
© 2009 IBM Corporation

Making RCU Respect Your Device's Battery Lifetime

On-The-Job Energy-Efficiency Training For RCU Maintainers

Paul E. McKenney, IBM Distinguished Engineer, Linux Technology Center

linux.conf.au January 30, 2013

© 2009 IBM Corporation2

Overview

What is RCU?

 “The Good Old Days”

Overview of RCU's many variants of energy efficiency

Current state of RCU energy efficiency

Future directions

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation3

What is RCU?

 For an overview, see http://lwn.net/Articles/262464/

For the purposes of this presentation, think of RCU as
something that defers work, with one work item per callback

–Each callback has a function pointer and an argument
–Callbacks are queued on per-CPU lists, invoked after grace period

• Invocation can result in OS jitter and real-time latency
–Deferring the work a bit longer than needed is OK, deferring too long is

bad – but failing to defer long enough is fatal

rcu_datarcu_datarcu_datarcu_data

rcu_head

 ->next

 ->func

rcu_head

 ->next

 ->func

rcu_head

 ->next

 ->func

Making RCU Respect Your Device's Battery Lifetime

http://lwn.net/Articles/262464/

© 2009 IBM Corporation4

What is RCU?

RCU uses a state machine driven out of the scheduling-clock
interrupt to determine when it is safe to invoke callbacks

Actual callback invocation is done from softirq

Scheduling-Clock
Interrupts

softirq Callback
Invocation

CPU 0

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation5

RCU Area of Applicability

Update-Mostly, Need Consistent Data
(RCU is Really Unlikely to be the Right Tool For The Job,

But SLAB_DESTROY_BY_RCU Is A Possibility)

Read-Write, Need Consistent Data
(RCU Might Be OK...)

Read-Mostly, Need Consistent Data
(RCU Works OK)

Read-Mostly, Stale &
Inconsistent Data OK
(RCU Works Great!!!)

Use the right tool for the job!!!

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation6

For More Information on RCU...

 Documentation/RCU in the Linux® kernel source code

 “User-Level Implementations of Read-Copy Update” (Mathieu Desnoyers et al.)
– http://doi.ieeecomputersociety.org/10.1109/TPDS.2011.159

 “The RCU API, 2010 Edition”
– http://lwn.net/Articles/418853/

 “What is RCU” LWN series
– http://lwn.net/Articles/262464/ (What is RCU, Fundamentally?)
– http://lwn.net/Articles/263130/ (What is RCU's Usage?)
– http://lwn.net/Articles/264090/ (What is RCU's API?)

 “Introducing technology into the Linux kernel: a case study”
– http://doi.acm.org/10.1145/1400097.1400099

 “Meet the Lockers” (Neil Brown)
– http://lwn.net/Articles/453685/

 “Read-Copy Update” (2001 OLS paper, still used in a number of college courses)
– http://www.linuxsymposium.org/2001/abstracts/readcopy.php

 Plus more at: http://www.rdrop.com/users/paulmck/RCU

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation7

RCU:
Tapping The Awesome Power of Procrastination

For Two Decades!!!

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation8

“The Good Old Days”

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation9

Not Much “Good Old Days” Code Left in RCU

SRCU

rcutorture

TREE_RCU

rculist.h

TREE_PREEMPT_RCU

Boost
 lockdep,
 sparse,
 debug-objects,
rcutiny

Energy,
CPU hotplug

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation10

Not Much “Good Old Days” Code Left in RCU
Why did I wait so long to conserve energy???

SRCU

rcutorture

TREE_RCU

rculist.h

TREE_PREEMPT_RCU

Boost
 lockdep,
 sparse,
 debug-objects,
rcutiny

Energy,
CPU hotplug

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation11

Why Did I Wait Until 2011 to Conserve Energy?

The fact is that I didn't wait that long!!!

But RCU's energy-efficiency code is unusual in that it has
been rewritten a great many times

–RCU has been concerned about energy efficiency for about ten years
–Not much energy-efficiency code in RCU in the 1990s: Why?

