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Concurrency In Linux Can Be a Contentious Topic
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“Still confusion situation all round”[sic] [Ziljstra, 2013]
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Existing Documentation

 [Howells et al., 2017] lists what orderings are guaranteed;

 [Miller, 2017] summarises semantics of read-modify-writes;

 [McKenney, 2017a] documents ways of avoiding 
counterproductive optimisations.
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But... [Gorman, 2013]

If Documentation/memory-barriers.txt could not be used
to frighten small children before, it certainly can now.
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Also [Howells et al., 2017]:

This document is not a specification; it is intentionally
(for the sake of brevity) and unintentionally (due to being

human) incomplete. [. . . ] in case of any doubt (and
there are many) please ask.
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And Anyway [Torvalds, 2012]

With specs, there really *are* people who spend years
discussing what the meaning of the word ”access” is or
similar [. . . ]. Combine that with a big spec that is 500+
pages in size and then try to apply that all to a project

that is 15 million lines of code and sometimes
*knowingly* has to do things that it simply knows are

outside the spec [. . . ]”
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What We Offer

A formal consistency model

Written in the cat language

Thus executable within the herd tool
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“[I]t is your kernel, so what is your preference?” 
[McKenney, 2016a]
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A Common Denominator of Hardware Models? 
[Torvalds, 2016a]

Weak memory ordering is [. . . ] hard to think about [. . . ]
So the memory ordering rules should [. . . ] absolutely be
as tight as at all humanly possible, given real hardware

constraints.
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Not an Envelope for the Architectures it Supports? 
[Molnar, 2013]

it’s not true that Linux has to offer a barrier and locking
model that panders to the weakest (and craziest!)

memory ordering model amongst all the possible Linux
platforms—theoretical or real metal. Instead what we
want to do is to consciously, intelligently pick a sane,
maintainable memory model and offer primitives for

that—at least as far as generic code is concerned. Each
architecture can map those primitives to the best of its

abilities.
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The LK Should Have a Model of its Own
[Torvalds, 2012]

I do not believe for a second that we can actually use the
C11 memory model in the kernel [. . . ] We will continue
to have to do things that are “outside the specs” [. . . ]

with models that C11 simply doesn’t cover.
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Core Model
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An Example From Peter Zijlstra

https://www.spinics.net/lists/kernel/msg2421883.html
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An Example From Peter Zijlstra: Forbidden

(ISA2 from test6.pdf)
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RCU
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Fundamental Law of RCU [McKenney et al., 2013]

Read-side critical sections cannot span grace periods.
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Fundamental Law of RCU [McKenney et al., 2013]

Read-side critical sections cannot span grace periods.
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RCU-MP: Forbidden
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Validating The Model
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Experimentally
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Socially

Seven maintainers have agreed to chaperon our model.
https://www.spinics.net/lists/kernel/msg2421883.html
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Issues That Our Work Helped Address
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Future Prospects

Moving target as hardware, workloads, & code style changes
–RISC-V interaction, fill out locking primitives, plain accesses, …

Design/education tool, hoped-for use by verification tools

 If this is so great, why isn't it in the Linux kernel???
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Model Freely Available For Download and Use

Download herd tool as part of diy toolset
–http://diy.inria.fr/sources/index.html

Build as described in INSTALL.txt
–Need ocaml v4.02.0 or better: http://caml.inria.fr/download.en.html 

• Or install from your distro (easier and faster!)

Run various litmus tests:
– herd7 -conf linux-kernel.cfg litmus-tests/MP+polocks.litmus
– herd7 -conf linux-kernel.cfg litmus-tests/R+poonceonces.litmus
– herd7 -conf linux-kernel.cfg litmus-tests/R+poonceonces.litmus

Other required files:
– linux-kernel.def: Support pseudo-C code
– linux-kernel.cfg: Specify kernel model
– linux-kernel.bell: “Bell” file defining events and their relationships
– linux-kernel.cat: “Cat” file defining actual memory model
– litmus-tests/*.litmus: Litmus tests

git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git in tools/memory-model
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Legal Statement

This work represents the view of the authors and does not 
necessarily represent the view of University College London, 
Microsoft Research, Inria-Paris, IBM, Oregon State 
University, Scuola Superiore Sant'Anna, or Harvard University

 IBM and IBM (logo) are trademarks or registered trademarks 
of International Business Machines Corporation in the United 
States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be 
trademarks or service marks of others.
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Questions?
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What Have We Done?
And Why???
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First, Why???

