
© 2009 IBM Corporation

Getting RCU Further Out Of The Way

Paul E. McKenney, IBM Distinguished Engineer, Linux Technology Center (Linaro)

31 August 2012

2012 Linux Plumbers Conference, Real Time Microconference

© 2009 IBM Corporation2

RCU Was Once A Major Real-Time Obstacle

 rcu_read_lock() disabled preemption

RCU processing happened every jiffy, whether needed or not

Callback invocation could tie up a CPU forever

Getting RCU Further Out Of The Way

© 2009 IBM Corporation3

RCU Was Once A Major Real-Time Obstacle

 rcu_read_lock() disabled preemption

RCU processing happened every jiffy, whether needed or not

Callback invocation could tie up a CPU forever
–OK, there is an upper bound: the number of RCU-protected blocks of

memory on the system

Getting RCU Further Out Of The Way

© 2009 IBM Corporation4

RCU Was Once A Major Real-Time Obstacle

 rcu_read_lock() disabled preemption

RCU processing happened every jiffy, whether needed or not

Callback invocation could tie up a CPU forever
–OK, there is an upper bound: the number of RCU-protected blocks of

memory on the system

But what the heck is RCU??? http://lwn.net/Articles/262464/

Getting RCU Further Out Of The Way

http://lwn.net/Articles/262464/

© 2009 IBM Corporation5

RCU Was Once A Major Real-Time Obstacle

 rcu_read_lock() disabled preemption

RCU processing happened every jiffy, whether needed or not

Callback invocation could tie up a CPU forever
–OK, there is an upper bound: the number of RCU-protected blocks of

memory on the system

But what the heck is RCU??? http://lwn.net/Articles/262464/

For the purposes of this presentation, think of RCU as
something that defers work, with one work item per callback

–Each callback has a function pointer and an argument
–Callbacks are queued on per-CPU lists, invoked after grace period

• Invocation can result in OS jitter and real-time latency
–Global list handles callbacks from offlined CPUs: adopted quickly

Getting RCU Further Out Of The Way

http://lwn.net/Articles/262464/

© 2009 IBM Corporation6

The Problem With RCU Callbacks

Getting RCU Further Out Of The Way

CPU 0

call_rcu()

Callback Invoked

Grace Period

Likely disrupting whatever was
intended to execute at about
this time...

© 2009 IBM Corporation7

RCU Has Reformed Considerably

2002-onwards: Dyntick-idle RCU
–Unfortunately, this only helps if the CPU is idle, not good for real-time
–But Frederic's adaptive-tick work should clear this up

2004: RCU callback throttling (Dipankar Sarma)
–Limits callback processing to bursts of 10 callbacks

2004: Jim Houston's RCU implementation
–Since updated by Joe Korty: JRCU (out of tree)
–All callback processing happens in kthread: preemptible

• Eliminates need for driving RCU from scheduling-clock interrupt
• Allows callback processing to offloaded to some other CPU

–But has heavyweight read-side primitives and poor scalability

2005-2009: Preemptible RCU read-side critical sections

Getting RCU Further Out Of The Way

© 2009 IBM Corporation8

RCU Callbacks, Houston/Korty Style

Getting RCU Further Out Of The Way

CPU 0

Callback Invoked

Grace Period

Jrcud kthread

Bind this to some convenient CPU not running RT

No disruption!

call_rcu()

© 2009 IBM Corporation9

RCU Callbacks, Houston/Korty Style

Getting RCU Further Out Of The Way

CPU 0

Callback Invoked

Grace Period

Jrcud kthread

No disruption!
But also no scalability,
no energy efficiency,
expensive readers, ...

Bind this to some convenient CPU not running RT

call_rcu()

© 2009 IBM Corporation10

But Mainline RCU Still Does Not Offload Callbacks

2012: Time to remedy this situation!
–And yes, -rt runs callbacks in kthread, but does not offload them
–Also, recent mainline preferentially invokes callbacks during idle
–But offloading is still the gold standard of real-time response

Where to start? Prototype!!!
–Designate no-callbacks (no-CBs) CPUs at boot time

• rcu_nocbs accepts list of CPUs
–One kthread per no-CBs CPU with “rcuoN” name, where “N” is the

number of the CPU being offloaded
–Must work reasonably with dyntick-idle, CPU hotplug, ...
–OK to require at least one non-no-CBs CPU in the system (CPU 0)
–Must run on large systems, but OK to limit number of no-CBs CPUs
–User's responsibility to place kthreads, if desired

Getting RCU Further Out Of The Way

© 2009 IBM Corporation11

RCU Callbacks, Houston/Korty for TREE_RCU

Getting RCU Further Out Of The Way

CPU 2

Callback Invoked

Grace Period

rcuo kthread

No disruption!

