
When Do Real Time Systems Need Multiple CPUs?

Paul E. McKenney

IBM Linux Technology Center

15350 SW Koll Parkway, Beaverton OR 97006 USA

paulmck@linux.vnet.ibm.com

Abstract

Until recently, real-time systems were always single-CPU systems. The prospect of multiprocessing

has arrived with the advent of low-cost and readily available multi-core systems. Now many RTOSes,

perhaps most notably Linux
TM

, provide real-time response on multiprocessor systems.

However, this begs the question as to whether your real-time application should avail itself of paral-

lelism. Furthermore, if the answer is “yes,” the next question is what form of parallelism your application

should avail itself of: shared memory parallelism with locking and threads, process pipelines, multiple

cooperating processes, or one of a number of other approaches.

This paper will examine these questions, providing rules of thumb to help you choose whether your

real-time application should be parallel, and, if so, what sort of parallelism is best for you.

1 Introduction

Moore’s-Law-induced increases in single-threaded
performance ended in the year 2003, as can be seen
in Figure 1 [8]. It is perhaps unsurprising that the
first multicore version of that quintessential embed-
ded CPU, ARM, was announced just one year later.
This figure plots clock frequency for recent CPUs
capable of retiring at least one instruction per cy-
cle, and Dhrystone MIPS for older CPUs. This sud-
den cessation of exponential single-threaded hard-
ware performance growth has motivated increased
investigation, development, and deployment of sys-
tems exploting parallel processing, including in the
real-time arena. Furthermore, parallel hardware is
now low cost and readily available, which means that
parallelism has become an attractive way to increase
performance and decrease response times. Finally,
a parallel real-time Linux kernel is available in the
form of the -rt patchset [9].

Unfortunately, most software is still single-
threaded, and, worse yet, numerous workloads are
reputed to lack efficient and scalable parallel imple-
mentations. Even for workloads that do have ef-
ficient and scalable parallel implementations, these
parallel implementations are often larger, more com-

plex, and much more difficult to validate than are
their single-threaded counterparts. In short, al-
though parallel hardware is low cost and readily
available, not so for new parallel software.

 0.1

 1

 10

 100

 1000

 10000

 1
97

5

 1
98

0

 1
98

5

 1
99

0

 1
99

5

 2
00

0

 2
00

5

 2
01

0

 2
01

5

C
P

U
 C

lo
ck

 F
re

qu
en

cy
 /

M
IP

S

Year

FIGURE 1: MIPS/Clock-Frequency Trend
for Intel CPUs

1

This situation motivates some rules of thumb to
help determine when parallel hardware and software
is the right tool for the job. Section 2 discusses
parallelizing the control loop itself, Section 3 cov-
ers some ways of dealing with difficult-to-parallelize
workloads, Section 4 discusses alternatives to paral-
lelizing control loops, Section 5 enumerates uses for
leftover CPUs, and finally Section 6 presents con-
cluding remarks and rules of thumb.

2 Parallelizing the Control

Loop

This section looks at use of parallelism for the real-
time control loop itself. Rather than specialize this
discussion to any specific workload, we will consider
the following randomly chosen synthetic workload:

1 void mung(int *x, int n)

2 {

3 int i;

4

5 for (i = 0; i < n; i++)

6 x[i] = 10 + x[i] / 10;

7 }

This function carries out a simple transform on
each element of an array of integers. We can then ex-
amine the effectiveness of parallelism as a function of
array size and number of passes over the array. The
experiments in this paper will vary the array size
and number of passes in tandem: ten passes over a
ten-element array, one hundred passes over a one-
hundred-element array, and so forth.

The two major modes of parallelism are pipelin-
ing and data parallelism. Pipelining partitions the
workload in time, so that a given unit of work flows
through the processors in the pipeline, as shown in
Figure 2.

S
ta

ge
 1

S
ta

ge
 2

S
ta

ge
 3

FIGURE 2: Pipelined Parallelism

In contrast, data parallelism partitions the work-
load in space, so that different sets of data are han-
dled by different CPUs, as shown in Figure 3.

