
© 2011 IBM Corporation

On migrate_disable() and Latencies

Paul E. McKenney, IBM Distinguished Engineer, Linux Technology Center

21 October 2011 (Revised)

© 2011 IBM Corporation2

Overview

Approach

Disabling Preemption vs. Disabling Migration

Description of Algorithms

Results

Remaining Challenges

Summary and Conclusions

© 2011 IBM Corporation3

Approach

© 2011 IBM Corporation4

Approach

Decisions, decisions...

Door #1: Empirical approach
–Which gives exact results for a workload that nobody really uses
–(These workloads are called “benchmarks”)

Door #2: Analytic approach
–Obtain general results, but using hopelessly unrealistic assumptions
–(Just in case you want the solution in finite time and space)

This presentation uses Door #2
–And therefore makes a number of simplifying assumptions...

© 2011 IBM Corporation5

Simplifying Assumptions

 The periods between a given task's events are memoryless
– Exponentially distributed “interarrival rates”
– Think in terms of how many times a task disables preemption per second of CPU time that it

consumes while not being preempted
– In reality history really does matter

 CPUs are interchangeable at all points in time
– Completely ignore cache-affinity effects
– Critically important for state-space reduction

• For example, all preempted tasks are associated with CPU 0

 Each task is running identical “workload” at a unique priority
– And lower-priority tasks are real-fast rather than real-time

 Omniscient “scheduler”
– For example, full rebalancing on each enable event

 Interarrival rates within a few orders of magnitude of each other
– Otherwise roundoff error kills double-precision floating point accuracy

© 2011 IBM Corporation6

Disabling Preemption vs. Disabling Migration

© 2011 IBM Corporation7

Disabling Preemption vs. Disabling Migration

A task that disables preemption delays higher-priority tasks
–That would be what “disables preemption” means, after all...

Disabling preemption has numerous uses:
–Protect access to per-CPU variables
–Block scheduling
–Block CPU-hotplug operations

Disabling preemption sometimes bigger hammer than needed

So recent -rt kernels typically disable migration rather than
preemption

The difference is illustrated on the next two slides
–Two tasks running on a single CPU

© 2011 IBM Corporation8

Disabling Preemption

© 2011 IBM Corporation9

Key to State and Transition Labels

State label example: “0C0RD0 1C...1” (two tasks)
–First character: task #
–Second character: “C” for “CPU”
–Third character: Task's CPU or “.” if no CPU
–Fourth character: “R” if running, “.” otherwise
–Fifth character: “D” if disabled, “.” otherwise
–Final character: Priority ranging from 0 to 9

• Task 0 is running disabled on CPU 0 at priority 0, while task 1 is blocked (but
would run at priority 1 if it was running)

Transition label example: “1A*”
–First character: affected task (in this case, task 1)
–Second character: A for awaken, B for block, D for disable, E for enable
–Optional final character: mapped to mathematically equivalent state

Back to the two-task, single-CPU, preempt-disable diagram...

© 2011 IBM Corporation10

Disabling Preemption (Take 2)

© 2011 IBM Corporation11

Disabling Migration

© 2011 IBM Corporation12

The Diagram for Four Tasks on Two CPUs is Larger

Preemption disabling: 95 states
Migration disabling: 140 states

But no problem in memory
Or on flatbed plotter

Way larger

© 2011 IBM Corporation13

As for Six Tasks Running on Three CPUs...

A segmentation violation from graphviz when plotting diagram

More than 1,000 states, up to 12 transitions from each state
–Please note that this is after significant state-space reduction

techniques have been applied
–Otherwise, it would have more than 10,000 states

 I strongly recommend against attempting to carry out the
Markov-model analysis while running on battery power

–But the matrix to be inverted is only in the tens-of-megabyte range, so
should be eminently doable

• Give or take roundoff-error issues

This presentation focuses on four tasks and two CPUs

© 2011 IBM Corporation14

State-Space Size for Dual-CPU Cases

Tasks DISABLE_MIGRATE DISABLE_PREEMPT
1 3 3
2 9 9
3 37 30
4 140 95
5 479 278
6 1540 763
7 4787 1998
8 14624 5055
9 44287 12462

Solution is O(N3), where N is the number of states.
Plus cache and TLB behavior further degrades performance.

Problem size is also sharply limited by roundoff error.
More than 30 minutes required just to generate 44,287 states.

© 2011 IBM Corporation15

Description of Algorithms

© 2011 IBM Corporation16

Theoretical Background

Markov model

States and edges, where the edges represent probabilistic
transitions between states

Exponential distribution to permit reasonable solution
–Other distributions are possible, but how good are our measurements,

anyway???

Probability of being in a given state depends on the
probability of being in states feeding into that state as well as
the probabilities of the corresponding transitions

© 2011 IBM Corporation17

Theoretical Background: Model Representation

B R

10

1

Roughly: 10 transitions per unit time from B to R, 1 transition per unit time back
More precisely: Interarrival times for transitions from B to R drawn from an
exponential distribution with parameter 10, namely: 10e-10t

© 2011 IBM Corporation18

Theoretical Background: General Solution

B(t) is probability of being in state B at time t.

