
© 2002 IBM CorporationACACES July 15, 2009 Copyright © 2009 IBM

Performance, Scalability, and Real-Time Response From the Linux Kernel

Creating Performant and Scalable Linux Creating Performant and Scalable Linux
ApplicationsApplications

Paul E. McKenneyPaul E. McKenney
IBM Distinguished Engineer & CTO LinuxIBM Distinguished Engineer & CTO Linux
Linux Technology CenterLinux Technology Center

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 2

Course Objectives and GoalsCourse Objectives and Goals

 Introduction to Performance, Scalability, and Introduction to Performance, Scalability, and
Real-Time Issues on Modern Multicore Real-Time Issues on Modern Multicore
Hardware: Is Parallel Programming Hard, Hardware: Is Parallel Programming Hard,
And If So, Why?And If So, Why?

Performance and Scalability Technologies in Performance and Scalability Technologies in
the Linux Kernelthe Linux Kernel

Creating Performant and Scalable Linux
Applications

Real-Time Technologies in the Linux KernelReal-Time Technologies in the Linux Kernel
Creating Real-Time Linux ApplicationsCreating Real-Time Linux Applications

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 3

OverviewOverview

Programming Environments in Linux AppsProgramming Environments in Linux Apps
Synchronization PrimitivesSynchronization Primitives
Per-Thread VariablesPer-Thread Variables
Solutions to the Existence ProblemSolutions to the Existence Problem

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 4

Programming Environments in Linux AppsProgramming Environments in Linux Apps

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 5

Programming Environments in Linux AppsProgramming Environments in Linux Apps

U
se

r

S
ig

na
l

H
an

dl
er

S
ig

na
l e

na
bl

ed
S

ig
na

l e
na

bl
ed

But no cheap wayBut no cheap way
to disable signals...to disable signals...

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 6

Signal-Handler Synchronization StrategiesSignal-Handler Synchronization Strategies

 Don't use signal handlers (my favorite)Don't use signal handlers (my favorite)
 Use locking, accept expensive sigvec() callsUse locking, accept expensive sigvec() calls
 Use non-blocking synchronization, accept Use non-blocking synchronization, accept

restricted set of algorithms or great complexityrestricted set of algorithms or great complexity
 Use RCU, accept read-only access from signal Use RCU, accept read-only access from signal

handlerhandler
 Some combination of the aboveSome combination of the above

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 7

Synchronization PrimitivesSynchronization Primitives

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 8

Synchronization Primitives (Partial POSIX)Synchronization Primitives (Partial POSIX)

 pthread_mutex_tpthread_mutex_t
 pthread_mutex_init()pthread_mutex_init()
 pthread_mutex_lock()pthread_mutex_lock()
 pthread_mutex_trylock()pthread_mutex_trylock()
 pthread_mutex_unlock()pthread_mutex_unlock()

 pthread_rwlock_tpthread_rwlock_t
 pthread_rwlock_init()pthread_rwlock_init()
 pthread_rwlock_rdlock()pthread_rwlock_rdlock()
 pthread_rwlock_tryrdlock()pthread_rwlock_tryrdlock()
 pthread_rwlock_wrlock()pthread_rwlock_wrlock()
 pthread_rwlock_trywrlock()pthread_rwlock_trywrlock()
 pthread_rwlock_unlock()pthread_rwlock_unlock()

http://www.opengroup.org/onlinepubs/007908799/xsh/pthread.h.htmlhttp://www.opengroup.org/onlinepubs/007908799/xsh/pthread.h.html

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 9

Synchronization Primitives (Partial POSIX)Synchronization Primitives (Partial POSIX)

 pthread_cond_tpthread_cond_t
 pthread_cond_init()pthread_cond_init()
 pthread_cond_wait()pthread_cond_wait()
 pthread_cond_timedwait()pthread_cond_timedwait()
 pthread_cond_signal()pthread_cond_signal()
 pthread_cond_broadcast()pthread_cond_broadcast()

http://www.opengroup.org/onlinepubs/007908799/xsh/pthread.h.htmlhttp://www.opengroup.org/onlinepubs/007908799/xsh/pthread.h.html