Partition 1 Partition 2 Partition 3

FIGURE 3: Data Parallelism

Suppose that a given workload had a large ar-
ray that required two mathematical operations to be
carried out on each element. In pipelining, one CPU
would carry out the first operation on all elements,
and another CPU would then carry out the second
operation, again on all elements. In contrast, in data
parallelism, one CPU would carry out both opera-
tions on each element in the first half of the array,
and another CPU would carry out both operations
on the second half of the array.

The next two sections look at each of these ap-
proaches in more detail.

2.1 Pipelining

We implement pipelining by processing half of the
passes through all of the elements, then using
pthread_create() [4] to handle the remainder of
the passes. The results on an Intel R©dual-core
2.53GHz dual-core laptop are shown in Figure 4.
The dashed line is the response time of pipelining,
and the solid line is the response time of single-
threaded execution. From the results for small com-
putations at the left, we can see that the over-
head of pthread_create()and pthread_join() ap-
proaches 100 microseconds, which is far in excess of
the single-threaded loop overhead of roughly 2 mi-
croseconds. Worse yet, the pipelined response time is
never better than that of single-threaded execution,
even for 10,000 passes through a 10,000-element ar-
ray, which likely far exceeds the overhead of anything
likely to appear in a self-respecting real-time control
loop.

2

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

T
im

e
to

 C
om

pl
et

io
n

(s
)

Size of Unit of Work

FIGURE 4: Pipelining Performance

We clearly need more efficient synchronization
mechanisms that pthread_create() and pthread_

join(). A reasonable alternative is to create the
needed threads at initialization, and then reuse these
pre-existing threads for each new unit of work. This
approach is more difficult to design than simple use
of pthread_create() and pthread_join(), but, as
can be seen in Figure 5, the synchronization overhead
of this approach is roughly two orders of magnitude
smaller, so that the response time of the pipelined
approach nears that of the single-threaded approach
with “only” 100 passes through a 100-element array.

 1e-06

 1e-05

 0.0001

 1 10 100

T
im

e
to

 C
om

pl
et

io
n

(s
)

Size of Unit of Work

FIGURE 5: Pipelining Performance, Pre-
Existing Threads

But the goal of parallelism is not to merely ap-
proach the performance of single-threaded imple-
mentation, but rather to greatly exceed it. It is easy
to see that pipelining is simply not up to this task, at
least when work appears in isolation—the response
time will always be greater than that of the single-
threaded implementation, with the addition of syn-
chronization overhead.

However, if units of work can arrive in quick
succession, then pipelining can provide improvment
in response time, as shown by Figure 6. The im-
provement occurs when a second unit of work arrives
shortly after the first unit begins executing. Given
single-threaded execution, the second unit will have
to wait for the first unit to finish, as shown by the
top half of the figure.

However, given pipelining, the second unit can
begin execution as soon as the first unit finishes us-
ing CPU 0, so that the execution of the first half
of the second unit overlaps with the second half of
the first unit, as shown by the bottom half of the
figure. The rhombuses denote synchronization over-
head, showing further that reasonable improvement
is possible even when the synchronization overhead
is a substantial fraction of the duration of the units
of work.

3

Work Unit 1 Work Unit 2

wait execute

total

WU 1A

WU 1B

WU 2A

WU 2B

executewait

total

CPU 0

CPU 1

FIGURE 6: Improving Response With
Pipelining

In short, pipelining cannot reduce the response
time of a single isolated unit of work, but can provide
reductions in response time by overlapping the exe-
cution of successive units of work. Pipelining imple-
mentation is generally straightforward, but the over-
head of each stage of the pipeline should be chosen so
as to significantly exceed synchronization overhead,
including both communication overhead and cache
misses.

