
© 2012 IBM Corporation

On-Chip Cache Coherence and Real-Time Systems
And What is New in RCU for Real Time

Paul E. McKenney, IBM Distinguished Engineer, Linux Technology Center

2012 RTLWS Chapel Hill, NC USA October 19, 2012

© 2009 IBM Corporation2

Overview

On-chip cache coherence and real-time systems

New real-time features for RCU

Other future RCU work

RTLWS 2012

© 2009 IBM Corporation3

On-Chip Cache Coherence and Real-Time Systems

RTLWS 2012

© 2009 IBM Corporation4

On-Chip Cache Coherence and Real-Time Systems

July 2012 CACM: “Why on-chip coherence is here to stay”,
Milo M. K. Martin, Mark D. Hill, and Daniel J. Sorin

–Argued that for real-fast systems, cache-coherence will persist
indefinitely

• Cache coherence: all CPUs agree on the data in a given cache line
• No need for cache-flush instructions (just the usual memory barriers)

RTLWS 2012

© 2009 IBM Corporation5

On-Chip Cache Coherence and Real-Time Systems

July 2012 CACM: “Why on-chip coherence is here to stay”,
Milo M. K. Martin, Mark D. Hill, and Daniel J. Sorin

–Argued that for real-fast systems, cache-coherence will persist
indefinitely

• Cache coherence: all CPUs agree on the data in a given cache line
• No need for cache-flush instructions (just the usual memory barriers)

–Which should be a relief to us software guys writing parallel code
• After all, memory barriers cause enough trouble, don't they?

RTLWS 2012

© 2009 IBM Corporation6

On-Chip Cache Coherence and Real-Time Systems

July 2012 CACM: “Why on-chip coherence is here to stay”,
Milo M. K. Martin, Mark D. Hill, and Daniel J. Sorin

–Argued that for real-fast systems, cache-coherence will persist
indefinitely

• Cache coherence: all CPUs agree on the data in a given cache line
• No need for cache-flush instructions (just the usual memory barriers)

–Which should be a relief to us software guys writing parallel code
• After all, memory barriers cause enough trouble, don't they?

–But what about real-time systems?

RTLWS 2012

© 2009 IBM Corporation7

How Cache Coherence Is Implemented in Hardware

RTLWS 2012

Interconnect

L2 Cache L2 Cache L2 Cache L2 Cache

Memory

CPU 0

L1 Cache

CPU 1 CPU 2 CPU 3

L1 Cache L1 Cache L1 Cache

© 2009 IBM Corporation8

How Cache Coherence Is Implemented in Hardware

RTLWS 2012

Interconnect

L2 Cache L2 Cache L2 Cache L2 Cache

Memory

CPU 0

L1 Cache

CPU 1 CPU 2 CPU 3

L1 Cache L1 Cache L1 Cache

Shared Variable in Red
All Reads Local (Fast)

© 2009 IBM Corporation9

How Cache Coherence Is Implemented in Hardware

RTLWS 2012

Shared Variable in Red:
CPU 0 Updates it (Slow)

Interconnect

L2 Cache L2 Cache L2 Cache L2 Cache

Memory
Cacheline

Invalidations

CPU 0

L1 Cache

CPU 1 CPU 2 CPU 3

L1 Cache L1 Cache L1 Cache

© 2009 IBM Corporation10

How Cache Coherence Is Implemented in Hardware

RTLWS 2012

Shared Variable in Red:
CPU 3 Reads (Slow)

Interconnect

L2 Cache L2 Cache L2 Cache L2 Cache

Memory

CPU 0

L1 Cache

CPU 1 CPU 2 CPU 3

L1 Cache L1 Cache L1 Cache

Request and
Response

© 2009 IBM Corporation11

How Cache Coherence Is Implemented in Hardware

RTLWS 2012

Shared Variable in Red:
CPUs 0 and 3 Reads (Fast)

Interconnect

L2 Cache L2 Cache L2 Cache L2 Cache

Memory

CPU 0

L1 Cache

CPU 1 CPU 2 CPU 3

L1 Cache L1 Cache L1 Cache

© 2009 IBM Corporation12

Lots of Effort Required From Hardware!
And Today's Systems Have More CPUs...