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 10

Atomic __sync IntrinsicsAtomic __sync Intrinsics

 Fetch-and-op (returns old value):Fetch-and-op (returns old value):
 type __sync_fetch_and_add (type *ptr, type value, ...)type __sync_fetch_and_add (type *ptr, type value, ...)
 type __sync_fetch_and_sub (type *ptr, type value, ...)type __sync_fetch_and_sub (type *ptr, type value, ...)
 type __sync_fetch_and_or (type *ptr, type value, ...)type __sync_fetch_and_or (type *ptr, type value, ...)
 type __sync_fetch_and_and (type *ptr, type value, ...)type __sync_fetch_and_and (type *ptr, type value, ...)
 type __sync_fetch_and_xor (type *ptr, type value, ...)type __sync_fetch_and_xor (type *ptr, type value, ...)
 type __sync_fetch_and_nand (type *ptr, type value, ...)type __sync_fetch_and_nand (type *ptr, type value, ...)

 Op-and-fetch (returns new value):Op-and-fetch (returns new value):
 type __sync_add_and_fetch (type *ptr, type value, ...)type __sync_add_and_fetch (type *ptr, type value, ...)
 type __sync_sub_and_fetch (type *ptr, type value, ...)type __sync_sub_and_fetch (type *ptr, type value, ...)
 type __sync_or_and_fetch (type *ptr, type value, ...)type __sync_or_and_fetch (type *ptr, type value, ...)
 type __sync_and_and_fetch (type *ptr, type value, ...)type __sync_and_and_fetch (type *ptr, type value, ...)
 type __sync_xor_and_fetch (type *ptr, type value, ...)type __sync_xor_and_fetch (type *ptr, type value, ...)
 type __sync_nand_and_fetch (type *ptr, type value, ...)type __sync_nand_and_fetch (type *ptr, type value, ...)

 Compare-and-swap:Compare-and-swap:
 bool __sync_bool_compare_and_swap (type *ptr, type oldval type newval, ...)bool __sync_bool_compare_and_swap (type *ptr, type oldval type newval, ...)
 type __sync_val_compare_and_swap (type *ptr, type oldval type newval, ...)type __sync_val_compare_and_swap (type *ptr, type oldval type newval, ...)

 Memory fences:Memory fences:
 __sync_synchronize (...)__sync_synchronize (...)
 type __sync_lock_test_and_set (type *ptr, type value, ...)type __sync_lock_test_and_set (type *ptr, type value, ...)
 void __sync_lock_release (type *ptr, ...)void __sync_lock_release (type *ptr, ...)

http://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Atomic-Builtins.htmlhttp://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Atomic-Builtins.html

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 11

Synchronization Primitives: Just as with KernelSynchronization Primitives: Just as with Kernel

Work
Partitioning

Interacting
With Hardware

Parallel
Access Control

Resource
Partitioning

& Replication

Do this first!!!!Do this first!!!!
Job #1 is Job #1 is notnot selecting primitives! selecting primitives!

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 12

Per-Thread VariablesPer-Thread Variables

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 13

Per-Thread VariablesPer-Thread Variables

 Use the “__thread” storage classUse the “__thread” storage class
 However, no standard way to access other However, no standard way to access other

thread's per-thread variables in C/C++thread's per-thread variables in C/C++
 Is this important?Is this important?
 If so, what can you do about it?If so, what can you do about it?

 And why are per-thread variables so important?And why are per-thread variables so important?

