
‘Real Time’ vs. ‘Real Fast’: How to Choose?

Paul E. McKenney

IBM Linux Technology Center

15350 SW Koll Parkway, Beaverton, OR, 97006, USA

paulmck@linux.vnet.ibm.com

Abstract

Although “real-time is not real-fast” makes a nice sound bite, it does not help developers much.
This paper will provide the background needed to make a considered design choice between “real time”
(getting started as quickly as possible) and “real fast” (getting done quickly once started). Of course,
some developers and their users will have the natural human tendency to want both “real time” and “real
fast”, so this paper concludes with some thoughts on how real-time Linux might continue to move in this
direction.

1 Introduction

Linux
TM

has made much progress in the real-time
arena over the past decade, particularly given that a
significant fraction of the -rt patchset [11] has now
reached mainline. This naturally leads to the ques-
tion of which workloads gain improved performance
by running on real-time Linux. To help answer this
question, we take a close look at the real-time vs.
real-fast distinction in order to produce useful cri-
teria for choosing between a real-time and non-real-
time Linux, updating an earlier paper on this sub-
ject [9].

Section 2 looks at a pair of example applications
in order to make a clear distinction between real-
time and real-fast, Section 3 examines some factors
governing the choice between real-time and real-fast,
and Section 4 gives an overview of the underlying
causes of real-time Linux’s additional overhead. Sec-
tion 5 lays out some simple criteria to help choose
between real fast and real time, Section 6 outlines
some ways of approaching that nirvana of real-time
and real-fast, and finally, Section 7 presents conclud-
ing remarks.

2 Example Applications

This section considers a pair of diverse workloads,
an embedded fuel-injection application and a Linux
kernel build.

2.1 Fuel Injection

This rather fanciful fuel-injection scenario evaluates
real-time Linux for controlling fuel injection for a
mid-sized industrial engine with a maximum rotation
rate of 1500 RPM. This is slower than an automotive
engine; when all else is equal, larger mechanical arti-
facts move more slowly than do smaller ones. We will
be ignoring complicating factors such as computing
how much fuel is to be injected.

If we are required to inject the fuel within one
degree of top dead center (the point in the combus-
tion cycle where the piston is at the very top of the
cylinder), what jitter can be tolerated in the injection
timing? 1500 RPM is 25 RPS, which in turn is 9000
degrees per second. Therefore, a tolerance of one de-
gree turns into a tolerance of one nine-thousandth of
a second, or about 111 microseconds.

Such an engine would likely have a rotational po-
sition sensor that might generate an interrupt to a
device driver, which might in turn awaken a real-
time control process. This process could then calcu-

1

1 for (i = 0; i < iter; i++) {

2 if (clock_gettime(CLOCK_MONOTONIC, ×tart) != 0) {

3 perror("clock_gettime 1");

4 exit(-1);

5 }

6 if (nanosleep(&timewait, NULL) != 0) {

7 perror("nanosleep");

8 exit(-1);

9 }

10 if (clock_gettime(CLOCK_MONOTONIC, &timeend) != 0) {

11 perror("clock_gettime 2");

12 exit(-1);

13 }

14 delta = (double)(timeend.tv_sec - timestart.tv_sec) * 1000000 +

15 (double)(timeend.tv_nsec - timestart.tv_nsec) / 1000.;

16 printf("iter %d delta %g\n", iter, delta - duration);

17 }

Table 1: Loop to Validate nanosleep()

late the time until top dead center for each cylinder,
and then execute a sequence of nanosleep() system
calls to control the timing. The code to actuate the
fuel injector might be a short sequence of memory
mapped I/O (MMIO) operations.

This is a classic real-time scenario. We need to
do something before a deadline, and faster is most
definitely not better. Injecting fuel too early is
just as bad as injecting it too late. This situation
calls for some benchmarking and validation of the
nanosleep() system call, for example, with the code
shown in Table 1. On each pass through the loop,
lines 2-5 record the start time, lines 6-9 execute the
nanosleep() system call with the specified sleep du-
ration, lines 10-13 record the end time, and lines 14-
16 compute the jitter in microseconds and print it
out. This jitter is negative if the nanosleep() call
did not sleep long enough, and positive if it slept too
long.

