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Overview

 What is “Real Time” and “Real Fast”, Anyway???
 Example Real Time Application
 Example Real Fast Application
 Real Time vs. Real Fast
 How to Choose
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What is “Real Time”, Anyway?

Review of Definitions

(Taken from January 2007 Linux Journal article.)
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What is “Real Time”, Anyway?  (Definition #1)

A hard realtime system will

always

meet its deadlines
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Problem With Definition #1

 If you have a hard realtime system...

• I have a hammer that will make it miss its deadlines!
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What is “Real Time”, Anyway?  (Definition #2)

A hard realtime system will

either:

(1) meet its deadlines, or

(2) give a timely failure indication
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Problem With Definition #2

 I have a “hard realtime” system

• It simply always fails!
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What is “Real Time”, Anyway?  (Definition #3)

A hard realtime system will

meet all its deadlines!!!

(But only in absence of hardware failure.)

(Never mind that handling hardware failures is an important software task!!!)
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Problem With Definition #3

 “Rest assured, sir, that if your life support fails, your death will 
most certainly not have been due to a software problem!!!”
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What is “Real Time”, Anyway?  (Definition #4)

A hard realtime system will

pass a specified test suite.

(This definition can cause purists severe heartburn.)

(But is actually used in real life.)
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But One Other Question on Definitions 1-3...

What is the Deadline???

What guarantees can an RTOS make?
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Real Time and Real Fast: Definitions

 Real Time
• OS: “how long before work starts?”

 Real Fast
• Application: “once started, how quickly is work completed?”

 This Separation Can Result in Confusion!

Real Time Real Fast

What Users Care About
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Example Real Time Application: Fuel Injection
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Example Real-Time Application: Fuel Injection

 Mid-sized industrial engine

• Fuel injection within one degree surrounding “top dead center”

 1500 RPM rotation rate

• 1500 RPM / 60 sec/min = 25 RPS

• 25 RPS * 360 degrees/round = 9000 degrees/second

• About 111 microseconds per degree

• Hence need to schedule to within about 100 microseconds
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Fuel Injection: Conceptual Operation

Top Dead Center Bottom Dead Center
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Fuel Injection: Too Early and Too Late Are Bad

Injecting Too Early
(Exaggerated)

Injecting Too Late
(Exaggerated)
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Fuel Injection: Fanciful Code to Operate Injectors

struct timespec timewait;

angle = crank_position();
timewait.tv_sec = 0;
timewait.tv_nsec = 1000 * 1000 * 1000 * angle / 9000;
nanosleep(&timewait, NULL);
inject();
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Fuel Injection: Test Program

if (clock_gettime(CLOCK_REALTIME, &timestart) != 0) {
        perror("clock_gettime 1");
        exit(-1);
}
if (nanosleep(&timewait, NULL) != 0) {
        perror("nanosleep");
        exit(-1);
}
if (clock_gettime(CLOCK_REALTIME, &timeend) != 0) {
        perror("clock_gettime 2");
        exit(-1);
}

Bad results, even on -rt kernel build!!!  Why?
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Fuel Injection: Test Program Needs MONOTONIC

if (clock_gettime(CLOCK_MONOTONIC, &timestart) != 0) {
        perror("clock_gettime 1");
        exit(-1);
}
if (nanosleep(&timewait, NULL) != 0) {
        perror("nanosleep");
        exit(-1);
}
if (clock_gettime(CLOCK_MONOTONIC, &timeend) != 0) {
        perror("clock_gettime 2");
        exit(-1);
}

Still bad results, even on -rt kernel build!!!  Why?
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Fuel Injection: Test Program Needs RT Priority

Still sometimes bad results, even on -rt kernel build!!!  Why?

struct sched_param sp;

sp.sched_priority = sched_get_priority_max(SCHED_FIFO);
if (sp.sched_priority == -1) {
        perror("sched_get_priority_max");
        exit(-1);
}
if (sched_setscheduler(0, SCHED_FIFO, &sp) != 0) { 
        perror("sched_setscheduler");
        exit(-1);
}
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Fuel Injection: Test Program Needs mlockall()

Better results on -rt kernel: nanosleep jitter < 20us, 99.999% < 13us
(4-CPU 2.2GHz x86 system – your mileage will vary)

More than 3 milliseconds on non-realtime kernel!!!

if (mlockall(MCL_CURRENT | MCL_FUTURE) != 0) { 
        perror("mlockall");
        exit(-1);
}
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Fuel Injection: Further Tuning Possible

 On multicore systems:

• Affinity time-critical tasks onto private CPU
► (Can often safely share with non-realtime tasks)

• Affinity IRQ handlers away from time-critical tasks

 Carefully select hardware and drivers

 Carefully select kernel configuration

• Depends on hardware in some cases
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Example Real Fast Application: Kernel Build
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Real-Time Magic to Non-Real-Time Application

 Kernel build

tar -xjf linux-2.6.24.tar.bz2
cd linux-2.6.24
make allyesconfig > /dev/null
time make -j8 > Make.out 2>&1
cd ..
rm -rf linux-2.6.24
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Kernel Build: Performance Results

Real Fast(s) Real Time (s) Speedup

real
Average 1332.6 1556.2 0.86
Std. Dev. 14.6 22.4

user
Average 3012.2 2964.7 1.02
Std. Dev. 12.7 17.5

sys
Average 316.6 657 0.48
Std. Dev. 1.4 9.2

Smaller is better, real-time kernel not helping...
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Comparison of Real Time vs. Real Fast
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Real Time vs. Real Fast: Throughput Comparison

 Real-time system starts more quickly

• Proverbial hare

 Real-fast system has opportunity to catch up

• Proverbial tortoise

 Tradeoff based on task duration
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Real Time vs. Real Fast Throughput: No Penalty

For example, heavy floating-point workloads
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Real Time vs. Real Fast Throughput: “real” Penalty

Mixed workloads
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Real Time vs. Real Fast Throughput: “sys” Penalty

Filesystem I/O workloads: “don't do that”
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Real-Time Latency vs. CPU Utilization

 CPU Utilization by Real-Time Tasks
• Can be avoided by time-slotting
• Which happens naturally in piston engines
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Sources of Real-Time Overhead

 Memory utilization due to mlockall()

 Increased locking overhead

• Context switches, priority inheritance, preemptable RCU

 Increased irq overhead

• Threaded irqs (context switches)

• Added delay (and interactions with rotating mass storage)

 Increased overhead of scheduling real-time tasks

• Global distribution of high-priority real-time tasks

 High-resolution timers
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Real Time vs. Real Fast: How to Choose
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Real
Fast

Real Time vs. Real Fast: How to Choose
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Longer Term: Avoiding the Need to Choose

 Reduce Overhead of Real-Time Linux!

• Easy to say, but...

• Reduce locking overhead (adaptive locks)

• Reduce scheduler overhead (ongoing work)

• Optimize threaded irq handlers

 Note that partial progress is beneficial

• Reduces the need to choose
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Legal Statement

 This work represents the views of the authors and does not 
necessarily represent the view of IBM.

 Linux is a copyright of Linus Torvalds.

 Other company, product, and service names may be 
trademarks or service marks of others.
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