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 14

Per-Thread VariablesPer-Thread Variables

 Access to other thread's __thread variablesAccess to other thread's __thread variables
 ““Just say 'no'”: combine values after thread exitsJust say 'no'”: combine values after thread exits

• Requires thread move __thread data before exit, of courseRequires thread move __thread data before exit, of course

 ““Just say 'no'”: use communication primitives:Just say 'no'”: use communication primitives:
• SysV message queuesSysV message queues
• UNIX-domain socketsUNIX-domain sockets
• TCP/IPTCP/IP
• POSIX signalsPOSIX signals

 Create per-variable arrays containing pointers to Create per-variable arrays containing pointers to
each thread's corresponding variableeach thread's corresponding variable

• Each thread then records address of relevant variablesEach thread then records address of relevant variables

 Use offsets (but good luck with shared libraries!!!)Use offsets (but good luck with shared libraries!!!)
 Lobby for an enhancement to the standardLobby for an enhancement to the standard

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 15

Atomic Increment of Global VariableAtomic Increment of Global Variable

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Lots and Lots of Latency!!!Lots and Lots of Latency!!!

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 16

Atomic Increment of Per-CPU VariableAtomic Increment of Per-CPU Variable

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Little Latency, Lots of Increments at Core Clock RateLittle Latency, Lots of Increments at Core Clock Rate

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 17

Solutions to the Existence ProblemSolutions to the Existence Problem

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 18

Solutions to the Existence ProblemSolutions to the Existence Problem

 Use of “Running on CPU” as a reference does Use of “Running on CPU” as a reference does
not translate well from kernel to user appsnot translate well from kernel to user apps

 No reliable way to suppress preemptionNo reliable way to suppress preemption
• Existing user-level facilities are usually only hintsExisting user-level facilities are usually only hints

 If there was a reliable way to suppress preemption, it If there was a reliable way to suppress preemption, it
would be subject to abusewould be subject to abuse

 Kernels have strictly enforced architecturesKernels have strictly enforced architectures
 Can trust each kernel thread to reach a quiescent Can trust each kernel thread to reach a quiescent

state in a timely fashionstate in a timely fashion
• Not so for user applicationsNot so for user applications
• Even less so for libraries – the application has not yet been Even less so for libraries – the application has not yet been

thought of, much less architected!!!thought of, much less architected!!!

 Thus must revisit reference-counting schemesThus must revisit reference-counting schemes

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 19

rcu_refcnt[0]

rcu_refcnt[1]

rcu_refcnt[0]

rcu_refcnt[1]

rcu_refcnt[0]

rcu_refcnt[1]

rcu_refcnt[0]

rcu_refcnt[1]

rcu_refcnt[0]

rcu_refcnt[1]

rcu_refcnt[0]

rcu_refcnt[1]

rcu_refcnt[0]

rcu_refcnt[1]

Per-Thread Reference Count Pair DataPer-Thread Reference Count Pair Data

rcu_refcnt[0]

rcu_read_lock()

rcu_read_unlock()

synchronize_rcu()

Acquire current referenceAcquire current reference

Release reference acquiredRelease reference acquired

Flip rcu_idx and wait for allFlip rcu_idx and wait for all
old references to be releasedold references to be released

rcu_refcnt[1]

rcu_idx

One perOne per
threadthread

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 20

Per-Thread Reference Count Pair DataPer-Thread Reference Count Pair Data

 1 DEFINE_PER_THREAD(int, rcu_refcnt[2]);1 DEFINE_PER_THREAD(int, rcu_refcnt[2]);
 2 atomic_t rcu_idx;2 atomic_t rcu_idx;
 3 DEFINE_SPINLOCK(rcu_gp_lock);3 DEFINE_SPINLOCK(rcu_gp_lock);
 4 DEFINE_PER_THREAD(int, rcu_nesting);4 DEFINE_PER_THREAD(int, rcu_nesting);
 5 DEFINE_PER_THREAD(int, rcu_read_idx);5 DEFINE_PER_THREAD(int, rcu_read_idx);

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 21

Per-Thread Ref-Count Pair Reader PrimitivesPer-Thread Ref-Count Pair Reader Primitives