CPU 1

Callback Invoked

Grace Period

rcuo kthread

call_rcu()

call_rcu()

Scheduler controls placement
(or can place manually)

© 2009 IBM Corporation12

RCU Data Structures (One For Each Flavor)

Getting RCU Further Out Of The Way

struct rcu_state

struct
rcu_node

struct
rcu_node

struct
rcu_node

struct
rcu_data

CPU 15

struct
rcu_data

CPU 0

struct
rcu_data
CPU 4095

struct
rcu_data
CPU 4080

Level 0: 1 rcu_node

Level 1: 4 rcu_nodes

Total: 261 rcu_nodes

No-CBs happens here

© 2009 IBM Corporation13

Existing Per-CPU Callback Lists With Tail Pointers

Getting RCU Further Out Of The Way

struct
rcu_data
CPU 4095

nxtlist nxttail[]

DONE

WAIT

NEXT_READY

NEXT

Ready to
invoke

Waiting for
current grace

period

Newly
registered

Waiting for next grace period
(empty sublist)

© 2009 IBM Corporation14

Existing Per-CPU Callback Lists With Tail Pointers

Getting RCU Further Out Of The Way

struct
rcu_data
CPU 4095

nxtlist nxttail[]

DONE

WAIT

NEXT_READY

NEXT

Ready to
invoke

Waiting for
current grace

period

Newly
registered

Waiting for next grace period
(empty sublist)

All manipulated non-
atomically without memory
barriers due to strict same-

CPU access...

© 2009 IBM Corporation15

No-CBs Per-CPU Callback Lists With Tail Pointer

Getting RCU Further Out Of The Way

struct
rcu_data
CPU 4095

nxtlist nxttail[]

DONE

WAIT

NEXT_READY

NEXT

nocb_head nocb_tail

NULL-pointer test already
in code, for offline CPUs

Atomic instructions and
memory barriers here to allow

off-CPU rcuo kthreads

© 2009 IBM Corporation16

No-CBs Callbacks Setup

Getting RCU Further Out Of The Way

 “rcu_nocbs=” kernel boot parameter
–Takes a list of no-CBs CPUs
–CPU 0 cannot be no-CBs CPU: boot code kicks it out of list

 “rcu_nocb_poll” kernel boot parameter
–If non-zero, “rcuo” kthreads poll for callbacks
–Otherwise, call_rcu() does explicit wake_up() as needed

Both are dumped to dmesg at boot time along with the usual
RCU configuration messages

© 2009 IBM Corporation17

Flow of Callbacks For No-CBs CPUs

Getting RCU Further Out Of The Way

 Get here when NEXT pointer is NULL
– If CPU is not a no-CBs CPU, issue warning (offline CPU) and return

 Enqueue callback:
old_rhpp = xchg(&rdp>nocb_tail, rhtp);
ACCESS_ONCE(*old_rhpp) = rhp;

 If queue was empty (or way full), wake corresponding kthread

 The kthread will dequeue all callbacks:
list = ACCESS_ONCE(rdp>nocb_head);
ACCESS_ONCE(rdp>nocb_head) = NULL;
tail = xchg(&rdp>nocb_tail, &rdp>nocb_head);

 The “tail” variable is used to validate that full list is received:
while (next == NULL && &list>next != tail) {
 schedule_timeout_interruptible(1);
 next = list>next;
}

© 2009 IBM Corporation18

But We Also Must Wait For An RCU Grace Period...

Getting RCU Further Out Of The Way

Could just use synchronize_rcu()

© 2009 IBM Corporation19

But We Also Must Wait For An RCU Grace Period...

Getting RCU Further Out Of The Way

Could just use synchronize_rcu()

But if this is an no-CBs CPU, then all that does is to queue
the callback on the ->nocb_head queue

Which won't be invoked until after the kthread invokes the
callbacks it currently has

Which the kthread won't do until after the newly queued
callback is invoked

Resulting in the situation shown on the next slide...

© 2009 IBM Corporation20

No-CBs Callback-List Deadlock

Getting RCU Further Out Of The Way

struct
rcu_data
CPU 4095

nxtlist nxttail[]

DONE

WAIT

NEXT_READY

NEXT

nocb_head nocb_tail

Wake

NULL-pointer test already
in code, for offline CPUs

Cannot execute until
previous batch is invoked...

Which won't happen until this
callback is invoked.

Deadlock!!!

© 2009 IBM Corporation21

But We Also Must Wait For An RCU Grace Period...

