
© 2009 IBM Corporation

When Do Real Time Systems Need
Multiple CPUs?

Paul E. McKenney, IBM Distinguished Engineer, CTO Linux

October 24, 2010

© 2009 IBM Corporation2

Overview

When Do Real Time Systems Need Multiple CPUs?

SMP Real Time Systems: Inevitable?

Very Brief Overview of Parallelization

Two Basic Modes of Control-Loop Parallelism

Evaluation

 “Real Time Theory Depression” and How to Fight It

What to do with Leftover CPUs?

Summary

© 2009 IBM Corporation3

SMP Real Time Systems: Inevitable?

© 2009 IBM Corporation4

SMP Inevitability: The Party Line

When Do Real Time Systems Need Multiple CPUs?

© 2009 IBM Corporation5

Real-World Evidence for SMP Inevitability...

Multi-core ARM CPUs: a few tens of dollars per chip

SMP support in -rt patchset for the Linux kernel

SMP real-time systems in use, including financial military
applications

© 2009 IBM Corporation6

More Real-World Evidence for SMP Inevitability...

Multi-core ARM CPUs: a few tens of dollars per chip

SMP support in -rt patchset for the Linux kernel

SMP real-time systems in use, including financial military
applications

But is SMP real time the right answer in all cases?

© 2009 IBM Corporation7

SMP Real Time Systems: The Case Against

 Most software (especially real-time software is still single-threaded

 Many algorithms and workloads lack high-quality parallel implementations

 Parallel implementations often larger and more complex than their single-
threaded counterparts

 Parallel implementations more difficult to validate than their single-
threaded counterparts

 RT theory still tied to uniprocessor models and algorithms

 Parallel hardware is here. Parallel software? Not so much...

 Need a reason for RT parallelism: default answer is single-threaded

© 2009 IBM Corporation8

SMP Real Time Systems: The Case Against

 Most software (especially real-time software is still single-threaded

 Many algorithms and workloads lack high-quality parallel implementations

 Parallel implementations often larger and more complex than their single-
threaded counterparts

 Parallel implementations more difficult to validate than their single-
threaded counterparts

 RT theory still tied to uniprocessor models and algorithms

 Parallel hardware is here. Parallel software? Not so much...

 Need a reason for RT parallelism: default answer is single-threaded

 Blindly replicating UP RT in an SMP environment: not a winning strategy!

© 2009 IBM Corporation9

Very Brief Overview of Parallelization

© 2009 IBM Corporation10

Parallelization: First, Partition the Data!

Code Data Code

Data

Data

Data

Data

Data

Just a quick overview: there are full textbooks on this topic, for example:
http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html

© 2009 IBM Corporation11

Parallelization: General Process

Work
Partitioning

Interacting
With Hardware

Parallel
Access Control

Resource
Partitioning

& Replication

Data-parallel approach: first partition resources, then partition work, and only
then worry about parallel access control. Lather, rinse, and repeat.

© 2009 IBM Corporation12

Two Basic Modes of Control-Loop Parallelism

© 2009 IBM Corporation13

Two Basic Modes of Parallelism

Stage 1

Stage 2

Stage 3

Pipelining

Partition 1 Partition 2 Partition 3

Data Parallelism

Which to use? And when?

© 2009 IBM Corporation14

Evaluation

© 2009 IBM Corporation15

Test With Randomly Chosen Synthetic Workload

void mung(int *x, int n)
{
 int i;

 for (i = 0; i < n; i++)
 x[i] = 10 + x[i] / 10;
}

© 2009 IBM Corporation16

Pipelining Test Setup

User-mode tests

Synchronization via pthread_mutex_t

Overhead of pthread_create() and pthread_join() counted
against pipelining

Flow of control:
–Record start time
–Process the first half of the data
–Create a child thread using pthread_create()
–Child processes second half of the data
–Use pthread_join() to synchronize with child thread
–Record end time

© 2009 IBM Corporation17

Pipelining Parallel Control Flow

Record Start Time
Process First
Half of Data

Create Child
Thread

Process Second
Half of Data

Synchronize With
Child Thread

Record End Time

© 2009 IBM Corporation18

Latency Results for Pipelining: Not Good!!!

Always Faster To Run a Single Thread!!!

