
© 2018 IBM Corporation

Frightening small children and disconcerting grown-ups:
Concurrency in the Linux kernel
Jade Alglave (University College London & Microsoft Research); Luc Maranget (INRIA); Paul E.
McKenney (IBM Corporation & Oregon State University); Andrea Parri (Scuola Superiore
Sant’Anna); Alan Stern (Harvard University)

Paul E. McKenney, IBM Distinguished Engineer, Linux Technology Center
Member, IBM Academy of Technology

SYSTOR Highlights Track, May 4, 2018

© 2018 IBM Corporation2

SYSTOR Highlights Track, May 4, 2018

Concurrency In Linux Can Be a Contentious Topic

© 2018 IBM Corporation3

SYSTOR Highlights Track, May 4, 2018

“Still confusion situation all round”[sic] [Ziljstra, 2013]

© 2018 IBM Corporation4

SYSTOR Highlights Track, May 4, 2018

Existing Documentation

 [Howells et al., 2017] lists what orderings are guaranteed;

 [Miller, 2017] summarises semantics of read-modify-writes;

 [McKenney, 2017a] documents ways of avoiding
counterproductive optimisations.

© 2018 IBM Corporation5

SYSTOR Highlights Track, May 4, 2018

But... [Gorman, 2013]

If Documentation/memory-barriers.txt could not be used
to frighten small children before, it certainly can now.

© 2018 IBM Corporation6

SYSTOR Highlights Track, May 4, 2018

Also [Howells et al., 2017]:

This document is not a specification; it is intentionally
(for the sake of brevity) and unintentionally (due to being

human) incomplete. [. . .] in case of any doubt (and
there are many) please ask.

© 2018 IBM Corporation7

SYSTOR Highlights Track, May 4, 2018

And Anyway [Torvalds, 2012]

With specs, there really *are* people who spend years
discussing what the meaning of the word ”access” is or
similar [. . .]. Combine that with a big spec that is 500+
pages in size and then try to apply that all to a project

that is 15 million lines of code and sometimes
knowingly has to do things that it simply knows are

outside the spec [. . .]”

© 2018 IBM Corporation8

SYSTOR Highlights Track, May 4, 2018

What We Offer

A formal consistency model

Written in the cat language

Thus executable within the herd tool

© 2018 IBM Corporation9

SYSTOR Highlights Track, May 4, 2018

“[I]t is your kernel, so what is your preference?”
[McKenney, 2016a]

© 2018 IBM Corporation10

SYSTOR Highlights Track, May 4, 2018

A Common Denominator of Hardware Models?
[Torvalds, 2016a]

Weak memory ordering is [. . .] hard to think about [. . .]
So the memory ordering rules should [. . .] absolutely be
as tight as at all humanly possible, given real hardware

constraints.

© 2018 IBM Corporation11

SYSTOR Highlights Track, May 4, 2018

Not an Envelope for the Architectures it Supports?
[Molnar, 2013]

it’s not true that Linux has to offer a barrier and locking
model that panders to the weakest (and craziest!)

memory ordering model amongst all the possible Linux
platforms—theoretical or real metal. Instead what we
want to do is to consciously, intelligently pick a sane,
maintainable memory model and offer primitives for

that—at least as far as generic code is concerned. Each
architecture can map those primitives to the best of its

abilities.

© 2018 IBM Corporation12

SYSTOR Highlights Track, May 4, 2018

Not an Envelope for the Architectures it Supports?
[Molnar, 2013]

Hardware Hardware

Compiler

Hardware

Arch Code

Compiler

Code Style

Hardware
Memory
Model

Language
Memory
Model

Linux-Kernel
Memory
Model

© 2018 IBM Corporation13

SYSTOR Highlights Track, May 4, 2018

The LK Should Have a Model of its Own
[Torvalds, 2012]

I do not believe for a second that we can actually use the
C11 memory model in the kernel [. . .] We will continue
to have to do things that are “outside the specs” [. . .]

with models that C11 simply doesn’t cover.