It is important to use clock_gettime() with
the CLOCK_MONOTONIC argument. The more-intuitive
CLOCK_REALTIME argument to clock_gettime()

means “real” as in real-world wall-clock time, not
as in real-time. System administrators and NTP
can adjust real-world wall-clock time. If you incor-
rectly use gettimeofday() or CLOCK_REALTIME and
the systems administrator sets the time back one
minute, your program might fail to actuate the fuel
injectors for a full minute, which will cause the en-
gine to stop. You have been warned!

Before executing this validation code, it is first
necessary to set a real-time scheduling priority, as
shown in Table 2. Line 2-5 invokes sched_get_

priority_max() to obtain the highest possible real-
time (SCHED_FIFO) priority (or print an error) and
lines 6-9 set the current process’s priority. You
must have appropriate privileges to switch to a real-
time priority; either super-user or CAP_SYS_NICE.
There is also a sched_get_priority_min() that
gives the lowest priority for a given scheduler pol-
icy, so that sched_get_priority_min(SCHED_FIFO)
returns the lowest real-time priority, allowing ap-
plications to allocate multiple priority levels in an
implementation-independent manner, if desired.

However, real-time priority is not sufficient to ob-
tain real-time behavior, because the program might
still take page faults. The fix is to lock all of
the pages into memory, as shown in Table 3. The
mlockall() system call will lock all of the process’s
current memory down (MCL_CURRENT), and all future
mappings as well (MCL_FUTURE).

Hardware irq handlers will preempt this code.
However, the -rt Linux kernel has threaded irq han-
dlers, which appear in the ps listing with names re-
sembling IRQ-16. You can check their priority using
the sched_getscheduler() system call, or by look-
ing at the second-to-last field in /proc/<PID>/stat,
where <PID> is replaced by the actual process ID of
the irq thread of interest. It is possible to run your
real-time application at a higher priority than that
of the threaded irq handlers, but be warned that an
infinite loop in such an application can lock out your
irqs, which can cause your system to hang.

If you are running on a multi-core system, an-
other way to get rid of hardware-irq latencies is to
direct them to a specific CPU (also known as “hard-

2

1 sp.sched_priority = sched_get_priority_max(SCHED_FIFO);

2 if (sp.sched_priority == -1) {

3 perror("sched_get_priority_max");

4 exit(-1);

5 }

6 if (sched_setscheduler(0, SCHED_FIFO, &sp) != 0) {

7 perror("sched_setscheduler");

8 exit(-1);

9 }

Table 2: Setting Real-Time Priority

1 if (mlockall(MCL_CURRENT | MCL_FUTURE) != 0) {

2 perror("mlockall");

3 exit(-1);

4 }

Table 3: Preventing Page Faults

ware thread”). You can do this using /proc/irq/

<IRQ>/smp_affinity, where <IRQ> is replaced by
the irq number. You can then affinity your real-time
program to some other CPU, thereby insulating your
program from interrupt latency. It may be necessary
to pin various kernel daemons to subsets of the CPUs
as well, and the schedutils taskset command may
be used for this purpose (though care is required,
as some of the per-CPU kernel daemons really do
need to run on the corresponding CPU). This has
the downside of prohibiting your real-time program
from using all of the CPUs, thereby limiting its per-
formance. This technique is nonetheless useful in
some cases.

It is also necessary to eliminate all firmware and
hardware sources of non-real-time behavior, for ex-
ample, by shutting off system-management inter-
rupts (SMIs). Some care is needed, as some systems
use SMIs to handle thermal, power, and memory-
error events.