RTLWS 2012

© 2009 IBM Corporation13

Modern Multicore System Architecture

RTLWS 2012

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

More work for hardware to maintain cache coherence

© 2009 IBM Corporation14

Will Systems Continue to be Cache Coherent?

RTLWS 2012

© 2009 IBM Corporation15

Modern Multicore System: Cache-Coherence Issues

RTLWS 2012

Broadcasting invalidations could result in O(N2) traffic
– Directory-based cache-coherence schemes send messages only where

needed – but that could still be a lot of traffic, N2 worst case!

Directory-based cache-coherence schemes add hardware
– Minimize added hardware via “inclusion”: any line in a cache close to a CPU is

also maintained by all levels farther from that CPU
– Further reduced by increasing number of levels in cache hierarchy

Maintaining inclusion can result in needless rollouts
– Can eliminate these by increasing associativity: shared cache associativity

must equal sum of subordinate caches
• Usually infeasible: 8x 8-way caches means 64-way shared cache!

– But decreasing associativity to 16 ways results in small miss rate

Taller cache hierarchy means more memory latency

Energy efficiency???

© 2009 IBM Corporation16

Broadcasting Invalidations and N2 Traffic

RTLWS 2012

Worst-case invalidation traffic is still O(N2)
–And the worst case is what real-time is all about...

For real-fast systems, this is not a problem:
–Directory-based system: Invalidations only sent where needed
–Every cache holding the cache line got it via a cache miss
–Hardware can process invalidations in parallel
–Average per-access invalidation overhead thus sharply bounded

This doesn't help for real-fast systems: What to do?
–Measure worst-case invalidation
–If too large, use software techniques to limit sharing

• Partitioning, hierarchy, …
• For extra credit, adjust the jiffies counter for real-time usage...

© 2009 IBM Corporation17

Directory-Based Cache Coherence

RTLWS 2012

Directory-based cache-coherence mostly invisible to real-time
– Except for cache-miss and cache-level effects due to need for inclusion

For hardest real time, you pretty much need to assume all
accesses miss the cache

– But most real-time systems are not quite that hard
– And are probably just stuck with the added latency, work around it by:

• Using a fraction of the CPUs, based on cache size (similar to turning off
hyperthreading)

• Engineer a safety factor to allow for increased cache-miss rate
• Use special CPUs designed for real-time embedded work

Taller cache hierarchy means more memory latency
– Hopefully increases in cache size help to counteract this trend, at least for

softer forms of real-time systems
– Real-fast costs for too-tall cache hierarchy will limit the real-time pain

• See next slide
– Special real-time embedded CPUs might still be needed

© 2009 IBM Corporation18

Effects of Adding Cache Levels For 16-CPU System

RTLWS 2012

CPU 0
16 Caches To Track

16*16=256

CPU 0
4 Caches To Track

L1 Cache
4 Caches To Track

4*(16+4)=80

CPU 0
2 Caches To Track

L1 Cache
2 Caches To Track

L2 Cache
2 Caches To Track

L3 Cache
2 Caches To Track

2*(16+8+4+2)=60

* 16

* 16

* 4

* 16

* 8

* 4

* 2

© 2009 IBM Corporation19

Energy Efficiency???

RTLWS 2012

Real-time systems still seem to turn off energy-efficiency features

But it is likely that continued energy-efficiency progress will come
at the expense of real-time response

And sooner or later, there will be a demand for energy-efficiency
real-time systems

Thomas Gleixner says: “If your deadlines allow enough time to
power things up, there is no reason not to combine energy
efficiency with real-time response”

– Though people can be expected to want to push the envelope on both energy
efficiency and real-time response

– Which might be another good reason for a deadline scheduler

© 2009 IBM Corporation20

Energy Efficiency???

RTLWS 2012

Real-time systems still seem to turn off energy-efficiency features

But it is likely that continued energy-efficiency progress will come
at the expense of real-time response

And sooner or later, there will be a demand for energy-efficiency
real-time systems

Thomas Gleixner says: “If your deadlines allow enough time to
power things up, there is no reason not to combine energy
efficiency with real-time response”

– Though people can be expected to want to push the envelope on both energy
efficiency and real-time response

– Which might be another good reason for a deadline scheduler

Boredom is still not a short-term problem!