Other minor changes:
–Expedited grace periods
–Additions to rcutorture
–Additional list-traversal primitives
–Upgrading real-time response
–Plus the usual list of fixes, improvements, and adaptations



Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation12

“The Good Really Old Days”

RCU used by DYNIX/ptx: Heavy database servers

Used for a number of applications:
–Fraud detection in large financial systems
–Inventory monitoring/control for large retail firms
–Rental car tracking/billing
–Manufacturing coordination/control

• Including manufacturing of airliners

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation13

Airliner Manufacturing Plants Had Lots of These:

Author: William M. Plate Jr. (Public Domain)

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation14

Airliner Manufacturing Plants Had Lots of These

Author: William M. Plate Jr. (Public Domain)

At About 40KW Each

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation15

And if You Think That Welders Are Power-Hungry...

GE90-115B turbofan - front {{Le Bourget 2005}} Copyright © 2005 David Monniaux {{GFDL}} {{cc-by-sa-2.0}} {{cc-by-sa-2.0-fr}}

Making RCU Respect Your Device's Battery Lifetime

http://en.wikipedia.org/wiki/GE90
http://en.wikipedia.org/wiki/User:David.Monniaux

© 2009 IBM Corporation16

If You Are Running a Bunch of Welders or Turbines...

Not only are you not going to care much about RCU's
contribution to power consumption...

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation17

If You Are Running a Bunch of Welders or Turbines...

Not only are you not going to care much about RCU's
contribution to power consumption...

You are not going to care much about the whole server's
contribution to power consumption!

But of course things look very different for small battery-
powered devices...

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation18

RCU's Many Energy-Efficiency Implementations

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation19

Initial RCU Did Have One Energy-Efficiency Feature

 Initial DYNIX/ptx RCU had light-weight read-side primitives
–“Free” is a very good price!!!

This meant that the system returned to idle more quickly than
it would with heavier-weight synchronization primitives

–But 1990s systems consumed more power idle than when running!
–This was because the idle loop fit into cache, thus allowing the CPU to

execute useless instructions at a very high rate

But today's CPUs have many energy-efficiency features
–And have very low idle power, especially for long-duration idle periods

So why does RCU need to worry about energy efficiency???
–After all, it is just a synchronization primitive!!!

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation20

RCU Driven From Scheduling Clock Interrupt

What RCU
Did (2003)

Scheduling-Clock
Interrupts

What Is
Required

No Scheduling-Clock Interrupts, CPU Enters Deep Sleep

RCU's Use of Scheduling-Clock
Interrupts Wastes Power and

Prevents Deep CPU Sleep States

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation21

RCU Driven From Scheduling Clock Interrupt

Scheduling-Clock
Interrupts

RCU's Use of Scheduling-Clock
Interrupts Wastes Power and

Prevents Deep CPU Sleep States

No Scheduling-Clock Interrupts, CPU Enters Deep Sleep

Which is why RCU has a dyntick-idle subsystem!

What RCU
Did (2003)

What Is
Required

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation22

RCU and Dyntick Idle (AKA CONFIG_NO_HZ=y)

List of implementations:
–2004: Dyntick-idle bit vector

• Manfred Spraul locates theoretical bug

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation23

RCU and Dyntick Idle (AKA CONFIG_NO_HZ=y)

List of implementations:
–2004: Dyntick-idle bit vector

• Manfred Spraul locates theoretical bug
• A few months before the mainframe guys encounter it

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation24

RCU and Dyntick Idle (AKA CONFIG_NO_HZ=y)

List of implementations:
–2004: Dyntick-idle bit vector

• Manfred Spraul locates theoretical bug
• A few months before the mainframe guys encounter it
• But after it had been in-tree for four years

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation25

RCU and Dyntick Idle (AKA CONFIG_NO_HZ=y)

List of implementations:
–2004: Dyntick-idle bit vector

• Manfred Spraul locates theoretical bug
• A few months before the mainframe guys encounter it
• But after it has been in-tree for four years

–2008: -rt version (with Steven Rostedt)
• Very complex: http://lwn.net/Articles/279077/

–2009: Separate out NMI accounting
• Greatly simplified: No proof of correctness required ;-)

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation26

RCU and Dyntick Idle as of Early 2010

CPU 1

CPU 0

Scheduling-Clock
Interrupts

Enter Dyntick-Idle Mode

Need to Process RCU
Callbacks Before Entering

Dyntick-Idle Mode

RCU Grace
Period Ends

Dyntick-Idle Mode Enables
CPU Deep-Sleep States

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation27

So RCU is Perfectly Energy Efficient, Right?