© 2018 IBM Corporation14

SYSTOR Highlights Track, May 4, 2018

Core Model

© 2018 IBM Corporation15

SYSTOR Highlights Track, May 4, 2018

An Example From Peter Zijlstra

https://www.spinics.net/lists/kernel/msg2421883.html

© 2018 IBM Corporation16

SYSTOR Highlights Track, May 4, 2018

An Example From Peter Zijlstra: Forbidden

(ISA2 from test6.pdf)

© 2018 IBM Corporation17

SYSTOR Highlights Track, May 4, 2018

RCU

© 2018 IBM Corporation18

SYSTOR Highlights Track, May 4, 2018

Fundamental Law of RCU [McKenney et al., 2013]

Read-side critical sections cannot span grace periods.

© 2018 IBM Corporation19

SYSTOR Highlights Track, May 4, 2018

Fundamental Law of RCU [McKenney et al., 2013]

Read-side critical sections cannot span grace periods.

Reader Grace
Period

Reader

Grace
Period

Reader
Grace
Period

Reader
Grace
Period

rcu_read_unlock()

rcu_read_lock()

synchronize_rcu()

© 2018 IBM Corporation20

SYSTOR Highlights Track, May 4, 2018

RCU-MP: Forbidden

© 2018 IBM Corporation21

SYSTOR Highlights Track, May 4, 2018

Validating The Model

© 2018 IBM Corporation22

SYSTOR Highlights Track, May 4, 2018

Experimentally

© 2018 IBM Corporation23

SYSTOR Highlights Track, May 4, 2018

Socially

Seven maintainers have agreed to chaperon our model.
https://www.spinics.net/lists/kernel/msg2421883.html

© 2018 IBM Corporation24

SYSTOR Highlights Track, May 4, 2018

Issues That Our Work Helped Address

© 2018 IBM Corporation25

SYSTOR Highlights Track, May 4, 2018

Future Prospects

Moving target as hardware, workloads, & code style changes
–RISC-V interaction, fill out locking primitives, plain accesses, …

Design/education tool, hoped-for use by verification tools

 If this is so great, why isn't it in the Linux kernel???

© 2018 IBM Corporation26

SYSTOR Highlights Track, May 4, 2018

Future Prospects

Moving target as hardware, workloads, & code style changes
–RISC-V interaction, fill out locking primitives, plain accesses, …

Design/education tool, hoped-for use by verification tools

 If this is so great, why isn't it in the Linux kernel???

Authors'
repos Paul's -rcu

git tree

Ingo
Molnar's

 -tip git tree

Linus
Torvalds's

git tree

© 2018 IBM Corporation27

SYSTOR Highlights Track, May 4, 2018

Future Prospects

Moving target as hardware, workloads, & code style changes
–RISC-V interaction, fill out locking primitives, plain accesses, …

Design/education tool, hoped-for use by verification tools

 If this is so great, why isn't it in the Linux kernel???

Authors'
repos Paul's -rcu

git tree

Ingo
Molnar's

 -tip git tree

Linus
Torvalds's

git tree

January 18, 2018

© 2018 IBM Corporation28

SYSTOR Highlights Track, May 4, 2018

Future Prospects

Moving target as hardware, workloads, & code style changes
–RISC-V interaction, fill out locking primitives, plain accesses, …

Design/education tool, hoped-for use by verification tools

 If this is so great, why isn't it in the Linux kernel???

Authors'
repos Paul's -rcu

git tree

Ingo
Molnar's

 -tip git tree

Linus
Torvalds's

git tree

January 18, 2018 January 31, 2018

© 2018 IBM Corporation29

SYSTOR Highlights Track, May 4, 2018

Future Prospects

Moving target as hardware, workloads, & code style changes
–RISC-V interaction, fill out locking primitives, plain accesses, …

Design/education tool, hoped-for use by verification tools

 If this is so great, why isn't it in the Linux kernel???

Authors'
repos Paul's -rcu

git tree

Ingo
Molnar's

 -tip git tree

Linus
Torvalds's

git tree

January 18, 2018 January 31, 2018 April 2, 2018

© 2018 IBM Corporation30

SYSTOR Highlights Track, May 4, 2018

Model Freely Available For Download and Use

Download herd tool as part of diy toolset
–http://diy.inria.fr/sources/index.html

Build as described in INSTALL.txt
–Need ocaml v4.02.0 or better: http://caml.inria.fr/download.en.html

• Or install from your distro (easier and faster!)