R(t) is probability of being in state R at time t.

B(t)+R(t)=1 for all t.

B'(t)=-10B(t)+R(t)

R'(t)=-R(t)+10B(t) – but this is a redundant equation, ignore!
–R(t)=1-B(t)
–B'(t)=-10B(t)+1-B(t)=1-11B(t)
–B'(t)+11B(t)=1
–e11tB'(t)+11e11tB(t)=e11t

–e11tB(t)=(e11t+C)/11
–B(t)=(1+Ce-11t)/11
–R(t)=(10-Ce-11t)/11 General Solution

B R
10

1

© 2011 IBM Corporation19

Theoretical Background: General Solution: Problems

 It is hard enough to get decent measurements of the
interarrival rates, let alone all the initial states

140 states means 140 coupled differential equations with 140
unknown functions

–The form of the differential equations is particularly simple, but...
–The standard solution technique involves finding all roots of a 140th-

degree polynomial, which is just asking for trouble
• Especially given that multiple roots need special treatment...

Most benchmarks (err... workloads) ignore the startup
transients anyway, allowing “warm-up periods”

So we usually care only about steady-state operation
–And during steady state, all derivatives are zero by definition!

© 2011 IBM Corporation20

Theoretical Background: Steady-State Solution

General equations:
–B(t)+R(t)=1
–B'(t)=-10B(t)+R(t)
–R'(t)=-R(t)+10B(t)

Set all deriviatives to zero to get steady-state equations:
–B+R=1
–0=-10B+R
–0=-R+10B – and this is still a redundant equation, ignore!

This is a simple linear systems of equations
–Solution is a simple matter of matrix inversion
–Which has its own challenges, but far fewer pitfalls than systems of

differential equations

© 2011 IBM Corporation21

Some Simplifying Assumptions

Each task is running the same workload, so we only need to
estimate four interarrival rates:

–Wakeups per unit time spent blocked (as opposed to preempted)
–Blocks per unit CPU time spent running while enabled
–Disables per unit CPU time spent running while enabled
–Enables per unit CPU time spent running while disabled

CPUs are interchangeable
–So task 0 running on CPU 0 is modeled as the same state as task 0

running on CPU 1
–As long as the pattern of mappings of tasks to CPUs is isomorphic

under some permutation, the relevant states are collapsed
–Preempted tasks are always associated with CPU 0

• Reduces state space, and doesn't hurt because we are not modeling cache

© 2011 IBM Corporation22

Generating the Transition Graph

Generate an initial state with all tasks blocked

For each state in existence, generate all legal transitions out
of that state, creating new states as needed

• Scheduler model: find_idle_cpu(), find_lowest_prio_cpu(), find_best_task(),
schedule_awakened_task(), deschedule_task(), schedule_enabled_task()

–See for example the single-task/single-CPU case shown below.

© 2011 IBM Corporation23

Generating the Transition Matrix

Create a matrix with N rows and N+1 columns, where N is the
number of states

Each state corresponds to one row of the matrix
–One state is omitted due to redundancy, doesn't matter which
–Each diagonal element is the negative of the sum of the interarrival

rates of the transitions leaving the corresponding state
–Each non-diagonal element of a given state's row contains the sum of

the interarrival rates for all transitions from the column's state to the
row's state

All entries of final row of matrix are 1.0

© 2011 IBM Corporation24

Generating the Transition Matrix

-A B 0 0
A -B-D E 0
1 1 1 1

Easily solved by Gaussian elimination.

© 2011 IBM Corporation25

Results

© 2011 IBM Corporation26

Results: Comparing Priority Inversion

Note that preempt_disable() causes priority inversion:
–Task 0 at priority 0 disables preemption on single-CPU system
–Task 1 at priority 1 awakens, and is “born preempted” due to task 0's

disabling of preemption

Disabling migration permits preemption, but consider:
–Task 1 at priority 1 running on CPU 0 disables migration
–Task 2 at priority 2 awakens and runs on CPU 1
–Task 3 at priority 3 awakens and preempts task 0 on CPU 0
–Task 3 disables migration
–Task 2 blocks, but neither task 1 nor task 3 can be migrated to CPU 1
–This is a priority inversion involving the idle loop
–Similar sequences result in more typical priority-inversion situations

© 2011 IBM Corporation27

Results: Comparing Priority Inversion

Measured quantities:
–pdinv: preempt_disable()-induced priority inversion
–mdinv: migration-disable-induced priority inversion
–mdidle: migration-disable-induced priority inversion involving idle loop

These results assume migration of high-priority tasks:
–Task 0 at priority 0 runs on CPU 1
–Task 1 at priority 1 disables migration on CPU 0
–Task 2 at priority 2 awakens and runs on CPU 0, preempting task 0
–Task 3 at priority 3 awakens and runs on CPU 1, preempting task 1
–Task 2 blocks, allowing task 0 to run: The model assumes that task 3

will migrate to CPU 1 (again preempting task 0) in order to allow the
higher-priority task 1 to run

–(It would not be hard to modify the model to measure the effect.)