 1 static void rcu_read_lock(void)1 static void rcu_read_lock(void)
 2 {2 {
 3 int i;3 int i;
 4 int n;4 int n;
 55
 6 n = __get_thread_var(rcu_nesting);6 n = __get_thread_var(rcu_nesting);
 7 if (n == 0) { 7 if (n == 0) {
 8 i = atomic_read(&rcu_idx);8 i = atomic_read(&rcu_idx);
 9 __get_thread_var(rcu_read_idx) = i;9 __get_thread_var(rcu_read_idx) = i;
 10 __get_thread_var(rcu_refcnt)[i]++;10 __get_thread_var(rcu_refcnt)[i]++;
 11 }11 }
 12 __get_thread_var(rcu_nesting) = n + 1;12 __get_thread_var(rcu_nesting) = n + 1;
 13 smp_mb();13 smp_mb();
 14 }14 }
 1515
 16 static void rcu_read_unlock(void)16 static void rcu_read_unlock(void)
 17 {17 {
 18 int i;18 int i;
 19 int n;19 int n;
 2020
 21 smp_mb();21 smp_mb();
 22 n = __get_thread_var(rcu_nesting);22 n = __get_thread_var(rcu_nesting);
 23 if (n == 1) {23 if (n == 1) {
 24 i = __get_thread_var(rcu_read_idx);24 i = __get_thread_var(rcu_read_idx);
 25 __get_thread_var(rcu_refcnt)[i]--;25 __get_thread_var(rcu_refcnt)[i]--;
 26 }26 }
 27 __get_thread_var(rcu_nesting) = n - 1;27 __get_thread_var(rcu_nesting) = n - 1;
 28 }28 }

Acquire referenceAcquire reference

Release referenceRelease reference

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 22

Per-Thread Ref-Count Pair Updater PrimitivesPer-Thread Ref-Count Pair Updater Primitives

 1 static void flip_counter_and_wait(int i)1 static void flip_counter_and_wait(int i)
 2 {2 {
 3 int t;3 int t;
 44
 5 atomic_set(&rcu_idx, !i);5 atomic_set(&rcu_idx, !i);
 6 smp_mb();6 smp_mb();
 7 for_each_thread(t) { 7 for_each_thread(t) {
 8 while (per_thread(rcu_refcnt, t)[i] != 0) { 8 while (per_thread(rcu_refcnt, t)[i] != 0) {
 9 barrier();9 barrier();
 10 }10 }
 11 }11 }
 12 smp_mb();12 smp_mb();
 13 }13 }
 1414
 15 void synchronize_rcu(void)15 void synchronize_rcu(void)
 16 {16 {
 17 int i;17 int i;
 1818
 19 smp_mb();19 smp_mb();
 20 spin_lock(&rcu_gp_lock);20 spin_lock(&rcu_gp_lock);
 21 i = atomic_read(&rcu_idx);21 i = atomic_read(&rcu_idx);
 22 flip_counter_and_wait(i);22 flip_counter_and_wait(i);
 23 flip_counter_and_wait(!i);23 flip_counter_and_wait(!i);
 24 spin_unlock(&rcu_gp_lock);24 spin_unlock(&rcu_gp_lock);
 25 smp_mb();25 smp_mb();
 26 }26 }

Flip counter onceFlip counter once

Flip counter twiceFlip counter twice

Wait for referencesWait for references
to be releasedto be released

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 23

Per-Thread Ref-Count Pair IssuesPer-Thread Ref-Count Pair Issues

 No read-side memory contentionNo read-side memory contention
 No read-side atomic operationsNo read-side atomic operations
 Complex read-side primitivesComplex read-side primitives

 Array indexing and lots of operations, need Array indexing and lots of operations, need
something simplersomething simpler

 Double counter flip and update-side lock slowDouble counter flip and update-side lock slow
 No updater starvationNo updater starvation

 So combine count and index into single per-So combine count and index into single per-
thread variablethread variable

