Creating Performant and Scalable Linux
Applications

Paul E. McKenney
IBM Distinguished Engineer & CTO Linux
Linux Technology Center

Course Objectives and Goals

" Introduction to Performance, Scalability, and
Real-Time Issues on Modern Multicore
Hardware: Is Parallel Programming Hard,
And If So, Why?

=" Performance and Scalability Technologies in
the Linux Kernel

= Creating Performant and Scalable Linux
Applications

= Real-Time Technologies in the Linux Kernel

= Creating Real-Time Linux Applications

Overview

" Programming Environments in Linux Apps
= Synchronization Primitives

=" Per-Thread Variables

= Solutions to the Existence Problem

Programming Environments in Linux Apps

Programming Environments in Linux Apps

Signal enabled

But no cheap way
to disable signals...

Signal-Handler Synchronization Strategies

= Don't use signal handlers (my favorite)

= Use locking, accept expensive sigvec() calls

= Use non-blocking synchronization, accept
restricted set of algorithms or great complexity

= Use RCU, accept read-only access from signal
handler

= Some combination of the above

Synchronization Primitives

Synchronization Primitives (Partial POSIX)

= pthread mutex_t
% pthread_mutex_init()
+ pthread_mutex_lock()
+ pthread_mutex_trylock()
+ pthread_mutex_unlock()

. pthread rwlock _t
% pthread_rwlock_init()
< pthread_rwlock_rdlock()
< pthread_rwlock_tryrdlock()
< pthread_rwlock_wrlock()
< pthread_rwlock_trywrlock()
< pthread_rwlock_unlock()

http://W\MN opengroup org/onlmepubs/007908799/xsh/pthread h.html

Synchronization Primitives (Partial POSIX)

= pthread cond t

< pthread_cond_init()

> pthread_cond_wait()

> pthread_cond_timedwait()
» pthread_cond_signal()

» pthread_cond_broadcast()

)

>

L)

L)

>

L)

)

>

L)

L)

>

L)

L)

Atomic __sync Intrinsics

Fetch-and-op (returns old value):

<+ type __sync_fetch_and_add (type *ptr, type value, ...)
type _sync_fetch_and_sub (type *ptr, type value, ...)
type __sync_fetch_and_or (type *ptr, type value, ...)
type __sync_fetch_and_and (type *ptr, type value, ...)
type __sync_fetch_and_xor (type *ptr, type value, ...)

+ type __sync_fetch_and_nand (type *ptr, type value, ...)

Op-and-fetch (returns new value)

%+ type __sync_add_and_fetch (type *ptr, type value, ...)
type _sync_sub_and_fetch (type *ptr, type value, ...)
type __sync_or_and_fetch (type *ptr, type value, ...)
type __sync_and_and_fetch (type *ptr, type value, ...)
type __sync_xor_and_fetch (type *ptr, type value, ...)

* type __sync_nand_and_fetch (type *ptr, type value, ...)
= Compare-and-swap:
bool __sync_bool_compare_and_swap (type *ptr, type oldval type newval, ...)
type __sync_val_compare_and_swap (type *ptr, type oldval type newval, ...)
= Memory fences:
__sync_synchronize (...)
type __sync_lock_test_and_set (type *ptr, type value, ...)
void __sync_lock_release (type *ptr, ...)

http: //gcc gnu org/onlinedocs/gcc-4.1.2/gcc/Atomic-Builtins.html

Synchronization Primitives: Just as with Kernel

Parallel
Access Control

Work
Partitioning

Resource

Partitioning
& Replication

Interacting
With Hardware

Do this first!!!!
Job #1 is not selecting primitives!

11

Per-Thread Variables

Per-Thread Variables

= Use the “__thread” storage class
= However, no standard way to access other
thread's per-thread variables in C/C++

< Is this important?

< If so, what can you do about it?
= And why are per-thread variables so important?

Per-Thread Variables

= Access to other thread's _ thread variables

+ “Just say 'no"”’: combine values after thread exits
* Requires thread move __thread data before exit, of course
+ “Just say 'no'’: use communication primitives:

« SysV message queues
* UNIX-domain sockets
- TCP/IP
 POSIX signals
% Create per-variable arrays containing pointers to
each thread's corresponding variable

« Each thread then records address of relevant variables
+ Use offsets (but good luck with shared libraries!!!)