© 2009 IBM Corporation21

RCU and Real Time: History and Progress

RTLWS 2012

© 2009 IBM Corporation22

What The Heck Is RCU???

RTLWS 2012

For an overview, see http://lwn.net/Articles/262464/

For the purposes of this presentation, think of RCU as
something that defers work, with one work item per callback

–Each callback has a function pointer and an argument
–Callbacks are queued on per-CPU lists, invoked after grace period

• Invocation can result in OS jitter and real-time latency
–Global list handles callbacks from offlined CPUs: adopted quickly

And that has read-side critical sections

And that is a state machine driven out of scheduler_tick(),
softirq, and kthread(s)

http://lwn.net/Articles/262464/

© 2009 IBM Corporation23

RCU and Real Time: History

RTLWS 2012

2005: Preemptible RCU take 1 (in -rt)

2007: Preemptible RCU take 2: nonatomic (in mainline)

2009: Preemptible RCU take 3: scalable (in mainline)

2012: Bug report claiming 200-microsecond latency spikes
from RCU grace-period initialization

© 2009 IBM Corporation24

RCU and Real Time: History

RTLWS 2012

2005: Preemptible RCU take 1 (in -rt)

2007: Preemptible RCU take 2: nonatomic (in mainline)

2009: Preemptible RCU take 3: scalable (in mainline)

2012: Bug report claiming 200-microsecond latency spikes
from RCU grace-period initialization

–Which came as quite a surprise given ~30-microsecond latencies from
the entire kernel, not just RCU...

© 2009 IBM Corporation25

RCU and Real Time: History

RTLWS 2012

2005: Preemptible RCU take 1 (in -rt)

2007: Preemptible RCU take 2: nonatomic (in mainline)

2009: Preemptible RCU take 3: scalable (in mainline)

2012: Bug report claiming 200-microsecond latency spikes
from RCU grace-period initialization

–Which came as quite a surprise given ~30-microsecond latencies from
the entire kernel, not just RCU...

–But further down in the email, there was a kernel-configuration
parameter that fully explained the difference in latency

© 2009 IBM Corporation26

RCU and Real Time: History

RTLWS 2012

2005: Preemptible RCU take 1 (in -rt)

2007: Preemptible RCU take 2: nonatomic (in mainline)

2009: Preemptible RCU take 3: scalable (in mainline)

2012: Bug report claiming 200-microsecond latency spikes
from RCU grace-period initialization

–Which came as quite a surprise given ~30-microsecond latencies from
the entire kernel, not just RCU...

–But further down in the email, there was a kernel-configuration
parameter that fully explained the difference in latency

–NR_CPUS=4096!!!
• At which point: “You mean it only took 200 microseconds???”
• Therefore...

© 2009 IBM Corporation27

RCU and Real Time: History

RTLWS 2012

2005: Preemptible RCU take 1 (in -rt)

2007: Preemptible RCU take 2: nonatomic (in mainline)

2009: Preemptible RCU take 3: scalable (in mainline)

2012: Preemptible grace-period handling (in mainline)
–Who knew that 4096-CPU systems would do real-time work???

© 2009 IBM Corporation28

RCU and Real Time: History

RTLWS 2012

2005: Preemptible RCU take 1 (in -rt)

2007: Preemptible RCU take 2: nonatomic (in mainline)

2009: Preemptible RCU take 3: scalable (in mainline)

2012: Preemptible grace-period handling (in mainline)
–Who knew that 4096-CPU systems would do real-time work???
–Of course, limited 4096-CPU testing implies likely remaining bugs...
–And still need debugging features such as tracing

© 2009 IBM Corporation29

RCU and Real Time: Ongoing Work

RTLWS 2012

© 2009 IBM Corporation30

RCU and Real Time: Ongoing Work

RTLWS 2012

2011-: Preparation for Frederic's adaptive ticks (in mainline):
–Lots of dyntick-idle work preparing for adaptive ticks

