
Ottawa Linux Symposium

July 23, 2008 © 2006, 2007 IBM Corporation

“Real Time” vs. “Real Fast”:

How to Choose?

Paul E. McKenney, Distinguished Engineer
IBM Linux Technology Center

© 2006, 2007 IBM CorporationIBM Linux Technology Center

2008 Ottawa Linux Symposium

Overview

 What is “Real Time” and “Real Fast”, Anyway???
 Example Real Time Application
 Example Real Fast Application
 Real Time vs. Real Fast
 How to Choose

© 2006, 2007 IBM CorporationIBM Linux Technology Center

2008 Ottawa Linux Symposium

What is “Real Time”, Anyway?

Review of Definitions

(Taken from January 2007 Linux Journal article.)

© 2006, 2007 IBM CorporationIBM Linux Technology Center

2008 Ottawa Linux Symposium

What is “Real Time”, Anyway? (Definition #1)

A hard realtime system will

always

meet its deadlines

© 2006, 2007 IBM CorporationIBM Linux Technology Center

2008 Ottawa Linux Symposium

Problem With Definition #1

 If you have a hard realtime system...

• I have a hammer that will make it miss its deadlines!

© 2006, 2007 IBM CorporationIBM Linux Technology Center

2008 Ottawa Linux Symposium

What is “Real Time”, Anyway? (Definition #2)

A hard realtime system will

either:

(1) meet its deadlines, or

(2) give a timely failure indication

© 2006, 2007 IBM CorporationIBM Linux Technology Center

2008 Ottawa Linux Symposium

Problem With Definition #2

 I have a “hard realtime” system

• It simply always fails!

© 2006, 2007 IBM CorporationIBM Linux Technology Center

2008 Ottawa Linux Symposium

What is “Real Time”, Anyway? (Definition #3)

A hard realtime system will

meet all its deadlines!!!

(But only in absence of hardware failure.)

(Never mind that handling hardware failures is an important software task!!!)

© 2006, 2007 IBM CorporationIBM Linux Technology Center

2008 Ottawa Linux Symposium

Problem With Definition #3

 “Rest assured, sir, that if your life support fails, your death will
most certainly not have been due to a software problem!!!”

© 2006, 2007 IBM CorporationIBM Linux Technology Center

2008 Ottawa Linux Symposium

What is “Real Time”, Anyway? (Definition #4)

A hard realtime system will

pass a specified test suite.

(This definition can cause purists severe heartburn.)

(But is actually used in real life.)

© 2006, 2007 IBM CorporationIBM Linux Technology Center

2008 Ottawa Linux Symposium

But One Other Question on Definitions 1-3...

What is the Deadline???

What guarantees can an RTOS make?

© 2006, 2007 IBM CorporationIBM Linux Technology Center

2008 Ottawa Linux Symposium

Real Time and Real Fast: Definitions

 Real Time
• OS: “how long before work starts?”

 Real Fast
• Application: “once started, how quickly is work completed?”

 This Separation Can Result in Confusion!

Real Time Real Fast

What Users Care About

© 2006, 2007 IBM CorporationIBM Linux Technology Center

2008 Ottawa Linux Symposium

Example Real Time Application: Fuel Injection

© 2006, 2007 IBM CorporationIBM Linux Technology Center

2008 Ottawa Linux Symposium

Example Real-Time Application: Fuel Injection

 Mid-sized industrial engine

• Fuel injection within one degree surrounding “top dead center”

 1500 RPM rotation rate

• 1500 RPM / 60 sec/min = 25 RPS

• 25 RPS * 360 degrees/round = 9000 degrees/second

• About 111 microseconds per degree

• Hence need to schedule to within about 100 microseconds

© 2006, 2007 IBM CorporationIBM Linux Technology Center

2008 Ottawa Linux Symposium

Fuel Injection: Conceptual Operation

Top Dead Center Bottom Dead Center

© 2006, 2007 IBM CorporationIBM Linux Technology Center

2008 Ottawa Linux Symposium

Fuel Injection: Too Early and Too Late Are Bad

Injecting Too Early
(Exaggerated)