2.2 Data Parallelism

We implement data parallelism by processing half of
the array elements by the parent task and the other
half by a child task. As can be seen in Figure 7,
this provides faster response time than does the
single-threaded implementation, but only for work-
unit sizes that are unrealistically large for most appli-
cations. Again, the solid line is the response time for
single-threaded execution, and the dashed line is the
response time for data-parallel execution, and again
the base overhead of the data-parallel execution is
dominated by the overhead of pthread_create()

and pthread_join().

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

T
im

e
to

 C
om

pl
et

io
n

(s
)

Size of Unit of Work

FIGURE 7: Data-Parallel Performance

And again, an alternative approach creates the
needed threads at initialization time and passes work
based on shared-memory operations, resulting in the
much-improved response times shown in Figure 8.
Significant improvements in response time appear
with work-unit sizes as small as 100 (keep in mind
that this plot uses logarithmic scales).

 1e-06

 1e-05

 0.0001

 0.001

 1 10 100

T
im

e
to

 C
om

pl
et

io
n

(s
)

Size of Unit of Work

FIGURE 8: Data-Parallel Performance,
Pre-Existing Threads

4

2.3 Control Loop Analysis

Of course, the best way to evaluate a given design
is to implement it and measure the results. That
said, a small amount of analysis can sometimes save
considerable quantities of implementation and mea-
surement.

Therefore, suppose that the overhead of a unit of
work is T , that the synchronization overhead (includ-
ing cache misses, atomic instructions, locking, etc.)
is C, and that there are N CPUs. The duration of
data-parallel execution is then given by:

T

N
+ C (1)

The speedup is the ratio of the single-threaded
execution time to that of the data-parallel implemen-
tation:

S =
T

T

N
+ C

(2)

This can be normalized by multiplying the nu-
merator and denominator by N/C:

S =
N T

C

T

C
+ N

(3)

This in turn permits us to estimate an upper
bound for the speedup given only number of CPUs
and the ratio of the single-threaded execution time to
the synchronization overhead, as shown in Figure 9
for N equal to 2, 3, and 4 CPUs. As can be seen
from this figure, the ratio T/C must be reasonably
large to attain reasonable speedups.

Although achieving linear speedup is a common
parallel-programming goal, a more appropriate goal
for real-time programming is meeting the specified
deadlines. Figure 9 can be used for this purpose as
well by taking the required speedup and scanning
across the chart to find feasible values of T/C and
N . Mathematically inclined readers might instead
wish to solve Equation 3 for either T/C or N , and
also to note the similarities to Amdahl’s Law [1].

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20

S
pe

ed
up

T/C

N=2

N=3

N=4

FIGURE 9: Limits to Speedup

2.4 Control Loop Discussion

Pipelining and data parallelism are often simple
enough to fit into the tight deadlines that are of-
ten associated with real-time and embedded projects.
These approaches to parallelism can significantly re-
duce response times, but only if the overhead of the
control loop is at lead several tens of microseconds.

Although such overheads are not unheard of, this
does beg the question of what is to be done in cases
where the control-loop overhead is to small to ef-
ficiently parallelize, or where the workload is not
well-suited to parallelization. Of course, if the con-
trol loop meets performance criteria given a single-
threaded implementation, you should simply declare
victory and retain the single-threaded implementa-
tion. The following sections discuss what you might
do otherwise.

3 Dealing With Difficult-to-

Parallelize Workloads

The prototypical difficult-to-parallelize workload
would be encryption and decryption, where depen-
dencies are often inserted into the workload for the
express purpose of making it difficult to operate on
the stream in parallel. If you have control of both

5

ends of the conversation and if there are large quan-
tities of data being encrypted, one approach is inter-
leaving. The idea is to split the unencrypted stream
into blocks, so that the nth CPU encrypts every nth

block. The receiver can then use multiple CPUs to
decrypt and then splice the stream back together.
The same approach may be used for compression,
albeit most likely at some compression-ratio penalty.

Audio and video encoding and decoding can be
more challenging, although one possible approach for
video is to partition the display, and treat each par-
tition as a separate video stream.