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 24

Per-Thread Ref-Count Pair IssuesPer-Thread Ref-Count Pair Issues

 No read-side memory contentionNo read-side memory contention
 No read-side atomic operationsNo read-side atomic operations
 Complex read-side primitivesComplex read-side primitives

 Array indexing and lots of operations, need Array indexing and lots of operations, need
something simplersomething simpler

 Double counter flip and update-side lock slowDouble counter flip and update-side lock slow
Not signal-safe

 Cannot use both from mainline and signal handler

 No updater starvationNo updater starvation

 So combine count and index into single per-So combine count and index into single per-
thread variablethread variable

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 25

Per-Thread Phase-Counter DataPer-Thread Phase-Counter Data

rcu_refcnt[0]rcu_refcnt[0]rcu_refcnt[0]rcu_refcnt[0]rcu_refcnt[0]rcu_refcnt[0]rcu_refcnt[0]rcu_reader_gp

rcu_read_lock()

rcu_read_unlock()

synchronize_rcu()

Acquire current referenceAcquire current reference

Release reference acquiredRelease reference acquired

Flip rcu_gp_ctr and wait for allFlip rcu_gp_ctr and wait for all
old references to be releasedold references to be released

rcu_gp_ctr

One perOne per
threadthread

Format:Format:

Grace-periodGrace-period
phasephase

Nesting countNesting count

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 26

Per-Thread Phase-Counter DataPer-Thread Phase-Counter Data

 1 #define RCU_GP_CTR_BOTTOM_BIT 0x800000001 #define RCU_GP_CTR_BOTTOM_BIT 0x80000000
 2 #define RCU_GP_CTR_NEST_MASK (RCU_GP_CTR_BOTTOM_BIT - 1)2 #define RCU_GP_CTR_NEST_MASK (RCU_GP_CTR_BOTTOM_BIT - 1)
 3 long rcu_gp_ctr = 1;3 long rcu_gp_ctr = 1;
 4 DEFINE_PER_THREAD(long, rcu_reader_gp);4 DEFINE_PER_THREAD(long, rcu_reader_gp);
 5 DEFINE_SPINLOCK(rcu_gp_lock);5 DEFINE_SPINLOCK(rcu_gp_lock);

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 27

Per-Thread Phase-Counter DataPer-Thread Phase-Counter Data

 1 #define RCU_GP_CTR_BOTTOM_BIT 0x800000001 #define RCU_GP_CTR_BOTTOM_BIT 0x80000000
 2 #define RCU_GP_CTR_NEST_MASK (RCU_GP_CTR_BOTTOM_BIT - 1)2 #define RCU_GP_CTR_NEST_MASK (RCU_GP_CTR_BOTTOM_BIT - 1)
 3 long rcu_gp_ctr = 1;3 long rcu_gp_ctr = 1;
 4 DEFINE_PER_THREAD(long, rcu_reader_gp);4 DEFINE_PER_THREAD(long, rcu_reader_gp);
 5 DEFINE_SPINLOCK(rcu_gp_lock);5 DEFINE_SPINLOCK(rcu_gp_lock);

rcu_refcnt[0]rcu_refcnt[0]rcu_refcnt[0]rcu_refcnt[0]rcu_refcnt[0]rcu_refcnt[0]rcu_refcnt[0]rcu_reader_gp

rcu_gp_ctr

One perOne per
threadthread

[Format]

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 28

Per-Thread Phase-Counter Reader PrimitivesPer-Thread Phase-Counter Reader Primitives