• Less OS jitter for usermode execution once complete
–rcu_barrier() done, synchronize_sched_expedited() and

synchronize_rcu_expedited() still need additional work

2011-: “Lazy” RCU callbacks
–Lai Jiangshan Introduced kfree_rcu(), need other variants

2012-: Offloading callbacks from selected CPUs
–Initial report at Linux Plumbers Conference
–Embarrassingly little progress since then

2012-: Get rid of RCU-bh once uses are removed
–Reduce -rt diffs for RCU

© 2009 IBM Corporation31

Preparation For Adaptive Ticks

RTLWS 2012

RCU modifications to support Frederic's adaptive ticks

RCU treats user-mode execution as idle, reducing the need
for scheduling-clock interrupts in user-mode execution

–Thereby reducing OS jitter and improving real-time response
–Also removing rcu_barrier() interruptions

• And, later, interruptions from _expedited primitives

Still have RCU disturbance due to CPUs having RCU
callbacks queued when transitioning to usermode execution

© 2009 IBM Corporation32

Preparation For Adaptive Ticks: Graphical View

RTLWS 2012

KernelIdle Usermode Kernel Usermode

Scheduling
clock
interrupts

KernelIdle Usermode Kernel Usermode

If one task
per CPU

Adaptive
Ticks

Reduce OS jitter for real-time and HPC workloads

Extra scheduling
clock interrupts due
to RCU callbacks

© 2009 IBM Corporation33

“Lazy” RCU Callbacks

RTLWS 2012

Some RCU callbacks wake threads up
–Thus need to be processed in a timely fashion
–Indefinite postponement might well mean a system hang

Other RCU callbacks only free memory
–As long as the system has ample memory, can defer indefinitely

• For values of “indefinitely” equal to ten seconds
–Thus reducing OS jitter and improving energy efficiency

Lai Jiangshan Introduced kfree_rcu() for this purpose
–But this does not handle deferred free to slabs

Very likely also need call_rcu_lazy()

However, all of this is low priority
–High dynamic proportion of callbacks do non-trivial work

© 2009 IBM Corporation34

“Lazy” RCU Callbacks: Graphical View

RTLWS 2012

Scheduling
clock
interrupts

KernelIdle Usermode Kernel Usermode

If one task
per CPU

Lazy
CallbacksFewer extra scheduling

clock interrupts due to
RCU callbacks

KernelIdle Usermode Kernel Usermode

But what if you want no scheduling clock interrupts to userspace applications?

© 2009 IBM Corporation35

“Lazy” RCU Callbacks: Graphical View

RTLWS 2012

Scheduling
clock
interrupts

KernelIdle Usermode Kernel Usermode

If one task
per CPU

Lazy
CallbacksFewer extra scheduling

clock interrupts due to
RCU callbacks

KernelIdle Usermode Kernel Usermode

Don't do interrupts or system calls on that CPU!!!

But what if you want no scheduling clock interrupts to userspace applications?

© 2009 IBM Corporation36

No System Calls or Interrupts: Graphical View

RTLWS 2012

Scheduling
clock
interrupts

Idle Usermode Poll Usermode

In-memory IPC

Idle Idle Kernel Idle

so extra scheduling clock interrupts due to RCU callbacks!!!

CPU 0

CPU 1

Kernel

Don't do interrupts or system calls on that CPU,

© 2009 IBM Corporation37

But Sometimes You Really Need On-CPU Syscalls...

RTLWS 2012

© 2009 IBM Corporation38

But Sometimes You Really Need On-CPU Syscalls...
So Offload the RCU Callbacks!

RTLWS 2012

© 2009 IBM Corporation39

Offloading RCU Callbacks From Selected CPUs

RTLWS 2012

The problem with RCU callbacks:

CPU 0

call_rcu()

Callback Invoked

Grace Period

Likely disrupting whatever was
intended to execute at about
this time...

© 2009 IBM Corporation40

RCU Callbacks, Houston/Korty for TREE_RCU

RTLWS 2012

CPU 2

Callback Invoked

Grace Period

rcuo kthread

No disruption!

