
© 2002 IBM Corporation

Scuola Superiore Sant'Anna RETIS

April 21, 2010 Copyright © 2010 IBM

Synchronization and Scalability in the Macho
Multicore Era

Paul E. McKenney
IBM Distinguished Engineer & CTO Linux
Linux Technology Center

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 2

Overview

Why Parallel Programming?
A Brief History of Parallel Programming
Trends in Parallelism
Performance of Synchronization

Mechanisms
System Hardware Structure
Parallel Programming Principles
Parallel Programming Exercise
The Role of Non-Technical Issues
Summary and Conclusions

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 3

Why Parallel Programming?

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 4

Why Parallel Programming? (Party Line)

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 5

Why Parallel Programming? (Reality)

Parallelism is one performance-optimization
technique of many

 Hashing, search trees, parsers, cordic algorithms, ...

But the kernel is special
 In-kernel performance and scalability losses cannot

be made up by user-level code
 Therefore, if any user application is to be fast and

scalable, the portion of the kernel used by that
application must be fast and scalable

System libraries and utilities can also be special
As can database kernels, web servers, ...

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 6

Why Parallel Programming? (More Reality)

 There Are Other Uses For Transistors
 Cache
 DRAM
 Accelerators: FP, crypto, compression, XML, ...
 Networking hardware
 Storage hardware: Flash, CD/DVD, disk, ...
 Graphical display hardware
 Audio/video input hardware
 GPS hardware]

Or the chips could get smaller

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 7

Why Parallel Programming? (Even More Reality)

 If computer systems don't improve rapidly,
computers not be replaced as frequently

 This is a matter of serious concern for companies
whose revenue is driven by sales of new computers

Replacement was driven by CPU clock rate
Macho multicore seen by some as new driver of

computer sales
Other possible scenarios:

 Power efficiency drives new sales (new laptop!)
 New applications and form factors drive new sales
 Computers become a durable good

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 8

A Brief History of Parallel Programming

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 9

A Brief History of Parallel Programming

 Analog computers inherently parallel is 50s and earlier
 CDC3300 had RAD and SDL instructions in 60s
 IBM Mainframe had “I/O channels” in 60s
 CDC6600 has PPUs in 60s
 Dijkstra's locking algorithm in 60s
 Dijkstra's CSP in 60s
 Dijkstra's “Dining Philosophers Problem” in 70s
 Courtois, Hymans, & Parnas rwlock in 70s
 Hoare monitors in 70s
 Lamport's locking algorithm in 70s
 Relational database research in 70s
 Production parallel systems in 80s (driven by HPC and databases)
 Data locking in 80s
 pthreads in 80s and 90s
 Queued locks for high contention in 90s (not good for low contention)
 Efficient parallel memory allocators in 90s
 RCU in 90s
 NUMA-aware locking in 90s
 More than 200 new parallel-programming languages/environments in 90s (!!!)
 Adaptive simple/NUMA-aware locking in 00s
 Production parallel realtime operating systems in 00s
 Realtime RCU in 00s

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 10

A Brief History of Parallel Programming

How could there possibly be anything new to
discover in the decades-old field of parallel
processing???

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 11

Trends in Parallelism

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 12

1989 Sequent Symmetry Model C CPU Board

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 13

1989 Sequent Symmetry Model C 20MHz CPU

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 14

1989 Sequent Symmetry Computer System

 Two 20MHz 80386 CPUs per CPU board
 No cmpxchg instruction, no xadd instruction
 Cheapest instructions consume three cycles
 Separate Weitek FPAs deliver 1MFLOP each
 List price roughly $60K per board

• 5x price/performance advantage over competitors

Off-chip cache
 53MB/s common bus
 10Mbps Ethernet
 Tens of MB of memory
 Tens of GB of disk storage in full rack

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 15

1989 Sequent Symmetry Architecture

CPU CPU

Cache

CPU CPU

Cache

CPU CPU

Cache

“SCED” Memory VME Bus

3 μs

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 16

1996 Sequent NUMA-Q Computer System

 Four 180MHz Pentium Pro CPUs per “Quad”
 cmpxchg, xadd, cmpxchg8b, ...
 Single-cycle instructions
 On-chip floating-point
 On-chip cache (2MB)

Off-chip remote cache (128MB)
Gbps SCI fiber-optic ring interconnect
 100Mbps Ethernet
 Tens of GB of memory
Hundreds of GB of disk storage in full rack

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 17

1996 Sequent NUMA-Q Architecture

CPU

$

CPU

$

CPU

$

CPU

$

Memory

Remote Cache

PCI I/O

CPU

$

CPU

$

CPU

$

CPU

$

Memory

Remote Cache

PCI I/O

IQ-Link Fiber-Optic Ring
5 μs (later 2.5 μs)

100s of ns with “quad”