© 2009 IBM Corporation19

Pipelining Test Setup: Pre-Existing Threads

User-mode tests

Synchronization via pthread_mutex_t

Create threads at initialization:
–Overhead of pthread_create() and pthread_join() not
counted against pipelining

Lock threads down to specific CPUs

Downstream thread spins waiting for work from upstream
thread

© 2009 IBM Corporation20

Pipelining Parallel Control Flow: Pre-existing Threads

Record Start Time
Process First
Half of Data

Notify Child
Thread

Process Second
Half of Data

Wait For
Notification

Record End Time

Notify Parent
Thread

© 2009 IBM Corporation21

Latency Results for Pipelining With Pre-Existing Threads...

Well, it isn't quite as bad as before, but...

© 2009 IBM Corporation22

Why Bother With Parallel Pipelines???

© 2009 IBM Corporation23

Good Use of Parallel Pipelines: Overlap Successive Work Units

Work Unit 1 Work Unit 1

Wait Execute

Total

Work Unit 1A Work Unit 2A

Work Unit 1B Work Unit 2B

Wait Execute

Total

CPU 0

CPU 1

© 2009 IBM Corporation24

Data Parallel Test Setup

User-mode tests

Synchronization via pthread_mutex_t

Overhead of pthread_create() and pthread_join() counted
against pipelining

© 2009 IBM Corporation25

Data Parallel Control Flow

Record Start Time
Create Child

Thread

Process Second
Half of Data

Synchronize With
Child Thread

Record End Time

Process First
Half of Data

© 2009 IBM Corporation26

Latency Results for Data Parallelism: Not Great, But OK...

© 2009 IBM Corporation27

Data Parallel Test Setup: Pre-Existing Threads

User-mode tests

Synchronization via pthread_mutex_t

Create threads at initialization:
–Overhead of pthread_create() and pthread_join() not
counted against pipelining

Lock threads down to specific CPUs

Downstream thread spins waiting for work from upstream
thread

© 2009 IBM Corporation28

Data Parallel Control Flow: Pre-Existing Threads

Record Start Time
Notify Child

Thread

Process Second
Half of Data

Synchronize With
Child Thread

Record End Time

Process First
Half of Data

Notify Parent
Thread

© 2009 IBM Corporation29

Latency Results for Pipelining With Pre-Existing Threads...

Semi-respectable speedup! What can be achieved?

© 2009 IBM Corporation30

“Real Time Theory Depression” and How to Fight It

© 2009 IBM Corporation31

When In Doubt, Normalize!!!

 T: Time required to complete unit of work in single-threaded environment

 C: Communications overhead (of all kinds) incurred in SMP environment

 N: Number of CPUs/threads

 S: Speedup: sequential time divided by SMP time (yes, can be less than 1!)

 Plot S against T/C...

S=
T

T
N
C

© 2009 IBM Corporation32

Theoretical Limits For Data Parallelism

Murphy Strikes Again!!! (And CS Theory is Depressing!)

S=
N

T
C

T
C
N

© 2009 IBM Corporation33

Suppose That You Need a Specific Speedup

Solve prior expression for T/C:

Plug in values for S & N:
–40% speedup (S=1.4)

• N=2: T/C>=4.7
• N=3: T/C>=2.6
• N=4: T/C>=2.2

–100% speedup (S=2.0)
• N=2: T/C infinite
• N=3: T/C>=6
• N=4: T/C>=4

–200% speedup (S=3.0)
• N=3: T/C infinite
• N=4: T/C>=12

The tighter your RT deadlines, the less helpful parallelism will be!!!

T
C
=S

N
N−S

© 2009 IBM Corporation34

How Can You Fight Theoretical RT Parallel Depression???

 Apply parallelism at the highest possible level
– The larger your units of work, the more benefit you will get from parallelization

 Use interleaving (crypto, compression, encoding)
– Some difficulties applying to audio
– Consider splitting the display for video: but too bad about existing standards...

 Ditch parallelism: hand-optimize sequential control loops
– Real men will hand-code them in assembly
– Real women will hand-code them in hexadecimal

 Ditch parallelism: hardware acceleration for standard transformations

 Ditch parallelism: FPGAs for non-standard transformations
– Which won't necessarily be any easier than coding in parallel
– But some workloads are better suited to FPGAs and vice versa

 And if the original sequential implementation was fast enough, why did you even bother reading this
far???

© 2009 IBM Corporation35

How Can You Fight Theoretical RT Parallel Depression???