Linux kernel (LK) supports more than 20 CPU architectures
–DEC Alpha, ARM, ARM64, IA64, MIPS, OpenRISC, PowerPC, RISC-V, 

S390, SPARC, x86, and 10+ more

Concurrent LK code must run correctly everywhere!!!

Hence, “Interesting” memory-ordering discussions on the 
Linux kernel mailing list (Section 1 of paper)

–How is core Linux-kernel code supposed to behave?
–How must Linux-kernel synchronization primitives be implemented?
–Does it behave correctly on exotic hardware?
–What exactly can a Linux-kernel hacker get away with?

• And speaking as its main author, I am here to tell you that 
Documentation/memory-barriers.txt passed its sell-by date years ago...
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So What Did We Do About All That???
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Next, What???

First formal memory model for the Linux kernel
–Executable cat code, already used by Linux kernel hackers: Motivated 

removal of spin_unlock_wait() and DEC Alpha rework
• Sections 2 and 3 of paper

First memory model of any kind that includes RCU
–Formulated fundamental law of RCU as well as the RCU axiom

• Showed them to be equivalent (Section 4 of paper)
• Verification tools can therefore use either fundamental law or RCU axiom

–Showed that the userspace RCU library satisfies the fundamental law
• (Section 6  of the paper)
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Why Not Simply Use the C++11 Memory Model?

The C++11 memory model lacks:
–Memory fences that can restore sequential consistency (SC)
–RMW atomic operations that can restore SC
–Control, address, and data dependencies (memory_order_consume!)

• LKMM therefore avoids out-of-thin-air (OOTA) accesses
–Atomic operations on non-atomic variables (maybe atomic_ref)
–Read-copy update (RCU)

• Working on this...  And only since 2014!

David Howells tried porting Linux-kernel x86 to C11 atomics
–Resulted in some success, but numerous bug reports
–Maybe someday, but not there yet

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0124r4.html
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Why A Memory Model At All?

Linux kernel supports more than 20 CPU architectures
–DEC Alpha, ARM, ARM64, IA64, MIPS, OpenRISC, PowerPC, RISC-V, 

S390, SPARC, x86, and 10+ more

Linux core kernel code must run correctly on all of them!!!

Hence, “Interesting” memory-ordering discussions on the 
Linux kernel mailing list (Section 1 of paper)

–How is core Linux-kernel code supposed to behave?
–How must Linux-kernel synchronization primitives be implemented?
–Does it behave correctly on exotic hardware?
–What exactly can a Linux-kernel hacker get away with?

• And Documentation/memory-barriers.txt has passed its sell-by date...
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Synopsis of Work

First formal memory model for the Linux kernel
–Executable cat code, already used by Linux kernel hackers: Motivated 

removal of spin_unlock_wait() and DEC Alpha rework
• Sections 2 and 3 of paper

–Tested on Power 8, ARMv8, ARMv7, and x86 hardware
• Section 5 of paper plus supplementary materials (http://diy.inria.fr/linux/) 

–Avoids out-of-thin-air results!  (For now, anyway...)

First memory model of any kind that includes RCU
–Formulated fundamental law of RCU as well as the RCU axiom

• Showed them to be equivalent (Section 4 of paper)
• Verification tools can therefore use either fundamental law or RCU axiom

–Showed that the userspace RCU library satisfies the fundamental law
• (Section 6  of the paper)
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Progression of Memory Models
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Current Model Capabilities ...

READ_ONCE() and WRITE_ONCE()

smp_store_release() and smp_load_acquire()

 rcu_assign_pointer() and rcu_dereference()

 rcu_read_lock(), rcu_read_unlock(), and synchronize_rcu()
–Also synchronize_rcu_expedited(), but same as synchronize_rcu()

smp_mb(), smp_rmb(), smp_wmb(), smp_mb__after 
spinlock(), and more

Most atomic read-modify-write operations

  spin_lock(), spin_unlock(), and spin_trylock()



© 2018 IBM Corporation56

SYSTOR Highlights Track, May 4, 2018

… And Limitations

There are some limitations in the model:
–Compiler optimizations not modeled
–Locking is missing spin_is_locked(), which may require changes to the 

underlying “herd” tool
–No asynchronous RCU grace periods, emulate using a separate 

thread with release-acquire, grace period, and then callback code
–Single access size, no partially overlapping accesses, which may 

require changes to the underlying “herd” tool

And other limitations in the underlying “herd” tool:
–No arrays or structs (but can do trivial linked lists)
–No dynamic memory allocation
–No interrupts, exceptions, I/O, or self-modifying code
–No functions
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How Does LKMM Keep Up With Linux Kernel?