Once we have shut down these sources of non-
real-time behavior, we can run the program on both
a real-time and a non-real-time Linux system. In
both cases, we run on a four-CPU 2.2GHz x86 sys-
tem running with low-latency firmware.

Even after taking all of these precautions, the
non-real-time Linux fails miserably, missing the mark
by up to 3 milliseconds. Non-real-time Linux sys-
tems are therefore completely inappropriate for this
fuel-injection application.

As one might hope, real-time Linux does much
better. Nanosleep always gets within 20 mi-
croseconds of the requested value, and 99.999%

of the time within 13 microseconds in a run of
10,000,000 trials. Please note that the results in this
paper are from a lightly tuned system. More careful
configuration (for example, using dedicated CPUs)
might well produce better results.

If real-time Linux can so easily meet such an
aggressive real-time response goal, it should do ex-
tremely well for more typical workloads, right? This
question is taken up in the next section.

2.2 Kernel Build

Since the canonical kernel-hacking workload is a ker-
nel build, this section runs a kernel build on both a
real-time and a non-real-time Linux. The script used
for this purpose is shown in Table 4, featuring an 8-
way parallel build of the 2.6.24 Linux kernel given an
allyesconfig kernel configuration. The results (in
decimal seconds) are shown on Table 5, and as you
can see, real-time Linux is not helping this work-
load. The non-real-time Linux not only completed
the build on average more than 15% faster than did
the real-time Linux, but did so using less than half of
the kernel-mode CPU time. Although there is much
work in progress to narrow this gap, some of which
will likely be complete before this paper is published,
there is no getting around the fact that this is a large
gap.

Clearly, there are jobs for which real-time Linux
is not the right tool!

3

1 tar -xjf linux-2.6.24.tar.bz2

2 cd linux-2.6.24

3 make allyesconfig > /dev/null

4 time make -j8 > Make.out 2>&1

5 cd ..

6 rm -rf linux-2.6.24

Table 4: Kernel Build Script

Real-Fast
Throughput

Real Fast (s) Real Time (s) Advantage

1350.4 1524.6
Raw Data 1332.7 1574.2

real 1314.5 1569.8
Average 1332.6 1556.2 16.8%
Std. Dev. 14.6 22.4

3027.2 2940.9
Raw Data 3013.1 2982.2

user 2996.1 2971.2
Average 3012.2 2964.7 -1.6%
Std. Dev. 12.7 17.5

314.7 644.3
Raw Data 317.3 660.9

sys 317.9 665.9
Average 316.6 657.0 107.5%
Std. Dev. 1.4 9.2

Table 5: Kernel Build Timings

2.3 Discussion

A key difference between these two applications is
the duration of the computation. Fuel injection takes
place in microseconds, while kernel builds take many
seconds or minutes. In the fuel-injection scenario, we
are therefore willing to sacrifice considerable perfor-
mance in order to meet microsecond-scale deadlines.
In contrast, even on a very fast and heavily tuned
machine, handfuls of milliseconds are simply irrele-
vant on the kernel-build timescale.

The next section takes a closer look.

3 Factors Governing Real

Time and Real Fast

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000

La
te

nc
y

(M
ic

ro
se

co
nd

s)

Duration of Task (Microseconds)

real time

real fast

FIGURE 1: Real Time vs. Real Fast
Against Work-Unit Duration for User-Mode
Computation

In the previous section, we saw that the duration
of the work is a critical factor. Although there are

4

a few exceptions, real-time response is usually only
useful when performing very short units of work in
response to a given real-time event. If the work unit
is going to take three weeks to complete, then start-
ing the work a few milliseconds late is unlikely to
matter much. This relationship is displayed in Fig-
ure 1 for work-unit durations varying from one mi-
crosecond on the far left to 100 milliseconds on the
far right, where smaller latencies are better. The y-
axis shows the total delay, including the scheduling
latency and the time required to perform the unit of
work. If the unit of work to be done is quite small,
a real-time system will out-perform a non-real-time
system by orders of magnitude. However, when the
duration of the unit of work exceeds a few tens of mil-
liseconds, there is no discernable difference between
the two.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000