4 Alternatives to Parallelized

Control Loops

Although parallel programming is not the impossi-
ble task that some believe it to be [8], there can
be no doubt that it is more difficult than sequen-
tial programming. It therefore makes a lot of sense
to consider alternatives to parallelizing the control
loop, including the following:

1. Hand-optimizing the (single-threaded) control
loop.

2. Use approximations in the control loop, with
periodic calibration from a thread running on
some other CPU.

3. Use hardware accelerators to speed up the com-
putations. Such accelerators are especially at-
tractive for audio and video encoding and de-
coding, for which a number of accelerators are
available, though normally integrated into a
given system-on-a-chip (SoC).

4. Use FPGAs to speed up the computations.
This won’t necessarily be easier than paral-
lelism, but there are some workloads better
suited to FPGAs than parallel software, and
vice versa.

As always, use the right tool for the job!

And when the system is fast enough for your pur-
poses, stop messing with it! If you can’t stop yourself
from messing with it, at least record the working fast-
enough version in your favorite source-code control
system.

5 Leftover CPUs

In sharp contrast with decades past, there is a very
real possibility that your real-time system will be
able to operate using only some of the available
CPUs. The question then becomes “what to do with
the leftover CPUs?” Here are some possibilities:

1. Power them off.

2. Switch to hardware with fewer CPUs. (The
glass is neither half full or half empty, but
rather twice as big as it needs to be!)

3. Use them to run any needed UI or reporting
system.

4. In the case of enterprise real-time [6], run some
of the enterprise portion of the application on
the leftover CPUs.

These last two items require communicating from
and to the real-time control loop. This is often done
using special real-time messaging software, which can
work well, especially between systems. However,
given that the communication is occuring within a
single system faster shared-memory techniques may
be used. These techniques are often somewhat more
difficult to use, but can offer much better perfor-
mance and latencies. The optimal techique depends
on the situation:

1. Messaging can use real-time implementations
of linked lists [2] or user-mode equivalents of
kfifo [3].

2. Lookups using linked structures such as hash
tables, lists, or search trees on read-mostly data
can use RCU [2, 5, 7].

3. Other communications mechanisms can use
locking, provided that priority boosting is im-
plemented [4].

However, thread placement is important, as can
be seen in the following table.

Cost
Operation (ns) Ratio

Clock Period 0.4 1.0
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache miss 12.9 35.8
CAS cache miss 7.0 19.4
Single cache miss (off-core) 31.2 86.6
CAS cache miss (off-core) 31.2 86.5
Single cache miss (off-socket) 92.4 256.7
CAS cache miss (off-socket) 95.9 266.4

6

The first column of this table gives the type of op-
eration and the locality, the second column gives the
cost in nanoseconds, and the third column gives the
ratio of the cost to the clock period, in other words,
the number of cycles. This data was collected on a
16-CPU 2.8GHz Intel X5550 (Nehalem) system.

The first four rows following the clock period are
operations within a given core, so that the “cache
misses” merely move the data from one thread to
another, while the “best case” rows have a single
thread operating on the data. Interestingly enough,
on this hardware, it is faster to move data from one
thread to another within a core than it is to have a
single thread operate atomically on that same data.

The next two rows are operations on different
cores within the same socket. Moving data from one
core to another is thus quite expensive compared to
operating on that same data within a given core.

The final two rows are operations on different
sockets, which is almost an order of magnitude more
expensive than atomic operations within a given core
and more than two orders of magnitude more expen-
sive than simple non-atomic instructions.

It can therefore be beneficial to use facilities
such as sched_setaffinity() to place processes so
as to minimize communications latencies. This is
especially important if communications operations
appear in your real-time control loop, because any
cache misses will add directly to your loop’s response
time. Read-mostly data is an important special case.
Where RCU can be used, the processor caches will
retain copies of the data where needed, so that place-
ment becomes less critical.