LKMM will require continued development and maintenance:
–New CPU architectures will be added (most recently, RISC-V)
–New synchronization primitives will be added
–Old synchronization primitives will be removed (spin_unlock_wait())
–New use cases will arise

We expect LKMM rate of change to be similar to that of 
Documentation/memory-barriers.txt

–Every few months, but sometimes in bursts

Ten people signed up as maintainers, many having long 
experience with the Linux kernel and/or memory models
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Why Two Definitions of RCU?  (1) Fundamental Law

Fundamental Law of RCU from Linux kernel and earlier:
–RCU read-side critical section begins with rcu_read_lock() and ends 

with rcu_read_unlock()
–Grace period waits for completion of all pre-existing critical sections

Reader Grace
Period

Reader

Grace
Period

Reader
Grace
Period

Reader
Grace
Period



© 2018 IBM Corporation59

SYSTOR Highlights Track, May 4, 2018

Why Two Definitions of RCU?  (1) Fundamental Law

Fundamental Law of RCU from Linux kernel and earlier:
–RCU read-side critical section begins with rcu_read_lock() and ends 

with rcu_read_unlock()
–Grace period waits for completion of all pre-existing critical sections

Reader Grace
Period

Reader

Grace
Period

Reader
Grace
Period

Reader
Grace
Period

Great for developers and operational models, not so good for axiomatic models
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Why Two Definitions of RCU?  (2) RCU Axiom

LKMM axiomatic model defined in terms of cycles
–Must define behavior when all ordering in cycle is provided by RCU

Process 0:
rcu_read_lock();
WRITE_ONCE(x, 1);
r0 = READ_ONCE(y);
rcu_read_unlock();

Process 1:
rcu_read_lock();
WRITE_ONCE(y, 1);
r1 = READ_ONCE(z);
rcu_read_unlock();

Process 2:
WRITE_ONCE(z, 1);
synchronize_rcu();
r2 = READ_ONCE(x);

r0 == 0 && r1 == 0 && r2 == 0?
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Grace
Period
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Period

Why Two Definitions of RCU?  (2) RCU Axiom

LKMM axiomatic model defined in terms of cycles
–Must define behavior when all ordering in cycle is provided by RCU
–Cycle forbidden if at least as many grace periods as critical sections
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Why Two Definitions of RCU?  (2) RCU Axiom

LKMM axiomatic model defined in terms of cycles
–Must define behavior when all ordering in cycle is provided by RCU
–Cycle forbidden if at least as many grace periods as critical sections

Process 0:
rcu_read_lock();
WRITE_ONCE(x, 1);
r0 = READ_ONCE(y);
rcu_read_unlock();

Process 1:
rcu_read_lock();
WRITE_ONCE(y, 1);
r1 = READ_ONCE(z);
rcu_read_unlock();

Process 2:
WRITE_ONCE(z, 1);
synchronize_rcu();
r2 = READ_ONCE(x);

r0 == 0 && r1 == 0 && r2 == 0?
Yes, this can happen, two readers, only one grace period.
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Why Two Definitions of RCU?

We have proven the two definitions equivalent for the Linux-
kernel memory model

A given tool can therefore use whichever of the two 
definitions that works best for that tool



© 2018 IBM Corporation64

SYSTOR Highlights Track, May 4, 2018

Have Linux Kernel Hackers Made Use of LKMM?

2016 Linux-kernel git commit contains an LKMM litmus test
–https://www.spinics.net/lists/kernel/msg2421883.html 

LKMM has been used in discussion of RISC-V ordering

 It has also motivated:
–Removal of spin_unlock_wait()
–Greatly reducing use of smp_read_barrier_depends()
–Helping to formulate RCU ordering requirements in C++ Standards 

Committee working paper

  Numerous Linux kernel hackers have installed LKMM
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Future Prospects

Moving target as hardware, workloads, & code style changes
–RISC-V interaction, fill out locking primitives, plain accesses, …

Design/education tool, hoped-for use by verification tools
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Future Prospects

Moving target as hardware, workloads, & code style changes
–RISC-V interaction, fill out locking primitives, plain accesses, …

Design/education tool, hoped-for use by verification tools

 If this is so great, why isn't it in the Linux kernel???
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