Run various litmus tests:
– herd7 -conf linux-kernel.cfg litmus-tests/MP+polocks.litmus
– herd7 -conf linux-kernel.cfg litmus-tests/R+poonceonces.litmus
– herd7 -conf linux-kernel.cfg litmus-tests/R+poonceonces.litmus

Other required files:
– linux-kernel.def: Support pseudo-C code
– linux-kernel.cfg: Specify kernel model
– linux-kernel.bell: “Bell” file defining events and their relationships
– linux-kernel.cat: “Cat” file defining actual memory model
– litmus-tests/*.litmus: Litmus tests

git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git in tools/memory-model

© 2018 IBM Corporation31

SYSTOR Highlights Track, May 4, 2018

Legal Statement

This work represents the view of the authors and does not
necessarily represent the view of University College London,
Microsoft Research, Inria-Paris, IBM, Oregon State
University, Scuola Superiore Sant'Anna, or Harvard University

 IBM and IBM (logo) are trademarks or registered trademarks
of International Business Machines Corporation in the United
States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.

© 2018 IBM Corporation32

SYSTOR Highlights Track, May 4, 2018

Questions?

© 2018 IBM Corporation33

SYSTOR Highlights Track, May 4, 2018

References (1/11)
Alglave, J., Kroening, D., and Tautschnig, M. (2013).

–Partial orders for efficient Bounded Model Checking of concurrent software.
–In Computer Aided Verification (CAV), volume 8044 of LNCS, pages 141–157.

Springer.

Blanchard, A. (2011).
–RE: [PATCH] smp call function many SMP race.
–https://lkml.org/lkml/2011/1/11/489.

Corbet, J. (2008).
–The lockless page cache.
–https://lwn.net/Articles/291826/.

Corbet, J. (2012).
–ACCESS ONCE().
–https://lwn.net/Articles/508991/.

Corbet, J. (2014a).
–ACCESS ONCE() and compiler bugs.
–https://lwn.net/Articles/624126/.

© 2018 IBM Corporation34

SYSTOR Highlights Track, May 4, 2018

References (2/11)

Corbet, J. (2014b).
–C11 atomic variables and the kernel.
–https://lwn.net/Articles/586838/.

Corbet, J. (2014c).
–C11 atomics part 2: “consume” semantics.
–https://lwn.net/Articles/588300/.

Corbet, J. (2016).
–Time to move to C11 atomics?
–https://lwn.net/Articles/691128/.

Deacon, W. (2015a).
–[PATCH] arm64: spinlock: serialise spin unlock wait against concurrent lockers.
–https://marc.info/?l=linux-arm-kernel&m=144862480822027.

Deacon, W. (2015b).
–Re: [PATCH] arm64: spinlock: serialise spin unlock wait against concurrent

lockers.
–https://marc.info/?l=linux-arm-kernel&m=144898777124295.

© 2018 IBM Corporation35

SYSTOR Highlights Track, May 4, 2018

References (3/11)

Deacon, W. (2016).
–[PATCH v2 1/3] arm64: spinlock: order spin {is locked, unlock wait}

against local locks.
–http://lists.infradead.org/pipermail/linux-arm-kernel/2016-

June/434765.html.

Desnoyers, M., McKenney, P. E., Stern, A. S., Dagenais, M. R.,
and Walpole, J. (2012).

–User-level implementations of Read-Copy Update.
–IEEE Trans. Parallel Distrib. Syst., 23(2):375–382.

Ellerman, M. (2016).
–[PATCH v3] powerpc: spinlock: Fix spin unlock wait().
–https://marc.info/?l=linux-kernel&m=146521336230748&w=2.

Feng, B. (2015).
–Re: [PATCH 4/4] locking: Introduce smp cond acquire().
–https://marc.info/?l=linux-kernel&m=144723482232285.

© 2018 IBM Corporation36

SYSTOR Highlights Track, May 4, 2018

References (4/11)

Feng, B. (2016a).
–[PATCH v2] powerpc: spinlock: Fix spin unlock wait().
–https://marc.info/?l=linux-kernel&m=146492558531292&w=2.

Feng, B. (2016b).
–[PATCH v4] powerpc: spinlock: Fix spin unlock wait().
–https://marc.info/?l=linuxppc-embedded&m=146553051027169&w=2.

Gorman, M. (2013).
–LWN Quotes of the week, 2013-12-11.
–http://lwn.net/Articles/575835/.