CPU 1

Callback Invoked

Grace Period

rcuo kthread

call_rcu()

call_rcu()

Scheduler controls placement
(or can place manually)

© 2009 IBM Corporation41

Offloadable RCU Callbacks: Limitations and Futures

RTLWS 2012

 Must reboot to reconfigure no-CBs CPUs
– rcu_nocb_poll kernel command-line parameter gives list of no-CB CPUs
– Races between reconfiguring, registering callbacks, rcu_barrier(), grace periods and who

knows what all else are far from pretty! (But you can move the kthreads around w/out boot.)

 Scalability: 1,000 no-CBs CPUs would not do well
– Should be able to improve this, but not an issue for prototype

 Must be at least one non-no-CBs CPU (e.g., CPU 0)
– Scalability fixes would likely fix this as well.

 No energy-efficiency code: lazy & non-lazy CBs? Non-lazy!
– But do real-time people even care about energy efficiency?

 No-CBs CPUs' kthreads not subject to priority boosting
– Rely on configurations restrictions for prototype

 Setting all no-CBs CPUs' kthreads to RT prio w/out pinning them: bad!
– At least on large systems: configuration restrictions

 Thus, I do not expect no-CBs path to completely replace current CB path

© 2009 IBM Corporation42

Getting Rid of RCU-bh

RTLWS 2012

Stated direction from Networking

Still quite a few uses left: 201 of them!

But once the uses go, so will the definitions. ;-)

Which will reduce the size of the -rt patchset

© 2009 IBM Corporation43

Other RCU Work

RTLWS 2012

© 2009 IBM Corporation44

Other RCU Work

RTLWS 2012

Move RCU away from softirq to kthreads (Robustness?)

Move RCU away from scheduler tick to hrtimer?

Get rid of TINY_PREEMPT_RCU?
– Assumes TINY_RCU suffices for memory-constrained systems

 Improved testing and validation (e.g., proof of correctness)
– Stephen Rothwell's, Dave Jones's, and Wu Fengguang's work very valuable

(though sometimes painful – the pain is the value!)

NUMA? (Sane CPU numbering would help here!)

Additional use in kernel? (Next slide)

Use of userspace RCU – userspace is a target-rich environment

Education/Documentation? (Following slide)

© 2009 IBM Corporation45

Other RCU Work: Additional Use in Kernel?

RTLWS 2012

Subsystem Uses LoC Uses/KLoC

virt 65 6,400 10.16
ipc 35 8,116 4.31
net 3086 717,501 4.30
security 245 66,990 3.66
kernel 620 187,863 3.30
block 65 28,053 2.32
mm 186 86,486 2.15
lib 66 51,709 1.28
init 2 3,308 0.60
fs 595 1,014,373 0.59
include 266 512,880 0.52
crypto 12 56,913 0.21
drivers 859 8,059,951 0.11
arch 156 2,394,340 0.07
Total 6258 13,194,883 0.47

© 2009 IBM Corporation46

Summary

RTLWS 2012

Cache coherence is here to stay, but real-time systems will
require software work-arounds for real-fast hardware

Additional real-time features in flight for RCU
–Callback offloading, support for Frederic's adaptive ticks, lazy

callbacks, remove RCU-bh

Other RCU work remains to be done, but may be
approaching point of diminishing returns in Linux kernel

© 2009 IBM Corporation47

Summary

RTLWS 2012

Cache coherence is here to stay, but real-time systems will
require software work-arounds for real-fast hardware

Additional real-time features in flight for RCU
–Callback offloading, support for Frederic's adaptive ticks, lazy

callbacks, remove RCU-bh

Other RCU work remains to be done, but may be
approaching point of diminishing returns in Linux kernel

–On the other hand I thought I was done with RCU in 1993, 1997, 2004,
and 2012, so who knows???

© 2009 IBM Corporation48

Legal Statement

RTLWS 2012

This work represents the view of the author and does not
necessarily represent the view of IBM.

 IBM and IBM (logo) are trademarks or registered trademarks
of International Business Machines Corporation in the United
States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.

© 2009 IBM Corporation49

Questions?

RTLWS 2012

	IBM Presentation Template Full Version
	Selecting a template
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