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation28

So RCU is Perfectly Energy Efficient, Right?

Well, I thought that RCU was very energy efficient

Then in early 2010 I got a call from someone working on a battery-
powered multicore system

And he was very upset with RCU

Why?

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation29

RCU Energy Inefficiency

CPU 1

CPU 0

Scheduling-Clock
Interrupts

Enter Dyntick-Idle Mode

RCU Callbacks Prevent
Dyntick-Idle Mode Entry

CPU is Draining
the Battery For

No Good Reason!!!

No RCU Read-Side
Critical Sections!

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation30

RCU and Dyntick Idle (AKA CONFIG_NO_HZ=y)

List of implementations:
–2004: Dyntick-idle bit vector

• Manfred Spraul locates theoretical bug
• A few months before the mainframe guys encounter it
• But after it has been in-tree for four years

–2008: -rt version (with Steven Rostedt)
• Very complex: http://lwn.net/Articles/279077/

–2009: Separate out NMI accounting
• Greatly simplified: No proof of correctness required

–2010: CONFIG_RCU_FAST_NO_HZ for small systems
• Force last CPU into dyntick-idle mode

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation31

CONFIG_RCU_FAST_NO_HZ

CPU 1

CPU 0

Scheduling-Clock
Interrupts

Enter Dyntick-Idle Mode

All Other CPUs Idle,
Grace Period Ends Immediately

RCU Callbacks
Invoked Immediately

No RCU Read-Side
Critical Sections!

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation32

So RCU is Perfectly Energy Efficient, Right?

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation33

So RCU is Perfectly Energy Efficient, Right?

This time, I was wiser:
–I suspected CONFIG_FAST_NO_HZ needed on large systems

And someone mentioned this to me in late 2011

But some things never change: He was very upset with RCU

Why?

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation34

Might Never Have All But One CPU Dyntick-Idled!!!

CPU 1

CPU 0

CPU 2

The more CPUs you have, the worse this effect gets

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation35

RCU and Dyntick Idle (AKA CONFIG_NO_HZ=y)

List of implementations:
–2004: Dyntick-idle bit vector

• Manfred Spraul locates theoretical bug
• A few months before the mainframe guys encounter it
• But after it has been in-tree for four years

–2008: -rt version (with Steven Rostedt)
• Very complex: http://lwn.net/Articles/279077/

–2009: Separate out NMI accounting
• Greatly simplified: No proof of correctness required

–2010: CONFIG_RCU_FAST_NO_HZ for small systems
• Force last CPU into dyntick-idle mode

–2012: CONFIG_RCU_FAST_NO_HZ for large systems
• Force CPUs with callbacks into dyntick-idle, but wake them up later
• (See 2012 ELC presentation)

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation36

Large-System CONFIG_RCU_FAST_NO_HZ: Before

CPU 1

CPU 0

CPU 2

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation37

Large-System CONFIG_RCU_FAST_NO_HZ: After

CPU 1

CPU 0

CPU 2

Extra work at idle entry might
(or might not) save work later

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation38

Large-System CONFIG_RCU_FAST_NO_HZ: Results

Performance work showed equivocal results

Often a great reduction in wakeups, but not always as large
of energy savings as desired

Repeated attempts to drain callbacks on idle entry do not
seem to be as helpful as desired

Can CONFIG_RCU_FAST_NO_HZ reduce scheduling-clock
ticks with less idle-entry RCU-callback work?

–To find out, let's look at RCU grace-period and callback handling
–Grace period: The period of time that RCU defers work

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation39

Grace-Period Handling In The Good Really Old Days

10 2 3

CPU 0

CPU 1

CPU 2

CPU 3

GP #

Scheduling-clock
interrupt

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation40

RCU Callback Handling In The Good Really Old Days

CPU 0

RCU_DONE_TAIL

RCU_WAIT_TAIL

RCU_NEXT_READY_TAIL

RCU_NEXT_TAIL

­>nxttail[]