+ Lobby for an enhancement to the standard

-
CES 200

Solutions to the Existence Problem

Solutions to the Existence Problem

= Use of “Running on CPU” as a reference does
not translate well from kernel to user apps

% No reliable way to suppress preemption
» Existing user-level facilities are usually only hints
+ If there was a reliable way to suppress preemption, it
would be subject to abuse
= Kernels have strictly enforced architectures
<+ Can trust each kernel thread to reach a quiescent
state in a timely fashion

* Not so for user applications

« Even less so for libraries — the application has not yet been
thought of, much less architected!!!

=" Thus must revisit reference-counting schemes

= e e

Per-Thread Reference Count Pair Data

rcu_read_lock()

Acquire current reference

rcu_read_unlock()

Release reference acquired

synchronize_rcu()

— rcu_idx

=

thread Flip rcu_idx and wait for all
old references to be released

Per-Thread Reference Count Pair Data

DEFINE PER THREAD (int, rcu_refcnt[2]);
atomic_t rcu_idx;

DEFINE SPINLOCK (rcu gp_lock) ;
DEFINE PER THREAD (int, rcu nesting);
DEFINE PER THREAD (int, rcu_read_idx) ;

b wWwbhRr

Per-Thread Ref-Count Pair Reader Primitives

1 static void rcu_read lock(void) 4 Acquire reference

2 {

3 int i;

4 int n;

5

6 n = get thread var(rcu nesting);

7 if (n == 0) {

8 i = atomic_read(&rcu_idx) ;

9 __get_thread var(rcu_read idx) = i;
10 __get _thread var(rcu_refcnt) [i]++;
11 }

12 get thread var(rcu nesting) = n + 1;
13 smp mb () ;

14 }

15

16 static void rcu_read unlock(void) - Release reference
17 {

18 int i;

19 int n;

20

21 smp mb () ;

22 n = get thread var(rcu nesting);

23 if (n == 1) {

24 i = get_ thread var(rcu_read idx);
25 __get_thread var(rcu_refecnt) [i]--;
26 }

27 __get_thread var(rcu nesting) = n - 1;

28 }

Per-Thread Ref-Count Pair Updater Primitives

WoJoud WNR

13 }

15 void synchronize rcu(void) 4

16 {

26 }

static void flip counter_and wait(int i) 4
{

int t;

atomic_set(&rcu_ idx, !'i);
smp_mb () ;
for each thread(t) {

while (per_thread(rcu refcnt, t)[i] !'= 0) {

barrier () ;

}

}
smp_mb () ;

int i;

smp_mb () ;
spin_lock (&rcu gp lock) ;

i = atomic_read(&rcu_idx) ;
flip counter and wait(i); ¢

flip counter_and wait('!i);
spin_unlock (&rcu gp lock) ;
smp_mb () ;

Flip counter once

Wait for references
to be released

Flip counter twice

Per-Thread Ref-Count Pair Issues

= No read-side memory contention
=" No read-side atomic operations
= Complex read-side primitives

+ Array indexing and lots of operations, need
something simpler

= Double counter flip and update-side lock slow
= No updater starvation

= So combine count and index into single per-
thread variable

Per-Thread Ref-Count Pair Issues

= No read-side memory contention
=" No read-side atomic operations
= Complex read-side primitives

+ Array indexing and lots of operations, need
something simpler

= Double counter flip and update-side lock slow

/7
0’0

= No updater starvation

= So combine count and index into single per-
thread variable

Per-Thread Phase-Counter Data

rcu_read_lock()

rcu ctr _
—P_ Acquire current reference

rcu_read_unlock()

Release reference acquired

One per synchronize_rcu()

thread Flip rcu_gp_ctr and wait for all
old references to be released
Grace-period
phase

Format: I-<— Nesting count

b - & SR i ey s 2
E§_‘ 09 |

Per-Thread Phase-Counter Data

1 #define RCU_GP_CTR BOTTOM BIT 0x80000000

2 #define RCU GP CTR NEST | MASK (RCU GP_CTR BOTTOM BIT - 1)
3 long rcu_gp_ctr = 1;

4 DEFINE PER THREAD (long, rcu_reader gp);

5 DEFINE SPINLOCK (rcu gp lock) ;

Per-Thread Phase-Counter Data

- I

#define RCU GP CTR NEST | MASK (RCU_GP_CTR BOTTOM BIT - 1)

#define RCU _GP_CTR BOTTOM BIT 0x80000000

1

2

3 long rcu_gp_ctr = 1 «

4 DEFINE PER THREAD (long, rcu_reader gp);
5 DEFINE SPINLOCK (rcu gp lock) ;

o p
3\/;”