 Apply parallelism at the highest possible level
– The larger your units of work, the more benefit you will get from parallelization

 Use interleaving (crypto, compression, encoding)
– Some difficulties applying to audio
– Consider splitting the display for video: but too bad about existing standards...

 Ditch parallelism: hand-optimize sequential control loops
– Real men will hand-code them in assembly
– Real women will hand-code them in hexadecimal

 Ditch parallelism: hardware acceleration for standard transformations

 Ditch parallelism: FPGAs for non-standard transformations
– Which won't necessarily be any easier than coding in parallel
– But some workloads are better suited to FPGAs and vice versa

 And if the original sequential implementation was fast enough, why did you even bother reading this
far??? Ah yes, wasting those leftover CPUs...

© 2009 IBM Corporation36

How Can You Fight Theoretical RT Parallel Depression???

 Apply parallelism at the highest possible level
– The larger your units of work, the more benefit you will get from parallelization

 Use interleaving (crypto, compression, encoding)
– Some difficulties applying to audio
– Consider splitting the display for video: but too bad about existing standards...

 Ditch parallelism: hand-optimize sequential control loops
– Real men will hand-code them in assembly
– Real women will hand-code them in hexadecimal

 Ditch parallelism: hardware acceleration for standard transformations

 Ditch parallelism: FPGAs for non-standard transformations
– Which won't necessarily be any easier than coding in parallel
– But some workloads are better suited to FPGAs and vice versa

 And if the original sequential implementation was fast enough, why did you even bother reading this
far??? Ah yes, wasting those leftover CPUs... Such a tragedy!!!

© 2009 IBM Corporation37

What to do with Leftover CPUs?

© 2009 IBM Corporation38

What To Do With Leftover CPUs???

Get a system with fewer CPUs

Power off the leftover CPUs

Use leftover CPUs to run any needed UI or reporting

For enterprise real time, run part of the enterprise portion of the
application on the leftover CPUs

These last two imply RT-to-non-RT communication...

© 2009 IBM Corporation39

Enterprise Real Time: RT Reflexes and Enterprise Processing

Machine tool 1

SCADA

Enterprise Resource Planning (ERP)

Supply Chain Invoicing &
billing

Per-domain RT QoS:
• white: enterprise-like
• silver: soft, 1-5s
• gold: harder, <1s
• red: hard, sub-reflex

Work
Routing

Manufacturing Execution System (MES)

Logistics
ERP

Setup

SCADA: supervisory/system control and data acquisition

Transport
logistics

Materials
warehousing

Factory Automation System / DCSFactory Automation System / DCSFactory Automation System / DCS

Print/Verify/Ship Application
Sensors (on-site stocks)

Factory conditions

RFID
print

RFID
read

conveyor
actuator

PLC

PLC PLC

Machine tool 2

PLC

PLC

© 2009 IBM Corporation40

How To Do RT-To-Non-RT Communication???

Messaging:
–Real-time implementations of linked queues
–User-mode equivalents of kfifo ring buffer
–Simple shared-memory “mailboxes”
–Numerous real-time messaging projects and products

Lookups (read-mostly hash tables, lists, search trees):
–RCU!!!

Other communications might use locking
–And you might want priority boosting...

© 2009 IBM Corporation41

Thread Placement Can Be Critical!!!

Operation Ratio

Clock period 0.4 1

“Best-case” CAS 12.2 33.8

Best-case lock 25.6 71.2

Single cache miss 12.9 35.8

CAS cache miss 7.0 19.4

31.2 86.6

31.2 86.5

92.4 256.7

95.9 266.4

Cost (ns)

Single cache miss (off-core)

CAS cache miss (off-core)

Single cache miss (off-socket)

CAS cache miss (off-socket)

16-CPU 2.8GHz Intel X5550 (Nehalem) System16-CPU 2.8GHz Intel X5550 (Nehalem) System

© 2009 IBM Corporation42

Summary

SMP hardware is here – SMP software, not so much

SMP for real time can make sense In control loops
–Pipelining: reduce queuing delays
–Data parallelism: reduce execution delays
–However, the most aggressive control loop deadlines are
hurt most by SMP communications overhead...

Leftover CPUs have many uses
–But don't be afraid to simply refuse to use them

Thread placement is critically important
–Something about the finite speed of light and atomic nature
of matter – and lack of theory of SMP real time!

© 2009 IBM Corporation43

Questions?