Heo, T. (2010).
–[PATCH 3/4] scheduler: replace migration thread with cpuhog.
–https://marc.info/?l=linux-kernel&m=126806371630498.

© 2018 IBM Corporation37

SYSTOR Highlights Track, May 4, 2018

References (5/11)

Howells, D., McKenney, P. E., Deacon, W., and Zijlstra, P.
(2017).

–Linux kernel memory barriers.
–https://www.kernel.org/doc/Documentation/memory-barriers.txt.

Kleen, A. (2013).
–Re: [patch v6 4/5] MCS lock: Barrier corrections.
–https://marc.info/?l=linux-mm&m=138619237606428.

Luck, T. (2013a).
–RE: Does Itanium permit speculative stores?
–https://marc.info/?l=linux-kernel&m=138427925823852.

Luck, T. (2013b).
–RE: Does Itanium permit speculative stores?
–https://marc.info/?l=linux-kernel&m=138428203211477.

© 2018 IBM Corporation38

SYSTOR Highlights Track, May 4, 2018

References (6/11)

McKenney, P. E. (2007).
–QRCU with lockless fastpath.
–https://lwn.net/Articles/223752/.

McKenney, P. E. (2013b).
–Does Itanium permit speculative stores?
–https://marc.info/?l=linux-kernel&m=138419150923282.

McKenney, P. E. (2016b).
–documentation: Present updated RCU guarantee.
–https://patchwork.kernel.org/patch/9428001/.

McKenney, P. E. (2016c).
–documentation: Transitivity is not cumulativity.
–http://www.spinics.net/lists/linux-tip-commits/msg32905.html.

McKenney, P. E. (2017b).
–srcu: Force full grace-period ordering.
–https://patchwork.kernel.org/patch/9535987/

© 2018 IBM Corporation39

SYSTOR Highlights Track, May 4, 2018

References (7/11)

McKenney, P. E., Desnoyers, M., Jiangshan, L., and Triplett,
J. (2013).

–The RCU-barrier menagerie.
–https://lwn.net/Articles/573497/.

Miller, D. S. (2017).
–Semantics and behavior of atomic and bitmask operations.
–https://www.kernel.org/doc/core-api/atomic_ops.rst.

Miller, M. (2011).
–[PATCH 0/4 v3] smp call function many issues from review.
–https://marc.info/?l=linux-kernel&m=130021726530804.

Molnar, I. (2013).
–Re: [patch v6 4/5] MCS lock: Barrier corrections.
–https://marc.info/?l=linux-mm&m=138513336717990&w=2.

© 2018 IBM Corporation40

SYSTOR Highlights Track, May 4, 2018

References (8/11)

Molnar, I. (2017).
–Re: [PATCH v2 0/9] remove spin unlock wait().
–https://marc.info/?l=linux-kernel&m=149942365927828&w=2.

Olsa, J. (2009).
–[PATCHv5 2/2] memory barrier: adding smp mb after lock.
–https://marc.info/?l=linux-netdev&m=124839648220382&w=2.

Spraul, M. (2001).
–Re: RFC: patch to allow lock-free traversal of lists with insertion.
–http://lkml.iu.edu/hypermail/linux/kernel/0110.1/0410.html.

Torvalds, L. (2012).
–Re: Memory corruption due to word sharing.
–https://gcc.gnu.org/ml/gcc/2012-02/msg00013.html

 .Torvalds, L. (2015).
–Re: [patch 4/4] locking: Introduce smp cond acquire().
–http://lkml.kernel.org/r/CA+55aFyXu5iFJfdm7o-

RKUm_9a850iSzeM+whmtUAotkY0EvTw@mail.gmail.com.

© 2018 IBM Corporation41

SYSTOR Highlights Track, May 4, 2018

References (9/11)

Torvalds, L. (2016a).
–Re: [rfc][patch] mips: Fix arch spin unlock().
–https://lkml.org/lkml/2016/2/2/80.

Torvalds, L. (2016b).
–Re: [v3,11/41] mips: reuse asm-generic/barrier.h.
–https://marc.info/?l=linux-kernel&m=145384764324700&w=2.

Torvalds, L. (2017).
–Re: [GIT PULL rcu/next] RCU commits for 4.13.
–https://lkml.org/lkml/2017/6/27/1052.