© 2011 IBM Corporation28

Results: Experimental Setup

Two CPUs

Four tasks

 Interarrival rates:
–Wakeup interarrival rate for sleeping task: Vary from 1 to 100
–Blocking interarrival rate for non-disabled running task: 10
–Disable interarrival rate for non-disabled running task: 100
–Enable interarrival rate for disabled running task: 500

Rationale: One wakeup per millisecond, average CPU burst
duration of 100 microseconds, disable every ten
microseconds, remain disabled for two microseconds

–Vary wakeup rate in order to vary CPU utilization
–Preliminary results: data from actual workload would be good

© 2011 IBM Corporation29

Results: Four Tasks Running on Two CPUs

Reduces inversion, and tends to preempt low-priority tasks

© 2011 IBM Corporation30

Results: Three to Six Tasks Running on Two CPUs

Ratio varies little with number of tasks and CPU utilization

© 2011 IBM Corporation31

Results: Three to Six Tasks Running on Two CPUs

Ratio varies little with number of tasks and CPU utilization

Only one more
task than CPU

© 2011 IBM Corporation32

Results: Varying Blocking Rate

© 2011 IBM Corporation33

Results: Varying Disable Rate

© 2011 IBM Corporation34

Results: Varying Enable Rate

© 2011 IBM Corporation35

Results: Discussion

Ratio insensitive to CPU utilization

Main sensitivity is to fraction of time disabled
–The greater the fraction of time disabled, the less the benefit of

migrate-disable over preempt-disable

Lesson: If you disable long enough, bad things are probable

Disabling migration produces better results than does
disabling preemption in all scenarios analyzed

© 2011 IBM Corporation36

But About The Real Linux Kernel Scheduler...

Tasks can block when disabled in -rt
–The model described earlier in this presentation does not allow this
–The model was updated to cover this behavior, which resulted in

greatly increased probabilities of blocking low-priority tasks

The scheduler is not omniscient
–There are sequences of events that can leave low-priority tasks

preempted in ways that are not strictly necessary
–These situations could be avoided by migrating high-priority tasks in

order to allow lower-priority migrate-disabled tasks to run

But are such changes worthwhile?
–Compare CPU utilizations in scheduler model to evaluate

© 2011 IBM Corporation37

Does It Help To Kick High-Priority Task Off of CPU?

 Consider the following sequence of events:
– Task 0 runs on CPU 0 and disables migration
– Task 1 runs on CPU 1
– Task 2 preempts Task 0
– Task 1 blocks

 Should Task 2 migrate to CPU 1 to allow Task 0 to run?

 Consider also the following:
– Task 0 runs on CPU 0 and disables migration
– Task 1 runs on CPU 1 and disables migration
– Task 2 preempts Task 0
– Task 3 preempts Task 1
– Task 2 blocks

 Should Task 3 migrate to CPU 0 so Task 1 (instead of Task 0) may run?

 The scheduler is reported to currently do no such migrations

© 2011 IBM Corporation38

Does It Help To Kick High-Priority Task Off of CPU?

There is some benefit to migrating high-priority tasks to allow low-priority tasks to run

© 2011 IBM Corporation39

Remaining Challenges

© 2011 IBM Corporation40

Remaining Challenges

 Roundoff and numerical stability for larger problem sizes
– Perhaps use a production-quality linear-system solver or indefinite precision (slow!)
– Or various refinement techniques to “polish” a roundoff-degraded initial solution

 Results show probability, not worst-case inversion times
– Memoryless assumption gives theoretical worst case of infinity
– Could potentially switch to discrete time approach, but straightforward approaches either

restrict residency times or blow up state space
– But given that inversion is now hitting lower-priority tasks, throughput-based measures

from current model probably what we want anyway

 Numerous tweaks to scheduling algorithm could be modeled
– Also drive interarrival rates from real workloads

 The model does not take locking and priority boosting into account
– Holy state-space explosion, Batman!!!

 There are almost certainly still bugs remaining in the model and code

© 2011 IBM Corporation41

Summary and Conclusions

© 2011 IBM Corporation42

Summary and Conclusions

Disabling migration produces order-of-magnitude
reductions in probability of priority inversion

–More effective at lower probabilities of disabling

Any number of refinements possible

Lessons relearned
–State-space-reduction techniques: don't leave home without

them!
–Never forget about roundoff error: I chased what I thought were

bugs that turned out to be a too-large “epsilon” value
–Bring reference material, otherwise you too may find yourself

deriving steady-state solutions to Markov models somewhere
over Siberia

© 2011 IBM Corporation43

Legal Statement

 This work represents the view of the author and does not
necessarily represent the view of IBM.

 IBM and IBM (logo) are trademarks or registered
trademarks of International Business Machines Corporation
in the United States and/or other countries.

 Linux is a registered trademark of Linus Torvalds.

 Other company, product, and service names may be
trademarks or service marks of others.

© 2011 IBM Corporation44

Questions?

	IBM Presentation Template Full Version
	Team
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