 1 static void rcu_read_lock(void)1 static void rcu_read_lock(void)
 2 {2 {
 3 long tmp;3 long tmp;
 4 long *rrgp;4 long *rrgp;
 55
 6 rrgp = &__get_thread_var(rcu_reader_gp);6 rrgp = &__get_thread_var(rcu_reader_gp);
 7 tmp = *rrgp;7 tmp = *rrgp;
 8 if ((tmp & RCU_GP_CTR_NEST_MASK) == 0)8 if ((tmp & RCU_GP_CTR_NEST_MASK) == 0)
 9 *rrgp = ACCESS_ONCE(rcu_gp_ctr);9 *rrgp = ACCESS_ONCE(rcu_gp_ctr);
 10 else10 else
 11 *rrgp = tmp + 1;11 *rrgp = tmp + 1;
 12 smp_mb();12 smp_mb();
 13 }13 }
 1414
 15 static void rcu_read_unlock(void)15 static void rcu_read_unlock(void)
 16 {16 {
 17 long tmp;17 long tmp;
 1818
 19 smp_mb();19 smp_mb();
 20 __get_thread_var(rcu_reader_gp)--;20 __get_thread_var(rcu_reader_gp)--;
 21 }21 }

Acquire referenceAcquire reference

Release referenceRelease reference

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 29

Per-Thread Phase-Counter Updater PrimitivesPer-Thread Phase-Counter Updater Primitives

 1 static inline int rcu_old_gp_ongoing(int t)1 static inline int rcu_old_gp_ongoing(int t)
 2 {2 {
 3 int v = ACCESS_ONCE(per_thread(rcu_reader_gp, t));3 int v = ACCESS_ONCE(per_thread(rcu_reader_gp, t));
 44
 5 return (v & RCU_GP_CTR_NEST_MASK) &&5 return (v & RCU_GP_CTR_NEST_MASK) &&
 6 ((v ^ rcu_gp_ctr) & ~RCU_GP_CTR_NEST_MASK);6 ((v ^ rcu_gp_ctr) & ~RCU_GP_CTR_NEST_MASK);
 7 }7 }
 88
 9 static void flip_counter_and_wait(void)9 static void flip_counter_and_wait(void)
 10 {10 {
 11 int t;11 int t;
 1212
 13 rcu_gp_ctr ^= RCU_GP_CTR_BOTTOM_BIT;13 rcu_gp_ctr ^= RCU_GP_CTR_BOTTOM_BIT;
 14 smp_mb();14 smp_mb();
 15 for_each_thread(t) { 15 for_each_thread(t) {
 16 while (rcu_old_gp_ongoing(t)) {16 while (rcu_old_gp_ongoing(t)) {
 17 barrier();17 barrier();
 18 }18 }
 19 }19 }
 20 }20 }
 2121
 22 void synchronize_rcu(void)22 void synchronize_rcu(void)
 23 {23 {
 24 smp_mb();24 smp_mb();
 25 spin_lock(&rcu_gp_lock);25 spin_lock(&rcu_gp_lock);
 26 flip_counter_and_wait();26 flip_counter_and_wait();
 27 barrier();27 barrier();
 28 flip_counter_and_wait();28 flip_counter_and_wait();
 29 spin_unlock(&rcu_gp_lock);29 spin_unlock(&rcu_gp_lock);
 30 smp_mb();30 smp_mb();
 31 }31 }

Wait for referencesWait for references
to be releasedto be released

Flip counter onceFlip counter once

Flip counter twiceFlip counter twice

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 30

Per-Thread Ref-Count Pair IssuesPer-Thread Ref-Count Pair Issues

 No read-side memory contentionNo read-side memory contention
 No read-side atomic operationsNo read-side atomic operations
 Simpler read-side primitivesSimpler read-side primitives

 Still have memory barriersStill have memory barriers
 Can eliminate these by stealing a POSIX signal:Can eliminate these by stealing a POSIX signal:

• Upgrades compiler barrier to full memory barrierUpgrades compiler barrier to full memory barrier
• git://lttng.org/userspace-rcu.git git://lttng.org/userspace-rcu.git
• Paper in preparationPaper in preparation

 Double counter flip and update-side lock slowDouble counter flip and update-side lock slow
 Can batch grace periods similar to Linux kernelCan batch grace periods similar to Linux kernel

 No updater starvationNo updater starvation

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 31

Current State-of-the-Art for User-Mode RCUCurrent State-of-the-Art for User-Mode RCU

 We do not yet have a single universal RCU We do not yet have a single universal RCU
algorithm for user-space applicationsalgorithm for user-space applications

 However, there are three promising algorithms:However, there are three promising algorithms:
 Full control of user application?Full control of user application?