Getting RCU Further Out Of The Way

Could just use synchronize_rcu()

But if this is an no-CBs CPU, then that does is queue the
callback on the ->nocb_head queue

Which won't be accessed until after the grace period elapses

Which won't end because the kthread won't access the
callback

So rely on the fact that CPU 0 is never a no-CBs CPU
–smp_call_function_single() to make CPU 0 queue the callback
–Which limits the number of no-CBs CPUs on large systems
–Which will be fixed later: remember, this is a prototype

© 2009 IBM Corporation22

No-CBs Callback-List Deadlock

Getting RCU Further Out Of The Way

struct
rcu_data
CPU 4095

nxtlist nxttail[]

DONE

WAIT

NEXT_READY

NEXT

nocb_head nocb_tail

CPU 0 guaranteed to be
using this list, so grace-

period callback will
proceed normally

© 2009 IBM Corporation23

No-CBs Callback-List Deadlock

Getting RCU Further Out Of The Way

struct
rcu_data
CPU 4095

nxtlist nxttail[]

DONE

WAIT

NEXT_READY

NEXT

nocb_head nocb_tail

CPU 0 guaranteed to be
using this list, so grace-

period callback will
proceed normally:

Which means that at least
one CPU must remain

non-no-CBs CPU!

© 2009 IBM Corporation24

CPU Hotplug Considerations

Getting RCU Further Out Of The Way

When a non-no-CBs CPU is offlined, its callbacks are
adopted by some other CPU

But we don't need to do this for no-CBs CPUs
–The corresponding kthread will continue handling the callbacks

regardless of the CPU being offline

Three complications:
–rcu_barrier() needs to worry about no-CBs CPUs, even if offline
–No-CBs CPUs must adopt callbacks onto nocb_head rather than the

usual nxtlist
–Not permitted to offline the last non-no-CBs CPU
–“Simple matter of code”

© 2009 IBM Corporation25

Prototype Performance Tests

Getting RCU Further Out Of The Way

Two-CPU x86 KVM runs

Running TREE_PREEMPT_RCU implementation
–Works fine with TREE_RCU as well

Booted with “rcu_nocbs=1” (control run w/out no-CBs CPUs)

 In-kernel test code generates 10 self-spawning RCU
callbacks, each spinning for a time period controlled by sysfs

–All initiated on CPU 1

Shell script counts to 100,000
–Affinity to either CPU 0 or CPU 1
–Measure how long the script takes to execute on each CPU

© 2009 IBM Corporation26

Prototype Performance Tests: Crude Test Results

Getting RCU Further Out Of The Way

rcu_nocbs=1 rcu_nocbs disabled

Spin Duration CPU 0 CPU 1 CPU 0 CPU 1

500 us 1.3 s 0.8 s 0.8 s 1.2 s

100 us 0.9 s 0.8 s 0.8 s 0.9 s

10 us 0.8 s 0.8 s 0.8 s 0.8 s

Callbacks offloaded
 from CPU 1

Callbacks remain
on CPU 1

© 2009 IBM Corporation27

Prototype Complexity According to diffstat

Getting RCU Further Out Of The Way

 include/trace/events/rcu.h | 1
 init/Kconfig | 19 ++
 kernel/rcutree.c | 63 +++++--
 kernel/rcutree.h | 47 +++++
 kernel/rcutree_plugin.h | 397 ++-
 kernel/rcutree_trace.c | 14 +
 6 files changed, 524 insertions(+), 17 deletions(-)

© 2009 IBM Corporation28

Limitations and Future Directions

Getting RCU Further Out Of The Way

 Need atomic_inc_long() and friends
– Currently living dangerously with “int” counters on 64-bit systems
– I cannot be the only one wishing for atomic_long_t!!!

 Must reboot to reconfigure no-CBs CPUs
– Races between reconfiguring, registering callbacks, rcu_barrier(), grace periods and who

knows what all else are far from pretty! (But you can move the kthreads around w/out boot.)

 Scalability: 1,000 no-CBs CPUs would not do well
– Should be able to improve this, but not an issue for prototype

 Must be at least one non-no-CBs CPU (e.g., CPU 0)
– Scalability fixes would likely fix this as well.

 No energy-efficiency code: lazy & non-lazy CBs? Non-lazy!
– But do real-time people even care about energy efficiency?

 No-CBs CPUs' kthreads not subject to priority boosting
– Rely on configurations restrictions for prototype

 Setting all no-CBs CPUs' kthreads to RT prio w/out pinning them: bad!
– At least on large systems: configuration restrictions

 Thus, I do not expect no-CBs path to completely replace current CB path

© 2009 IBM Corporation29

Question From The Speaker...

Getting RCU Further Out Of The Way

 Is this approach to callback offloading useful?
–Real time?
–High-performance computing?
–High-speed networking?

© 2009 IBM Corporation30

Legal Statement

Getting RCU Further Out Of The Way

This work represents the view of the author and does not
necessarily represent the view of IBM.

 IBM and IBM (logo) are trademarks or registered trademarks
of International Business Machines Corporation in the United
States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.

© 2009 IBM Corporation31

Questions?

Getting RCU Further Out Of The Way

	IBM Presentation Template Full Version
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