La
te

nc
y

(M
ic

ro
se

co
nd

s)

Duration of Task (Microseconds)

real time

real fast

FIGURE 2: Real Time vs. Real Fast
Against Work-Unit Duration for Kernel Build

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000

La
te

nc
y

(M
ic

ro
se

co
nd

s)

Duration of Task (Microseconds)

real time

real fast

FIGURE 3: Real Time vs. Real Fast
Against Work-Unit Duration for Heavy I/O

Furthermore, Figure 1 favors the real-time sys-
tem because it assumes that the real-time system

processes the unit of work at the same rate as does
the non-real-time system. However, in the kernel-
build scenario discussed in Section 2.2, the non-real-
time Linux built the kernel 16.78% faster than did
the real-time Linux. If we factor in this real-time
slowdown, the non-real-time kernel offers slightly bet-
ter overall latency than does the real-time kernel for
units of work requiring more than about ten mil-
liseconds of processing, as shown in Figure 2. This
breakeven would vary depending on the type of work.
For example, floating-point processing speed would
be largely independent of the type of kernel (and
hence represented accurately by Figure 1), while
heavy I/O workloads would likely be profoundly af-
fected by the kernel type, as shown in Figure 3, which
uses the 2-to-1 increase in kernel-build system time
as an estimate of the slowdown. In this case, the
crossover occurs at about one millisecond.

In addition, a concern with worst-case behavior
should steer one towards real time, while a concern
with throughput or efficiency should steer one to-
wards real fast. In short, use real-time systems when
the work to be done is both time-critical and of short
duration. There are exceptions to this rule, but they
are rare.

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12

na
no

sl
ee

p(
)

jit
te

r
(m

ic
ro

se
co

nd
s)

Number of Parallel Tasks

99.999%

max

average

FIGURE 4: Nanosleep Jitter With In-
creased Load

CPU utilization is another critical factor. To
show this, we run a number of the nanosleep()

test programs in parallel, with each program running
100,000 calls to nanosleep in a loop (code shown
in Table 1). Figure 4 shows the resulting average,
99.999 percentile delay, and maximum delay. The
average jitter changes very little as we add tasks,
which indicates that we are getting good scalabil-
ity from a real-fast viewpoint. The 99.999 percentile
and maximum delays tell a different story, as both
increase by more than a factor of three as we go from
a single task to 12 parallel tasks.

5

This is a key point: obtaining the best possible
real-time response usually requires that the real-time
system be run at low utilization. This is in direct
conflict with the desire to conserve energy and re-
duce system footprint. In some cases, it is possible
to get around this conflict by putting both real-time
and non-realtime workload on the same system, but
some care is still required. To illustrate this, run
four parallel downloads of a kernel source tree onto
the system, then unpack one of them and do a ker-
nel build. When the nanosleep test program runs
at maximum priority concurrently with this kernel-
build workload, we see the 99.999% jitter at 59 mi-
croseconds with the worst case at 146 microseconds,
which is worse than the parallel runs—but still much
better than the multi-millisecond jitters from the
non-real-time kernel.

Advancing technology can be expected to im-
prove real-time Linux’s ability to maintain real-time
latencies in face of increasing CPU utilization, and
careful choice of drivers and hardware might further
improve the situation. Also, more-aggressive tun-
ing might well produce better results. For example,
this workload does not control the periodicity of the
nanosleep() test programs, so that all 12 instances
might well try to run simultaneously on a system
that has but four CPUs. In real-world systems, me-
chanical constraints often limit the number of events
that can occur simultaneously, in particular, engines
are configured so that it is impossible for all cylinders
to fire simultaneously. That said, sites requiring the
best possible utilization will often need to sacrifice
some real-time response.