Injecting Too Late
(Exaggerated)

© 2006, 2007 IBM CorporationIBM Linux Technology Center

2008 Ottawa Linux Symposium

Fuel Injection: Fanciful Code to Operate Injectors

struct timespec timewait;

angle = crank_position();
timewait.tv_sec = 0;
timewait.tv_nsec = 1000 * 1000 * 1000 * angle / 9000;
nanosleep(&timewait, NULL);
inject();

© 2006, 2007 IBM CorporationIBM Linux Technology Center

2008 Ottawa Linux Symposium

Fuel Injection: Test Program

if (clock_gettime(CLOCK_REALTIME, ×tart) != 0) {
 perror("clock_gettime 1");
 exit(-1);
}
if (nanosleep(&timewait, NULL) != 0) {
 perror("nanosleep");
 exit(-1);
}
if (clock_gettime(CLOCK_REALTIME, &timeend) != 0) {
 perror("clock_gettime 2");
 exit(-1);
}

Bad results, even on -rt kernel build!!! Why?

© 2006, 2007 IBM CorporationIBM Linux Technology Center

2008 Ottawa Linux Symposium

Fuel Injection: Test Program Needs MONOTONIC

if (clock_gettime(CLOCK_MONOTONIC, ×tart) != 0) {
 perror("clock_gettime 1");
 exit(-1);
}
if (nanosleep(&timewait, NULL) != 0) {
 perror("nanosleep");
 exit(-1);
}
if (clock_gettime(CLOCK_MONOTONIC, &timeend) != 0) {
 perror("clock_gettime 2");
 exit(-1);
}

Still bad results, even on -rt kernel build!!! Why?

© 2006, 2007 IBM CorporationIBM Linux Technology Center

2008 Ottawa Linux Symposium

Fuel Injection: Test Program Needs RT Priority

Still sometimes bad results, even on -rt kernel build!!! Why?

struct sched_param sp;

sp.sched_priority = sched_get_priority_max(SCHED_FIFO);
if (sp.sched_priority == -1) {
 perror("sched_get_priority_max");
 exit(-1);
}
if (sched_setscheduler(0, SCHED_FIFO, &sp) != 0) {
 perror("sched_setscheduler");
 exit(-1);
}

© 2006, 2007 IBM CorporationIBM Linux Technology Center

2008 Ottawa Linux Symposium

Fuel Injection: Test Program Needs mlockall()

Better results on -rt kernel: nanosleep jitter < 20us, 99.999% < 13us
(4-CPU 2.2GHz x86 system – your mileage will vary)

More than 3 milliseconds on non-realtime kernel!!!

if (mlockall(MCL_CURRENT | MCL_FUTURE) != 0) {
 perror("mlockall");
 exit(-1);
}

© 2006, 2007 IBM CorporationIBM Linux Technology Center

2008 Ottawa Linux Symposium

Fuel Injection: Further Tuning Possible

 On multicore systems:

• Affinity time-critical tasks onto private CPU
► (Can often safely share with non-realtime tasks)

• Affinity IRQ handlers away from time-critical tasks

 Carefully select hardware and drivers

 Carefully select kernel configuration

• Depends on hardware in some cases

© 2006, 2007 IBM CorporationIBM Linux Technology Center

2008 Ottawa Linux Symposium

Example Real Fast Application: Kernel Build

© 2006, 2007 IBM CorporationIBM Linux Technology Center

2008 Ottawa Linux Symposium

Real-Time Magic to Non-Real-Time Application

 Kernel build

tar -xjf linux-2.6.24.tar.bz2
cd linux-2.6.24
make allyesconfig > /dev/null
time make -j8 > Make.out 2>&1
cd ..
rm -rf linux-2.6.24

© 2006, 2007 IBM CorporationIBM Linux Technology Center

2008 Ottawa Linux Symposium

Kernel Build: Performance Results

Real Fast(s) Real Time (s) Speedup

real
Average 1332.6 1556.2 0.86
Std. Dev. 14.6 22.4

user
Average 3012.2 2964.7 1.02
Std. Dev. 12.7 17.5

sys
Average 316.6 657 0.48
Std. Dev. 1.4 9.2

Smaller is better, real-time kernel not helping...