Vaddagiri, S. (2005).
–[PATCH] Fix RCU race in access of nohz cpu mask.
–http://lkml.iu.edu/hypermail/linux/kernel/0512.0/0976.html.

© 2018 IBM Corporation42

SYSTOR Highlights Track, May 4, 2018

References (10/11)

Yegoshin, L. (2016a).
–Re: [v3,11/41] mips: reuse asm-generic/barrier.h.
–https://marc.info/?l=linux-kernel&m=145263153305591&w=2.

Yegoshin, L. (2016b).
–Re: [v3,11/41] mips: reuse asm-generic/barrier.h.
–https://marc.info/?l=linux-kernel&m=145280444229608&w=2.

Yegoshin, L. (2016c).
–Re: [v3,11/41] mips: reuse asm-generic/barrier.h.
–https://marc.info/?l=linux-kernel&m=145280241129008&w=2.

Zijlstra, P. (2013).
–Re: Does Itanium permit speculative stores?
–https://marc.info/?l=linux-kernel&m=138428080207125.

© 2018 IBM Corporation43

SYSTOR Highlights Track, May 4, 2018

References (11/11)

Zijlstra, P. (2016).
–[tip:perf/urgent] perf/core: Fix sys perf event open() vs. hotplug.
–https://www.spinics.net/lists/kernel/msg2421883.html.

Ziljstra, P. (2013).
–Re: [patch v6 4/5] MCS lock: Barrier corrections.
–http://marc.info/?l=linux-mm&m=138514629508662&w=2.

© 2018 IBM Corporation44

SYSTOR Highlights Track, May 4, 2018

Backup Slides

© 2018 IBM Corporation45

SYSTOR Highlights Track, May 4, 2018

Overview

What have we done? And why???

Why not simply use the C++11 memory model?

Why the Linux-kernel memory model (LKMM)?

Synopsis of work, capabilities and limitations

How does the memory model keep up with Linux kernel?

Why two definitions of RCU?

Model availability and use

Future prospects: Acceptance into Linux kernel?

© 2018 IBM Corporation46

SYSTOR Highlights Track, May 4, 2018

What Have We Done?
And Why???

© 2018 IBM Corporation47

SYSTOR Highlights Track, May 4, 2018

First, Why???

Linux kernel (LK) supports more than 20 CPU architectures
–DEC Alpha, ARM, ARM64, IA64, MIPS, OpenRISC, PowerPC, RISC-V,

S390, SPARC, x86, and 10+ more

Concurrent LK code must run correctly everywhere!!!

Hence, “Interesting” memory-ordering discussions on the
Linux kernel mailing list (Section 1 of paper)

–How is core Linux-kernel code supposed to behave?
–How must Linux-kernel synchronization primitives be implemented?
–Does it behave correctly on exotic hardware?
–What exactly can a Linux-kernel hacker get away with?

• And speaking as its main author, I am here to tell you that
Documentation/memory-barriers.txt passed its sell-by date years ago...

© 2018 IBM Corporation48

SYSTOR Highlights Track, May 4, 2018

So What Did We Do About All That???

© 2018 IBM Corporation49

SYSTOR Highlights Track, May 4, 2018

Next, What???

First formal memory model for the Linux kernel
–Executable cat code, already used by Linux kernel hackers: Motivated

removal of spin_unlock_wait() and DEC Alpha rework
• Sections 2 and 3 of paper

First memory model of any kind that includes RCU
–Formulated fundamental law of RCU as well as the RCU axiom

• Showed them to be equivalent (Section 4 of paper)
• Verification tools can therefore use either fundamental law or RCU axiom

–Showed that the userspace RCU library satisfies the fundamental law
• (Section 6 of the paper)

© 2018 IBM Corporation50

SYSTOR Highlights Track, May 4, 2018

Why Not Simply Use the C++11 Memory Model?

The C++11 memory model lacks:
–Memory fences that can restore sequential consistency (SC)
–RMW atomic operations that can restore SC
–Control, address, and data dependencies (memory_order_consume!)

• LKMM therefore avoids out-of-thin-air (OOTA) accesses
–Atomic operations on non-atomic variables (maybe atomic_ref)
–Read-copy update (RCU)

• Working on this... And only since 2014!

