

Any Questions?
Solution: High-Resolution Timers

Timeouts: approximation OK, likely cancelled

add_timer(), mod_timer(), del_timer(), del_timer_sync(), ...

Timers: must be exact, rarely cancelled

hrtimer_init(), hrtimer_init_sleeper(), hrtimer_start(), hrtimer_cancel(), hrtimer_forward(), ...
Priority Inversion and -rt Patchset
“Trapdoor” Metaphor for Priority Inheritance

• A dance floor...
 – CPUs dance with highest priority tasks (Tuxes)
• Warning: any attempt to apply this metaphor in reverse will probably not end well...
Priority Inheritance
Priority Inheritance
Priority Inheritance
Priority Inheritance
Priority Inheritance
Preventing Priority Inversion Outside the Dance Hall

- Trivial solution: Prohibit preemption while holding locks
 - But degrades latency!!! Especially for sleeplocks!!!!
- Simple solution: “Priority Inheritance”: P2 “inherits” P1's priority
 - But only while holding a lock that P1 is attempting to acquire
 - Standard solution, very heavily used
- Either way, prevent the low-priority process from being preempted
Priority Inheritance and Reader-Writer Locking
Priority Inheritance and Reader-Writer Locking
RCU
Example: RCU Removal From Linked List

- Writer removes element B from the list (list_del_rcu())
- Writer waits for all readers to finish (synchronize_rcu())
- Writer can then free B (kfree())

No more readers referencing B!
Priority Inversion and RCU: Back to the Dance Hall
Priority Inversion and RCU
Priority Inversion and RCU
Priority Inversion and RCU
Priority Inversion and RCU
Can the Linux Community Handle RCU?
Linux Usage of RCU APIs

Summary: Realtime Regimes Redux

- Non-Realtime Java
 - Linux 2.4 Kernel
 - Realtime Java (w/GC)
- Linux 2.6 Kernel
 - Realtime Java (no GC)
 - Linux -rt Patchset
 - Specialty RTOSes
- Hand-Coded Assembly
- Custom Digital Hardware
- Custom Analog Hardware
Summary

Use the right tool for the job!!!
To Probe Deeper

- http://www.linuxjournal.com/article/9361 (Linux Journal article)
- http://www.linutronix.de/
- Hollis Blanchard's “Virtualization – Not Just for Servers”
- My “Real Time Linux Technology: A Deeper Dive” (shameless plug)

"Controlling a laser with Linux is crazy, but everyone in this room is crazy in his own way. So if you want to use Linux to control an industrial welding laser, I have no problem with your using PREEMPT_RT." -- Linus Torvalds, July 2006
Legal Statement

This work represents the view of the author and does not necessarily represent the view of IBM.

IBM, IBM (logo), e-business (logo), pSeries, e (logo) server, and xSeries are trademarks or registered trademarks of International Business Machines Corporation in the United States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be trademarks or service marks of others.
Questions?