6 Conclusions

As always, use the right tool for the job. In partic-
ular, if simple sequential execution permits you to
meet your response-time goals, you probably should
not bother with parallelism. However, if sequential
execution is insufficient, both pipelining and data
parallelism can improve response times, particularly
when each pass through your control loop takes more
than an order of magnitude longer than the execution
time for the synchronization mechanism you have
chosen.

Interleaving can be used in some cases to batch
streamed workloads in order to make them easier to
parallelize. Alternatively, sequential-code optimiza-
tions and hardware acceleration can be an attractive
option for some types of workloads.

Difficult though it may be for old-timers such as
the author to grasp, it is not unusual to find that
your workload fails to use all of the CPUs available
to you. These can be powered off, or they can run
non-real-time portions of your extended workload,
for example, the user interface. However, on larger
systems, careful process and thread placement can
optimize communications latencies and overheads.

Although parallelism is not always the right tool
for the job, the low cost and easy availability of mul-
ticore systems and parallel software make parallelism
much more attractive than in years past.

Acknowledgements

No article mentioning the -rt patchset would be
complete without a note of thanks to Ingo Mol-
nar, Thomas Gleixner, Sven Dietrich, K.R. Foley,
Gene Heskett, Bill Huey, Esben Neilsen, Nick Pig-
gin, Steven Rostedt, Michal Schmidt, Daniel Walker,
Karsten Wiese, John Stultz, John Kacur, Carsten
Emde, Clark Williams, GeunSik Lim, Uwe Kleine-
Knig, Darren Hart, Dinakar Guniguntala, Luis Clau-
dio R. Goncalves, and many others besides. I also
owe thanks to Kathy Bennett for her support of this
effort.

Legal Statement

This work represents the views of the authors and does

not necessarily represent the view of IBM.

Linux is a copyright of Linus Torvalds.

Other company, product, and service names may be

trademarks or service marks of others.

References

[1] Gene Amdahl. Validity of the single processor ap-
proach to achieving large-scale computing capa-
bilities. In AFIPS Conference Proceedings, pages
483–485, Washington, DC, USA, 1967. IEEE
Computer Society.

[2] Mathieu Desnoyers. [RFC git tree] userspace
RCU (urcu) for Linux. Available: http://

lkml.org/lkml/2009/2/5/572 http://lttng.

org/urcu [Viewed February 20, 2009], February
2009.

7

[3] Jake Edge. A new api for kfifo? Available: http:
//lwn.net/Articles/347619/ [Viewed Septem-
ber 20, 2010], August 2009.

[4] The Open Group. Single UNIX specifica-
tion. http://www.opengroup.org/onlinepubs/
007908799/index.html, July 2001.

[5] D. Guniguntala, P. E. McKenney, J. Triplett,
and J. Walpole. The read-copy-update mech-
anism for supporting real-time applications on
shared-memory multiprocessor systems with
Linux. IBM Systems Journal, 47(2):221–236,
May 2008. Available: http://www.research.

ibm.com/journal/sj/472/guniguntala.pdf

[Viewed April 24, 2008].

[6] Paul E. McKenney. SMP and embedded real
time. Linux Journal, (153):52–57, January
2007. Available: http://www.linuxjournal.

com/article/9361 [Viewed May 31, 2007].

[7] Paul E. McKenney. Deterministic synchroniza-
tion in multicore systems: the role of RCU. In
Eleventh Real Time Linux Workshop, Dresden,
Germany, September 2009. Available: http:

//www.rdrop.com/users/paulmck/realtime/

paper/DetSyncRCU.2009.08.18a.pdf [Viewed
January 14, 2009].

[8] Paul E. McKenney. Is Parallel Programming
Hard, And, If So, What Can You Do About It?
kernel.org, Corvallis, OR, USA, 2010. Avail-
able: http://kernel.org/pub/linux/kernel/

people/paulmck/perfbook/perfbook.html

[Viewed March 28, 2010].

[9] Ingo Molnar. Index of
/pub/linux/kernel/projects/rt. Available:
http://www.kernel.org/pub/linux/kernel/

projects/rt/ [Viewed February 15, 2005],
February 2005.

8