© 2006, 2007 IBM CorporationIBM Linux Technology Center

2008 Ottawa Linux Symposium

Comparison of Real Time vs. Real Fast

© 2006, 2007 IBM CorporationIBM Linux Technology Center

2008 Ottawa Linux Symposium

Real Time vs. Real Fast: Throughput Comparison

 Real-time system starts more quickly

• Proverbial hare

 Real-fast system has opportunity to catch up

• Proverbial tortoise

 Tradeoff based on task duration

© 2006, 2007 IBM CorporationIBM Linux Technology Center

2008 Ottawa Linux Symposium

Real Time vs. Real Fast Throughput: No Penalty

For example, heavy floating-point workloads

© 2006, 2007 IBM CorporationIBM Linux Technology Center

2008 Ottawa Linux Symposium

Real Time vs. Real Fast Throughput: “real” Penalty

Mixed workloads

© 2006, 2007 IBM CorporationIBM Linux Technology Center

2008 Ottawa Linux Symposium

Real Time vs. Real Fast Throughput: “sys” Penalty

Filesystem I/O workloads: “don't do that”

© 2006, 2007 IBM CorporationIBM Linux Technology Center

2008 Ottawa Linux Symposium

Real-Time Latency vs. CPU Utilization

 CPU Utilization by Real-Time Tasks
• Can be avoided by time-slotting
• Which happens naturally in piston engines

© 2006, 2007 IBM CorporationIBM Linux Technology Center

2008 Ottawa Linux Symposium

Sources of Real-Time Overhead

 Memory utilization due to mlockall()

 Increased locking overhead

• Context switches, priority inheritance, preemptable RCU

 Increased irq overhead

• Threaded irqs (context switches)

• Added delay (and interactions with rotating mass storage)

 Increased overhead of scheduling real-time tasks

• Global distribution of high-priority real-time tasks

 High-resolution timers

© 2006, 2007 IBM CorporationIBM Linux Technology Center

2008 Ottawa Linux Symposium

Real Time vs. Real Fast: How to Choose

© 2006, 2007 IBM CorporationIBM Linux Technology Center

2008 Ottawa Linux Symposium

Real
Fast

Real Time vs. Real Fast: How to Choose

Throughput
only goal?

Peak Loads
Degrade

Response?

Memory
Pressure?

Virtualization
Required?

(RT Guests)

Basic
Work Item
> 100ms?

N

N

NReal
Fast

Y

Y

Y

Y

Y

N

Real
Time

N

© 2006, 2007 IBM CorporationIBM Linux Technology Center

2008 Ottawa Linux Symposium

Longer Term: Avoiding the Need to Choose

 Reduce Overhead of Real-Time Linux!

• Easy to say, but...

• Reduce locking overhead (adaptive locks)

• Reduce scheduler overhead (ongoing work)

• Optimize threaded irq handlers

 Note that partial progress is beneficial

• Reduces the need to choose

© 2006, 2007 IBM CorporationIBM Linux Technology Center

2008 Ottawa Linux Symposium

Acknowledgments

 Ingo Molnar

 Thomas Gleixner

 Sven Deitrich

 K. R. Foley

 Gene Heskett

 Bill Huey

 Esben Neilsen

 Nick Piggin

 Steve Rostedt

 Michal Schmidt

 Daniel Walker

 Karsten Wiese

 Gregory Haskins

 And many many more...

© 2006, 2007 IBM CorporationIBM Linux Technology Center

2008 Ottawa Linux Symposium

Legal Statement

 This work represents the views of the authors and does not
necessarily represent the view of IBM.

 Linux is a copyright of Linus Torvalds.

 Other company, product, and service names may be
trademarks or service marks of others.

© 2006, 2007 IBM CorporationIBM Linux Technology Center

2008 Ottawa Linux Symposium