­>nxtlist A B C D E

0 10

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation41

RCU Callback Handling In The Good Really Old Days

CPU 0

RCU_DONE_TAIL

RCU_WAIT_TAIL

RCU_NEXT_READY_TAIL

RCU_NEXT_TAIL

­>nxttail[]

­>nxtlist A B C D E

Advance callbacks

0 10

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation42

RCU Callback Handling In The Good Really Old Days

CPU 0

RCU_DONE_TAIL

RCU_WAIT_TAIL

RCU_NEXT_READY_TAIL

RCU_NEXT_TAIL

­>nxttail[]

­>nxtlist D E

Invoke callbacks

0 10

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation43

RCU Callback Handling In The Good Really Old Days

CPU 0

RCU_DONE_TAIL

RCU_WAIT_TAIL

RCU_NEXT_READY_TAIL

RCU_NEXT_TAIL

­>nxttail[]

­>nxtlist D E

New callbacks arrive

HF G

0 10

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation44

Grace-Period Handling And TREE_RCU

Problem: Lock contention

Solution: Apply hierarchy in the form of TREE_RCU

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation45

Grace-Period Handling And TREE_RCU: 4096 CPUs

struct rcu_state

struct
rcu_node

struct
rcu_node

struct
rcu_node

struct
rcu_data

CPU 15

struct
rcu_data

CPU 0

struct
rcu_data
CPU 4095

struct
rcu_data
CPU 4080

Level 0: 1 rcu_node

Level 1: 4 rcu_nodes

Level 2: 256 rcu_nodes

Total: 261 rcu_nodes

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation46

Grace-Period Handling And TREE_RCU: 4 CPUs

10

CPU 0

CPU 1

CPU 2

CPU 3

GP #

Node 0-1

Node 2-3

2 3

CPU 2 & 3 awareness
of race-period start delayed

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation47

Grace-Period Handling, TREE_RCU, and dyntick-idle

10 2 3

CPU 0

CPU 1

CPU 2

CPU 3

GP #

Node 0-1

Node 2-3

Callbacks registered here ... … are guaranteed done here

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation48

Grace-Period Handling, TREE_RCU, and dyntick-idle

10 2 3

CPU 0

CPU 1

CPU 2

CPU 3

GP #

Node 0-1

Node 2-3

Callbacks registered here ... … are guaranteed done here

But CPU 3 is asleep and unaware!

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation49

Dealing With dyntick-idle Grace-Period Latency

Making RCU Respect Your Device's Battery Lifetime

Don't allow CPUs with callbacks to go dyntick-idle
–Which would unfortunately put us back where we started

Try to force RCU state machine to drain callbacks
–Already tried that, consumes too much CPU for too little benefit

 Impose time limit on dyntick-idle sojourns with callbacks
–About 6 seconds if all lazy and about 4 jiffies if at least one non-lazy
–Seems to work reasonably well: times can be adjusted at runtime
–But still greatly degrades grace-period latency for dyntick-idle CPUs

Mark callbacks with corresponding grace-period number

© 2009 IBM Corporation50

Grace-Period Handling, TREE_RCU, and dyntick-idle

10 2 3

CPU 0

CPU 1

CPU 2

CPU 3

GP #

Node 0-1

Node 2-3

Callbacks registered here
are marked with grace period 2

And will be recognized as ready
when CPU 3 awakens

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation51

But What If No Other CPU Needs Grace Period?

10

CPU 0

CPU 1

CPU 2

CPU 3

GP #

Node 0-1

Node 2-3

Callbacks registered and marked here, but grace period 2 never starts!!!

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation52

Dealing With dyntick-idle Grace-Period Latency

Making RCU Respect Your Device's Battery Lifetime

Don't allow CPUs with callbacks to go dyntick-idle
–Which would unfortunately put us back where we started

Try to force RCU state machine to drain callbacks
–Already tried that, consumes too much CPU for too little benefit

 Impose time limit on dyntick-idle sojourns with callbacks
–About 6 seconds if all lazy and about 4 jiffies if at least one non-lazy
–Seems to work reasonably well: times can be adjusted at runtime
–But still degrades grace-period latency for dyntick-idle CPUs, so...

Mark callbacks with corresponding grace-period number
–But cannot start later grace periods, so...