Similarly, if you need to use virtualization to
run multiple operating-system instances on a sin-
gle server, you most likely need real fast as op-
posed to real time. Again, technology is advancing
quite quickly in this area, especially in the embed-
ded space, so we may soon see production-quality
virtualization environments that can simultaneously
support both real-time and real-fast operating sys-
tems. This is especially likely to work well if either:
(1) CPUs and memory can be dedicated to a given
operating instance or (2) the hypervisor (e.g., Linux
with KVM) gives real-time response, but the guest
operating systems need not do so. Longer term, it is
quite possible that both the hypervisor and the guest
OSes will offer real-time response.

4 Sources of Real-Time Over-

head

The nanosleep() test program used the mlockall()
system call to pin down memory in order to avoid
page-fault latencies. This is great for this test pro-
gram’s latency, but has the side-effect of removing
a chunk of memory from the VM system’s control,
which limits the system’s ability to optimize mem-
ory usage. This can degrade throughput for some
workloads.

Real-time Linux’s more-aggressive preemption
increases the overhead of locking and interrupts [2].
The reason for the increased locking overhead is
that the corresponding critical sections may be pre-
empted. Suppose that a given lock’s critical section
is preempted, and that each CPU subsequently at-
tempts to acquire the lock. Non-real-time spinlocks
would deadlock at this point. The CPUs would each
spin until they acquired the lock, but the lock could
not be released until the lock holder got a chance to
run. Therefore, spinlock-acquisition primitives must
block if they cannot immediately acquire the lock,
resulting in increased overhead. The need to avoid
priority inversion further increases locking overhead.
This overhead results in particularly severe perfor-
mance degradation for some disk-I/O benchmarks,
however, real-time adaptive spinlocks may provide
substantial improvements [4]. In addition, the per-
formance of the user-level pthread_mutex_lock()

primitives may be helped by private futexes [5].

Threaded interrupts permit long-running inter-
rupt handlers to be preempted by high-priority real-
time processes, greatly improving these processes’
real-time latency. However, this adds a pair of con-
text switches to each interrupt even in absence of
preemption, one to awaken the handler thread and
another when it goes back to sleep, and furthermore
increases interrupt latency. Devices with very short
interrupt handlers can specify IRQF_NODELAY in the
flags field of their struct irqaction to retain the
old hardirq behavior, but this is not acceptable for
handlers that run for more than a small handful of
microseconds.

Linux’s O(1) scheduler is extremely efficient on
SMP systems, as a given CPU need only look at its
own queue. This locality reduces cache thrashing,
yielding extremely good performance and scalabil-
ity, aside from infrequent load-balancing operations.
However, real-time systems often impose the con-
straint that the N highest-priority runnable tasks be
running at any given point in time, where N is the
number of online CPUs. This constraint cannot be

6

met without global scheduling, which re-introduces
cache thrashing and lock contention, degrading per-
formance, especially on workloads with large num-
bers of runnable real-time tasks. In the future, real-
time Linux is likely to partition large SMP systems,
so that this expensive global scheduling constraint
will apply only within each partition rather than
across the entire system. Gregory Haskins’s root-
domain patch, which is included in the -rt patchset,
in fact takes this approach.

Real-time Linux requires high-resolution timers
with tens-of-microseconds accuracy and precision,
resulting in higher-overhead timer management [3,
6]. However, these high-resolution timers are imple-
mented on a per-CPU basis, so that it is unlikely
that this overhead will be visible at the system level
for most workloads. In addition, real-time Linux
distinguishes between real-time “timers” and non-
real-time “timeouts,” and only the real-time timers
use new and more-expensive high-resolution-timer
infrastructure. Timeouts, for example, TCP/IP re-
transmission timeouts, continue to use the original
high-efficiency timer-wheel implementation, further
reducing the likelihood of problematic timer over-
heads.