David Howells tried porting Linux-kernel x86 to C11 atomics
–Resulted in some success, but numerous bug reports
–Maybe someday, but not there yet

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0124r4.html

© 2018 IBM Corporation51

SYSTOR Highlights Track, May 4, 2018

Why A Memory Model At All?

Linux kernel supports more than 20 CPU architectures
–DEC Alpha, ARM, ARM64, IA64, MIPS, OpenRISC, PowerPC, RISC-V,

S390, SPARC, x86, and 10+ more

Linux core kernel code must run correctly on all of them!!!

Hence, “Interesting” memory-ordering discussions on the
Linux kernel mailing list (Section 1 of paper)

–How is core Linux-kernel code supposed to behave?
–How must Linux-kernel synchronization primitives be implemented?
–Does it behave correctly on exotic hardware?
–What exactly can a Linux-kernel hacker get away with?

• And Documentation/memory-barriers.txt has passed its sell-by date...

© 2018 IBM Corporation52

SYSTOR Highlights Track, May 4, 2018

Synopsis of Work

First formal memory model for the Linux kernel
–Executable cat code, already used by Linux kernel hackers: Motivated

removal of spin_unlock_wait() and DEC Alpha rework
• Sections 2 and 3 of paper

–Tested on Power 8, ARMv8, ARMv7, and x86 hardware
• Section 5 of paper plus supplementary materials (http://diy.inria.fr/linux/)

–Avoids out-of-thin-air results! (For now, anyway...)

First memory model of any kind that includes RCU
–Formulated fundamental law of RCU as well as the RCU axiom

• Showed them to be equivalent (Section 4 of paper)
• Verification tools can therefore use either fundamental law or RCU axiom

–Showed that the userspace RCU library satisfies the fundamental law
• (Section 6 of the paper)

© 2018 IBM Corporation53

SYSTOR Highlights Track, May 4, 2018

Progression of Memory Models

Hardware Hardware

Compiler

Hardware
Memory
Model

Language
Memory
Model

© 2018 IBM Corporation54

SYSTOR Highlights Track, May 4, 2018

Progression of Memory Models

Hardware Hardware

Compiler

Hardware

Arch Code

Compiler

Code Style

Hardware
Memory
Model

Language
Memory
Model

Linux-Kernel
Memory
Model

© 2018 IBM Corporation55

SYSTOR Highlights Track, May 4, 2018

Current Model Capabilities ...

READ_ONCE() and WRITE_ONCE()

smp_store_release() and smp_load_acquire()

 rcu_assign_pointer() and rcu_dereference()

 rcu_read_lock(), rcu_read_unlock(), and synchronize_rcu()
–Also synchronize_rcu_expedited(), but same as synchronize_rcu()

smp_mb(), smp_rmb(), smp_wmb(), smp_mb__after
spinlock(), and more

Most atomic read-modify-write operations

 spin_lock(), spin_unlock(), and spin_trylock()

© 2018 IBM Corporation56

SYSTOR Highlights Track, May 4, 2018

… And Limitations

There are some limitations in the model:
–Compiler optimizations not modeled
–Locking is missing spin_is_locked(), which may require changes to the

underlying “herd” tool
–No asynchronous RCU grace periods, emulate using a separate

thread with release-acquire, grace period, and then callback code
–Single access size, no partially overlapping accesses, which may

require changes to the underlying “herd” tool

And other limitations in the underlying “herd” tool:
–No arrays or structs (but can do trivial linked lists)
–No dynamic memory allocation
–No interrupts, exceptions, I/O, or self-modifying code
–No functions

© 2018 IBM Corporation57

SYSTOR Highlights Track, May 4, 2018

How Does LKMM Keep Up With Linux Kernel?

LKMM will require continued development and maintenance:
–New CPU architectures will be added (most recently, RISC-V)
–New synchronization primitives will be added
–Old synchronization primitives will be removed (spin_unlock_wait())
–New use cases will arise

We expect LKMM rate of change to be similar to that of
Documentation/memory-barriers.txt

–Every few months, but sometimes in bursts

Ten people signed up as maintainers, many having long
experience with the Linux kernel and/or memory models

© 2018 IBM Corporation58

SYSTOR Highlights Track, May 4, 2018

Why Two Definitions of RCU? (1) Fundamental Law

Fundamental Law of RCU from Linux kernel and earlier:
–RCU read-side critical section begins with rcu_read_lock() and ends

with rcu_read_unlock()
–Grace period waits for completion of all pre-existing critical sections