Register corresponding grace period with RCU core

© 2009 IBM Corporation53

Grace-Period Handling, TREE_RCU, and dyntick-idle

10 2

CPU 0

CPU 1

CPU 2

CPU 3

GP #

Node 0-1

Node 2-3

Callbacks registered here
are marked with grace period 2

And RCU knows to start
grace period 2

Making RCU Respect Your Device's Battery Lifetime

© 2009 IBM Corporation54

Grace-Period Handling, TREE_RCU, and dyntick-idle

10 2

CPU 0

CPU 1

CPU 2

CPU 3

GP #

Node 0-1

Node 2-3

Callbacks registered here
are marked with grace period 2

And RCU knows to start
grace period 2

Making RCU Respect Your Device's Battery Lifetime

And that grace period 3
is not needed

© 2009 IBM Corporation55

Preliminary Energy Efficiency Results

Making RCU Respect Your Device's Battery Lifetime

Data courtesy of Dietmar Eggemann and Robin Randhawa of
ARM on early-silicon big.LITTLE system

Early results equivocal, but RCU_FAST_NO_HZ might not be
helping much on big.LITTLE

–Looking into kthread throttling and tuning
–Also double-checking experiment setup

Alternative approach: no-CBs CPUs!

But what is big.LITTLE???

© 2009 IBM Corporation56

ARM big.LITTLE Architecture

Making RCU Respect Your Device's Battery Lifetime

Cortex-A15 Cortex-A15

Cortex-A7 Cortex-A7 Cortex-A7

Twice as fast

~3 times more
energy efficient

big

LITTLE

© 2009 IBM Corporation57

ARM big.LITTLE Architecture: Strategy

Making RCU Respect Your Device's Battery Lifetime

Run on the LITTLE by default

Run on big if heavy processing power is required

 In other words, if feasible, run on LITTLE for efficiency, but
run on big if necessary to preserve user experience

–This suggests that RCU callbacks should run on LITTLE CPUs

© 2009 IBM Corporation58

ARM big.LITTLE Without no-CBs CPUs

Making RCU Respect Your Device's Battery Lifetime

big CPU

call_rcu()

CB

Grace Period

LITTLE CPU

Busy

Busy Busy Busy

© 2009 IBM Corporation59

ARM big.LITTLE With no-CBs CPUs

Making RCU Respect Your Device's Battery Lifetime

big CPU

call_rcu()

CB

Grace Period

LITTLE CPU

Busy

Busy Busy Busy

© 2009 IBM Corporation60

ARM big.LITTLE With no-CBs CPUs: No Free Lunch

Making RCU Respect Your Device's Battery Lifetime

CB
big CPU

call_rcu()

CB

Grace Period

LITTLE CPU

Busy

Busy Busy Busy

© 2009 IBM Corporation61

ARM big.LITTLE With no-CBs CPUs:
Preliminary Results

Making RCU Respect Your Device's Battery Lifetime

Reference System: RCU_NOCB_CPU=n

Test System: RCU_NOCB_CPU=y, big CPUs offloaded,
kthreads confined to LITTLE CPUs

Approximate power savings:
–cyclictest: 10%
–andebench8: 2%
–audio: 10%
–bbench_with_audio: 5%

Next steps:
–Get no-CBs CPUs to production quality
–More adjustment to RCU_FAST_NO_HZ

© 2009 IBM Corporation62

Offloadable RCU Callbacks: Limitations and Futures

Making RCU Respect Your Device's Battery Lifetime

 Probably several remaining bugs in no-CBs CPUs
– Not yet production quality

 Must reboot to reconfigure no-CBs CPUs
– Should be just fine for many uses
– Hopefully also OK for HPC and real-time workloads

 No energy-efficiency code: lazy & non-lazy CBs? Non-lazy!
– But non-lazy Cbs are common case, so deferring interpretation of laziness.

 No-CBs CPUs' kthreads not subject to priority boosting
– Probably not a near-term problem

 Setting all no-CBs CPUs' kthreads to RT prio w/out pinning them: bad!
– At least on large systems: Probably OK near-term, maybe long term as well

 Note: I do not expect no-CBs path to completely replace current CB path

© 2009 IBM Corporation63

To Probe More Deeply Into no-CBs CPUs...