One per
thread

Per-Thread Phase-Counter Reader Primitives

s
{

ooJdJouUld WN PR

13 }

15 s
16 {
17
18
19
20
21 }

tatic void rcu read lock(void) -

long tmp;
long *rrgp;

rrgp = & get thread var(rcu reader gp);

tmp = *rrgp;
if ((tmp & RCU_GP_CTR NEST MASK) == 0)
*rrgp = ACCESS_ONCE (rcu gp ctr);
else
*rrgp = tmp + 1;
smp_mb () ;

tatic void rcu read unlock(void) <«

long tmp;

smp_mb () ;
__get thread var(rcu reader gp)--;

Acquire reference

Release reference

Per-Thread Phase-Counter Updater Primitives

1 static inline int rcu old gp_ongoing(int t)

2 {

3 int v = ACCESS_ONCE (per_thread(rcu_reader gp, t));
4

5 return (v & RCU_GP_CTR NEST MASK) &&

6 ((v » rcu gp_ctr) & ~RCU_GP_CTR NEST MASK) ;
7}

8

9 static void flip counter_and wait(void) 4 F||p Counter once
10 {

11 int t;

12

13 rcu_gp_ctr = RCU_GP_CTR_BOTTOM BIT;

14 smp_mb () ;

15 for_each_thread(t) {

16 while (rcu_old gp_ongoing(t)) {

17 barrier () ;

18 }

19 }
20 }
21 Wait for references

22 void synchronize_ rcu(void) <

23 { to be released
24 smp_mb () ;

25 spin_lock (&rcu _gp_lock) ;
26 flip counter_and wait();

27 barrier() ; 4 Fl|p Counter tWICG

28 flip counter_and wait();
29 spin_unlock (&rcu_gp_lock) ;
30 smp_mb () ;

31 }

Per-Thread Ref-Count Pair Issues

= No read-side memory contention
=" No read-side atomic operations
= Simpler read-side primitives
+ Still have memory barriers
% Can eliminate these by stealing a POSIX signal:

» Upgrades compiler barrier to full memory barrier
» git://Ittng.org/userspace-rcu.git
* Paper in preparation
= Double counter flip and update-side lock slow
% Can batch grace periods similar to Linux kernel

= No updater starvation

Current State-of-the-Art for User-Mode RCU

= We do not yet have a single universal RCU
algorithm for user-space applications
= However, there are three promising algorithms:

< Full control of user application?

 The use quiescent-state-based reclamation
« Explicit quiescent states invoked periodically by all threads
« Zero read-side overhead: free is a very good price!!!

+ Little control of application, but can use signal?

 Mathieu Desnoyers's signal-based algorithm
 Read-side overhead in the single-digit cycle range

% No control of application, not even free signal?
* Per-thread phase counter

Legal Statement

= This work represents the view of the author and does not
necessarily represent the view of IBM.

= |IBM and IBM (logo) are trademarks or registered
trademarks of International Business Machines
Corporation in the United States and/or other countries.

= Linux is a registered trademark of Linus Torvalds.

= Other company, product, and service names may be
trademarks or service marks of others.

®" This material is based upon work supported by the
National Science Foundation under Grant No.
CNS-0719851.

+ Joint work with Mathieu Desnoyers, Michel R. Dagenais, Alan
Stern, and Jonathan Walpole

Questions?

To probe further:

Pattern-Oriented Software Architecture, vol 2&4, Schmidt et al.
Programming with POSIX Threads, Butenhof
Intel Threading Building Blocks, Reinders
Patterns for Parallel Programming, Mattson et al.
Concurrent Programming in Java, Lea
Effective Concurrency, Sutter
The Art of Multiprocessor Programming, Herlihy and Shavit
Design and Validation of Computer Protocols, Holzmann
http://www.opengroup.org/onlinepubs/007908799/xsh/pthread.h.html

> Online pthreads reference
git://Ittng.org/userspace-rcu.git

Mathieu Desnoyers's user-space RCU implementation
* Also has quiescent-state-based implementation

And there is still no substitute for running tests on real hardware!!!
For examples, see “CodeSamples” directory in:
git://git.kernel.org/pub/scml/linux/kernel/git/paulmck/perfbook.git
* And “CodeSamples/defer” directory for user-level RCU implementations
* rcu_nest32.[hc] has per-thread phase counter algorithm