Real-time Linux uses preemptible RCU, which
has slightly higher read-side overhead than does
Classic RCU [8]. However, the read-side difference
is unlikely to be visible at the system level for most
workloads. In contrast, preemptible RCU’s update-
side “grace-period” latency is significantly higher
than that of RCU classic [7]. If this becomes a prob-
lem, it should be possible to expedite RCU grace
period, albeit incurring additional overhead. It may
then be possible to retire the Classic RCU imple-
mentation [10], but given that Classic RCU’s read-
side overhead is exactly zero, careful analysis will be
required before such retirement can be appropriate.

In summary, the major contributors to the higher
overhead of real-time Linux include increased over-
head of locking, threaded interrupts, real-time task
scheduling, and increased RCU grace-period latency.
The next section gives some simple rules that help
choose between the real fast non-real-time Linux ker-
nel and the real-time Linux kernel.

5 How to Choose

The choice of real time vs. real fast is eased by con-
sidering the following principles:

1. Consider whether the goal is to get a lot of
work done (real fast throughput), or to get a

little bit of work done in a predictable and de-
terministic timeframe (real-time latency).

2. Consider whether the hardware and software
can accommodate the heaviest possible peak
load without missing deadlines (real time), or
whether occasional peak loads will degrade re-
sponse times (real fast). It is common real-time
practice to reserve some fraction of resources,
for example, to limit CPU utilization to 50%.

3. Consider memory utilization. If your workload
oversubscribes memory, so that page faults will
occur, you cannot expect real-time response.

4. If you use virtualization, you are unlikely to get
real-time response—though this may be chang-
ing.

5. Consider the workload. A process that ex-
ecutes normal instructions in user mode will
incur a smaller real-time average-overhead
penalty than will a process that makes heavy
use of kernel services.

6. Focus on work-item completion time instead of
on start time. The longer the work item’s ex-
ecution time, the less helpful real-time Linux
will be.

The need to focus on deterministic work-item
completion cannot be stressed enough. Common
practice in the real-time arena is to focus on when
the work-item starts, in other words, on scheduling
latency. This is understandable, given the historic
separation of the real-time community into RTOS
and real-time application developers, both working
on proprietary products. It is hoped that the ad-
vent of open-source real-time operating systems will
make it easier for developers to take the more global
viewpoint, focusing on the time required for the ap-
plication to both start and finish its work. Please
note that it is important to focus on the proper level
of detail, for example, event-driven systems should
analyze deadlines on a per-event basis.

7

Throughput
Only Goal?

All Memory
Consumed?

Virtualization
Required?

>100ms? Real Fast

Real Time

Y

Y

Y

Y

Y

N

N

N

N

N

Basic Work Item

Peak Loads
Degrade

Response Time?

FIGURE 5: Real Time vs. Real Fast Deci-
sion Flow

A rough rule-of-thumb decision flow is shown in
Figure 5. If you only care about throughput—the
amount of work completed per unit time—then you
want real fast. If cost, efficiency, or environmental
concerns force you to run at high CPU utilization
so that peak loads degrade response times, then you
again want real fast—and as a rough rule of thumb,
the more aggressive your real-time workload, the
lower your CPU utilization must be. One exception
to this occurs in some scientific barrier-based compu-
tations, where real-time Linux can reduce OS jitter,
allowing the barrier computations to complete more
quickly—and in this case, because floating point runs
at full speed on real-time Linux, this is one of those
rare cases where you get both real fast and real time
simultaneously. If your workload will fill all of mem-
ory, then the mlockall() system call becomes infea-
sible, forcing you to either purchase more memory
or allow the resulting page faults force you to go
with real fast. Given the current state of the art, if
you need virtualization, you are most likely in real-
fast territory—though this may soon be changing,
especially for carefully configured systems. Finally,
if each basic item of work takes hundreds of millisec-
onds, any scheduling-latency benefit from real-time
Linux is likely to be lost in the noise.