• The use quiescent-state-based reclamationThe use quiescent-state-based reclamation
• Explicit quiescent states invoked periodically by all threadsExplicit quiescent states invoked periodically by all threads
• Zero read-side overhead: free is a very good price!!!Zero read-side overhead: free is a very good price!!!

 Little control of application, but can use signal?Little control of application, but can use signal?
• Mathieu Desnoyers's signal-based algorithmMathieu Desnoyers's signal-based algorithm
• Read-side overhead in the single-digit cycle rangeRead-side overhead in the single-digit cycle range

 No control of application, not even free signal?No control of application, not even free signal?
• Per-thread phase counterPer-thread phase counter

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 32

Legal StatementLegal Statement

 This work represents the view of the author and does not This work represents the view of the author and does not
necessarily represent the view of IBM.necessarily represent the view of IBM.

 IBM and IBM (logo) are trademarks or registered IBM and IBM (logo) are trademarks or registered
trademarks of International Business Machines trademarks of International Business Machines
Corporation in the United States and/or other countries.Corporation in the United States and/or other countries.

 Linux is a registered trademark of Linus Torvalds.Linux is a registered trademark of Linus Torvalds.

 Other company, product, and service names may be Other company, product, and service names may be
trademarks or service marks of others.trademarks or service marks of others.

 This material is based upon work supported by the This material is based upon work supported by the
National Science Foundation under Grant No. National Science Foundation under Grant No.
CNS-0719851.CNS-0719851.

 Joint work with Mathieu Desnoyers, Michel R. Dagenais, Alan Joint work with Mathieu Desnoyers, Michel R. Dagenais, Alan
Stern, and Jonathan WalpoleStern, and Jonathan Walpole

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 33

Questions?Questions?

To probe further:To probe further:

 Pattern-Oriented Software Architecture, vol 2&4, Schmidt et al.Pattern-Oriented Software Architecture, vol 2&4, Schmidt et al.
 Programming with POSIX Threads, ButenhofProgramming with POSIX Threads, Butenhof
 Intel Threading Building Blocks, ReindersIntel Threading Building Blocks, Reinders
 Patterns for Parallel Programming, Mattson et al.Patterns for Parallel Programming, Mattson et al.
 Concurrent Programming in Java, LeaConcurrent Programming in Java, Lea
 Effective Concurrency, SutterEffective Concurrency, Sutter
 The Art of Multiprocessor Programming, Herlihy and ShavitThe Art of Multiprocessor Programming, Herlihy and Shavit
 Design and Validation of Computer Protocols, HolzmannDesign and Validation of Computer Protocols, Holzmann
 http://www.opengroup.org/onlinepubs/007908799/xsh/pthread.h.htmlhttp://www.opengroup.org/onlinepubs/007908799/xsh/pthread.h.html

 Online pthreads referenceOnline pthreads reference
 git://lttng.org/userspace-rcu.gitgit://lttng.org/userspace-rcu.git

 Mathieu Desnoyers's user-space RCU implementationMathieu Desnoyers's user-space RCU implementation
 Also has quiescent-state-based implementationAlso has quiescent-state-based implementation

 And there is And there is still still no substitute for running tests on real hardware!!!no substitute for running tests on real hardware!!!
 For examples, see “CodeSamples” directory in:For examples, see “CodeSamples” directory in:

git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.gitgit://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
 And “CodeSamples/defer” directory for user-level RCU implementationsAnd “CodeSamples/defer” directory for user-level RCU implementations

• rcu_nest32.[hc] has per-thread phase counter algorithmrcu_nest32.[hc] has per-thread phase counter algorithm