Making RCU Respect Your Device's Battery Lifetime

 “Relocating RCU callbacks” by Jon Corbet
–http://lwn.net/Articles/522262/

 “What Is New In RCU for Real Time (RTLWS 2012)”
– http://www.rdrop.com/users/paulmck/realtime/paper/RTLWS2012occcRT.2012.

10.19e.pdf
• Slides 21-on

 “Getting RCU Further Out of the Way (Plumbers 2012)”
– http://www.rdrop.com/users/paulmck/realtime/paper/nocb.2012.08.31a.pdf

 “Cleaning Up Linux’s CPU Hotplug For Real Time and Energy
Management” (ECRTS 2012)

– http://www.rdrop.com/users/paulmck/realtime/paper/hotplug-
ecrts.2012.06.11a.pdf

© 2009 IBM Corporation64

Lessons Learned and Relearned

© 2009 IBM Corporation65

Lessons Learned, Old and New

Workload matters!!!
–Different workloads have different requirements
–A given workload's requirements change over time

• More important, one's understanding of requirements changes over time!
–Supporting a single workload is easier than supporting many of them

© 2009 IBM Corporation66

Lessons Learned, Old and New

Workload matters!!!
–Different workloads have different requirements
–A given workload's requirements change over time

• More important, one's understanding of requirements changes over time!
–Supporting a single workload is easier than supporting many of them

Energy-efficiency and performance benchmarkers
–You would never believe what either group will do for 5%...

© 2009 IBM Corporation67

Lessons Learned, Old and New

Workload matters!!!
–Different workloads have different requirements
–A given workload's requirements change over time

• More important, one's understanding of requirements changes over time!
–Supporting a single workload is easier than supporting many of them

Energy-efficiency and performance benchmarkers
–You would never believe what either group will do for 5%...

Median age of randomly chosen line of RCU code: < 2 years

© 2009 IBM Corporation68

Lessons Learned, Old and New

Workload matters!!!
–Different workloads have different requirements
–A given workload's requirements change over time

• More important, one's understanding of requirements changes over time!
–Supporting a single workload is easier than supporting many of them

Energy-efficiency and performance benchmarkers
–You would never believe what either group will do for 5%...

Median age of randomly chosen line of RCU code: < 2 years

The guys who request an enhancement are rarely the guys
who are willing to test your patches

© 2009 IBM Corporation69

Lessons Learned, Old and New

Workload matters!!!
–Different workloads have different requirements
–A given workload's requirements change over time

• More important, one's understanding of requirements changes over time!
–Supporting a single workload is easier than supporting many of them

Energy-efficiency and performance benchmarkers
–You would never believe what either group will do for 5%...

Median age of randomly chosen line of RCU code: < 2 years

The guys who request an enhancement are rarely the guys
who are willing to test your patches

The importance of the community

© 2009 IBM Corporation70

A Brief History of RCU Issues

 ~1993: SMP scalability (30 CPUs) for RDBMS workloads

 1996: NUMA (64 CPUs) for RDBMS workloads

 2002: SMP scalability (~30 CPUs) for general workloads

 2004: SMP scalability (~512 CPUs) for HPC workloads
– And some concern about energy efficiency

 2005: Real-time response (~4 CPUs)

 2008: SMP scalability (>1024 CPUs) for HPC workloads
– 100s of CPUs for more general workloads

 2009: Real-time response (~30 CPUs) for general workloads

 2010: Energy efficiency (~2 CPUs), real-time response when CPU-bound

 2011: Energy efficiency (lots of CPUs)

 2012: RCU causes 200-microsecond latency spikes...

© 2009 IBM Corporation71

And So I Owe The Linux Community Many Thanks

Because of the many RCU-related challenges from the Linux
community, some of my most important work and
collaborations have been in the past ten years

© 2009 IBM Corporation72

And So I Owe The Linux Community Many Thanks

Because of the many RCU-related challenges from the Linux
community, some of my most important work and
collaborations have been in the past ten years

Not many people my age can truthfully say that

Here is hoping for ten more years!!! ;-)

© 2009 IBM Corporation73

Legal Statement

This work represents the view of the author and does not
necessarily represent the view of IBM.

 IBM and IBM (logo) are trademarks or registered trademarks
of International Business Machines Corporation in the United
States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.

© 2009 IBM Corporation74

Questions

	IBM Presentation Template Full Version
	Selecting a template
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