If you reach the real-time bubble in Figure 5,
you may need some benchmarking to see which of
real time or real fast works best for your work-
load. No benchmarking is needed to see that a work-
load requiring (say) 100 microseconds of processing
with a 250-microsecond deadline will require real-
time Linux, and there appears to be no shortage of
applications of this type. In fact, it appears that real-
time processing is becoming more mainstream. This
is due to the fact that the availability of real-time
Linux has made it easier to integrate real-time sys-
tems into enterprise workloads [1], which are start-
ing to require increasing amounts of real-time be-
havior. Where traditional real-time systems were
stand-alone systems, modern workloads increasingly
require that the real-time systems be wired into the
larger enterprise.

6 Avoiding the Need to Choose

It is only human to want everything all at once, and
so it should be no surprise to encounter developers
and users who want (and perhaps even need) both
real-time and real-fast on the same system at the
same time. It might or might not be possible to ac-
tually reach this nirvana, but incremental progress
is nevertheless valuable, both by improving the -
rt Linux kernel’s throughput and by improving the
standard kernel’s real-time response.

Fortunately, there is quite a bit of work going on
in this area:

1. Reduce locking overhead (ticket locks, adaptive
spinlocks).

2. Optimize threading of irq handlers.

3. Eliminate reader-writer lock bottlenecks, for
example, reducing the real-time performance
penalty for multiple communications streams
(numerous patches).

4. Reduce the real-time performance penalty for
mass-storage I/O. (This becomes more urgent
with the advent of solid-state disks.)

5. Reduce the preemptable RCU grace-period la-
tency penalty. As of August 2009, a prototype
preemptable RCU implementation nearly elim-
inates both the read-side and update-side per-
formance penalties, but removes the ability to
do CPU hotplug operations (this bug will be
fixed).

8

Real-Fast
Throughput

Real Fast (s) Real Time (s) Advantage

821.9 894.2
Raw Data 830.1 909.7

real 834.0 908.4
Average 828.7 904.1 9.1%
Std. Dev. 5.0 7.0

2331.7 2509.0
Raw Data 2343.1 2512.3

user 2338.9 2510.2
Average 2337.9 2510.5 7.4%
Std. Dev. 4.7 1.4

316.5 415.0
Raw Data 326.7 438.3

sys 327.0 438.9
Average 323.4 430.7 33.2%
Std. Dev. 4.9 11.1

Table 6: Kernel Build Timings, One Year On

Old New

real 16.8% 9.1%
user -1.6% 7.4%
sys 107.5% 33.2%

Table 7: Real-Fast Throughput Advantage, Then and Now

6. Where eliminating throughput penalties is in-
feasible, adjust implementation so that perfor-
mance penalties are incurred only when there
are actually real-time tasks in the system.

So we are indeed moving towards the real-time
and real-fast nirvana, as shown in Table 6, which
shows the kernel-build benchmark running on a more
recent pair of mainline and -rt kernels. The real-
fast kernel is now less than 10% faster (compared
to 15%), and consumes only about one-third more
kernel-mode CPU time (compared to more than
twice as much), with the real-fast throughput ad-
vantage summarized in Table 7. Please note that
the absolute timings are not directly comparable to
the timings in Table 5 on page 4 due to compiler
and kernel-configuration differences, even though the
hardware and the kernel being built are believed to
be identical.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 1
0

 1
00

 1
00

0

 1
00

00

 1
00

00
0

 1
e+

06

C
ou

nt
s

Timer Jitter (microseconds)

Real
Fast

Real
Time

FIGURE 6: Real Time vs. Real Fast Timer
Jitter

Of course continued attention to latencies will

9

also be required, as that which is not measured
tends to degrade. A histogram of the timer jitter
of more-recent kernels is shown in Figure 6, with the
real-fast kernel still missing the mark by up to 100
milliseconds, while the real-time kernel’s worst-case
measured jitter remains in the tens of microseconds.

7 Concluding Remarks

Given proper hardware and software configuration,
sufficiently fast hardware, and proper use of -rt
Linux’s real-time facilities by the real-time applica-
tion, response times in the tens of microseconds are
possible. However, there still are some throughput
penaties incurred when attaining this level of real-
time response, so if you remember only one thing
from this paper, let it be this: “use the right tool for
the job!!”