Reader Grace
Period

Reader

Grace
Period

Reader
Grace
Period

Reader
Grace
Period

© 2018 IBM Corporation59

SYSTOR Highlights Track, May 4, 2018

Why Two Definitions of RCU? (1) Fundamental Law

Fundamental Law of RCU from Linux kernel and earlier:
–RCU read-side critical section begins with rcu_read_lock() and ends

with rcu_read_unlock()
–Grace period waits for completion of all pre-existing critical sections

Reader Grace
Period

Reader

Grace
Period

Reader
Grace
Period

Reader
Grace
Period

Great for developers and operational models, not so good for axiomatic models

© 2018 IBM Corporation60

SYSTOR Highlights Track, May 4, 2018

Why Two Definitions of RCU? (2) RCU Axiom

LKMM axiomatic model defined in terms of cycles
–Must define behavior when all ordering in cycle is provided by RCU

Process 0:
rcu_read_lock();
WRITE_ONCE(x, 1);
r0 = READ_ONCE(y);
rcu_read_unlock();

Process 1:
rcu_read_lock();
WRITE_ONCE(y, 1);
r1 = READ_ONCE(z);
rcu_read_unlock();

Process 2:
WRITE_ONCE(z, 1);
synchronize_rcu();
r2 = READ_ONCE(x);

r0 == 0 && r1 == 0 && r2 == 0?

© 2018 IBM Corporation61

SYSTOR Highlights Track, May 4, 2018

Grace
Period

Grace
Period

Why Two Definitions of RCU? (2) RCU Axiom

LKMM axiomatic model defined in terms of cycles
–Must define behavior when all ordering in cycle is provided by RCU
–Cycle forbidden if at least as many grace periods as critical sections

Reader

Grace
Period

Reader

Grace
Period

Reader
Grace
Period

ReaderReader Reader
Grace
Period

© 2018 IBM Corporation62

SYSTOR Highlights Track, May 4, 2018

Why Two Definitions of RCU? (2) RCU Axiom

LKMM axiomatic model defined in terms of cycles
–Must define behavior when all ordering in cycle is provided by RCU
–Cycle forbidden if at least as many grace periods as critical sections

Process 0:
rcu_read_lock();
WRITE_ONCE(x, 1);
r0 = READ_ONCE(y);
rcu_read_unlock();

Process 1:
rcu_read_lock();
WRITE_ONCE(y, 1);
r1 = READ_ONCE(z);
rcu_read_unlock();

Process 2:
WRITE_ONCE(z, 1);
synchronize_rcu();
r2 = READ_ONCE(x);

r0 == 0 && r1 == 0 && r2 == 0?
Yes, this can happen, two readers, only one grace period.

© 2018 IBM Corporation63

SYSTOR Highlights Track, May 4, 2018

Why Two Definitions of RCU?

We have proven the two definitions equivalent for the Linux-
kernel memory model

A given tool can therefore use whichever of the two
definitions that works best for that tool

© 2018 IBM Corporation64

SYSTOR Highlights Track, May 4, 2018

Have Linux Kernel Hackers Made Use of LKMM?

2016 Linux-kernel git commit contains an LKMM litmus test
–https://www.spinics.net/lists/kernel/msg2421883.html

LKMM has been used in discussion of RISC-V ordering

 It has also motivated:
–Removal of spin_unlock_wait()
–Greatly reducing use of smp_read_barrier_depends()
–Helping to formulate RCU ordering requirements in C++ Standards

Committee working paper

 Numerous Linux kernel hackers have installed LKMM

© 2018 IBM Corporation65

SYSTOR Highlights Track, May 4, 2018

Future Prospects

Moving target as hardware, workloads, & code style changes
–RISC-V interaction, fill out locking primitives, plain accesses, …

Design/education tool, hoped-for use by verification tools

© 2018 IBM Corporation66

SYSTOR Highlights Track, May 4, 2018

Future Prospects

Moving target as hardware, workloads, & code style changes
–RISC-V interaction, fill out locking primitives, plain accesses, …

Design/education tool, hoped-for use by verification tools

 If this is so great, why isn't it in the Linux kernel???

	IBM Presentation Template Full Version
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