Ongoing work to reduce the overhead of real-time
Linux will hopefully reduce the performance penalty
imposed by the real-time kernel, which will in turn
make real-time Linux the right tool for a greater va-
riety of workloads. It will also likely be possible to
further optimize some of the real-time implementa-
tions. In any case, real-time Linux and real-time
applications both promise to remain an exciting and
challenging areas for some time to come.

Acknowledgements

No article mentioning the -rt patchset would be
complete without a note of thanks to Ingo Mol-
nar, Thomas Gleixner, Sven Dietrich, K.R. Foley,
Gene Heskett, Bill Huey, Esben Neilsen, Nick Piggin,
Steven Rostedt, Michal Schmidt, Daniel Walker, and
Karsten Wiese. We all owe Will Schmidt and Phil
Estes a debt of gratitude for helping to render this
paper human-readable. I am grateful to Paul Clarke
for the use of his machines, and the ABAT team for
providing easy access to these machines. Finally, I
owe thanks to Kathy Bennett for her support of this
effort.

Legal Statement

This work represents the views of the authors and does
not necessarily represent the view of IBM.

Linux is a copyright of Linus Torvalds.

Other company, product, and service names may be

trademarks or service marks of others.

References

[1] Berry, R. F., McKenney, P. E., and Parr,

F. N. Responsive systems: An introduction.
IBM Systems Journal 47, 2 (April 2008), 197–
206.

[2] Corbet, J. Approaches to realtime Linux.
Available: http://lwn.net/Articles/

106010/ [Viewed March 25, 2008], October
2004.

[3] Corbet, J. A new approach to kernel
timers. Available: http://lwn.net/Articles/
152436/ [Viewed April 14, 2008], September
2005.

[4] Corbet, J. Realtime adaptive locks. Available:
http://lwn.net/Articles/271817/ [Viewed
April 14, 2008], March 2008.

[5] Dumazet, E. [PATCH] FUTEX : new PRI-
VATE futexes. Available: http://lkml.org/

lkml/2007/4/5/236 [Viewed April 18, 2008],
April 2007.

[6] Gleixner, T., and Molnar, I. [an-
nounce] ktimers subsystem. Available: http://
lwn.net/Articles/152363/ [Viewed April 14,
2008], September 2005.

[7] Guniguntala, D., McKenney, P. E.,

Triplett, J., and Walpole, J. The
read-copy-update mechanism for supporting
real-time applications on shared-memory mul-
tiprocessor systems with Linux. IBM Systems
Journal 47, 2 (May 2008), 221–236. Available:
http://www.research.ibm.com/journal/sj/

472/guniguntala.pdf [Viewed April 24, 2008].

[8] McKenney, P. E. The design of preemptible
read-copy-update. Available: http://lwn.

net/Articles/253651/ [Viewed October 25,
2007], October 2007.

[9] McKenney, P. E. Real time vs. real
fast: how to choose? In Ottawa Linux
Symposium (July 2008), pp. v2 57–65. Avail-
able: http://ols.fedoraproject.org/

OLS/Reprints-2008/mckenney-reprint.pdf

[Viewed August 22, 2008].

[10] McKenney, P. E., Sarma, D., Molnar, I.,

and Bhattacharya, S. Extending RCU for
realtime and embedded workloads. In Ottawa
Linux Symposium (July 2006), pp. v2 123–138.
Available: http://www.linuxsymposium.org/

2006/view_abstract.php?content_key=184

10

http://www.rdrop.com/users/paulmck/RCU/

OLSrtRCU.2006.08.11a.pdf [Viewed January
1, 2007].

[11] Molnar, I. Index of /mingo/realtime-
preempt. Available: http://www.kernel.org/
pub/linux/kernel/projects/rt/ [Viewed
February 15, 2005], February 2005.

11