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 18

1999 Sequent NUMA-Q Computer System

 Four 900MHz Pentium CPUs per “Quad”
 cmpxchg, xadd, cmpxchg8b, ...
 Single-cycle instructions, on-chip floating-point

• ~2,000 CPU cycles per remote cache miss
 On-chip cache (2MB)
 3GB/s I/O bandwidth per quad full DBMS processing
 Two EMC Symmetrix boxes per quad to keep up

Off-chip remote cache (128MB)
Gbps SCI fiber-optic ring interconnect
 100Mbps Ethernet
 Tens of GB of memory
 TB of disk storage in full rack

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 19

2010 IBM Power 7 Computer System

 8 cores per octant, 4.4GHz, 4 threads/core
 larx/stcx, isync, lwsync, eieio, sync
 Single-cycle instructions, on-chip floating-point
 32 octants per system for 1024 CPUs to Linux
 NUCA architecture

Gbps SCI fiber-optic ring interconnect
 10Gbps Ethernet (100s of adapters)
 Tens of TB of memory
More disk than you can shake a stick at

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 20

But Much More Important...

 This laptop is a multiprocessor!!!
 I can now do parallel computing on airplanes

 And not just due to the availability of WiFi

Everyone can now afford a multiprocessor
 From more than the cost of a house to less than

the cost of a bicycle in less than 20 years
Why is this so important???

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 21

But Much More Important...

 This laptop is a multiprocessor!!!
 I can now do parallel computing on airplanes

 And not just due to the availability of WiFi

Everyone can now afford a multiprocessor
 From more than the cost of a house to less than

the cost of a bicycle in less than 20 years
Why is this so important???

 DYNIX/ptx: tens of developers, manual selection
 AIX: hundreds of developers, automatic selection
 Linux: thousands of developers, low contention

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 22

Performance of Synchronization Mechanisms

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 23

Performance of Synchronization Mechanisms

Operation Cost (ns) Ratio
Clock period 0.6 1
Best-case CAS 37.9 63.2
Best-case lock 65.6 109.3
Single cache miss 139.5 232.5
CAS cache miss 306.0 510.0

4-CPU 1.8GHz AMD Opteron 844 system

Typical synchronization
mechanisms do this a lot

Heavily optimized reader-
writer lock might get here
for readers (but too bad

about those poor writers...)

Need to be here!
(Partitioning/RCU)

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 24

Performance of Synchronization Mechanisms

Operation Cost (ns) Ratio
Clock period 0.6 1
Best-case CAS 37.9 63.2
Best-case lock 65.6 109.3
Single cache miss 139.5 232.5
CAS cache miss 306.0 510.0

4-CPU 1.8GHz AMD Opteron 844 system

Typical synchronization
mechanisms do this a lot

Heavily optimized reader-
writer lock might get here
for readers (but too bad

about those poor writers...)

Need to be here!
(Partitioning/RCU)

But this is an old system...But this is an old system...

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 25

Performance of Synchronization Mechanisms

Operation Cost (ns) Ratio
Clock period 0.6 1
Best-case CAS 37.9 63.2
Best-case lock 65.6 109.3
Single cache miss 139.5 232.5
CAS cache miss 306.0 510.0

4-CPU 1.8GHz AMD Opteron 844 system

Typical synchronization
mechanisms do this a lot

Heavily optimized reader-
writer lock might get here
for readers (but too bad

about those poor writers...)

Need to be here!
(Partitioning/RCU)

But this is an old system...But this is an old system... And why low-level details???And why low-level details???

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 26

Why All These Low-Level Details???

Would you trust a bridge designed by someone
who did not understand strengths of materials?

 Or a ship designed by someone who did not
understand the steel-alloy transition temperatures?

 Or a house designed by someone who did not
understand that unfinished wood rots when wet?

 Or a car designed by someone who did not
understand the corrosion properties of the metals
used in the exhaust system?

 Or a space shuttle designed by someone who did not
understand the temperature limitations of O-rings?

So why trust algorithms from someone ignorant
of the properties of the underlying hardware???

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 27

But Isn't Hardware Just Getting Faster?

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 28

Performance of Synchronization Mechanisms

Operation Ratio
Clock period 0.4 1
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache miss 12.9 35.8
CAS cache miss 7.0 19.4

Cost (ns)

16-CPU 2.8GHz Intel X5550 (Nehalem) System16-CPU 2.8GHz Intel X5550 (Nehalem) System

What a difference a few years can make!!!What a difference a few years can make!!!

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 29

Performance of Synchronization Mechanisms

Operation Ratio
Clock period 0.4 1
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache “miss” 12.9 35.8
CAS cache “miss” 7.0 19.4

31.2 86.6
31.2 86.5

Cost (ns)

Single cache miss (off-core)
CAS cache miss (off-core)

16-CPU 2.8GHz Intel X5550 (Nehalem) System16-CPU 2.8GHz Intel X5550 (Nehalem) System

Not Not quitequite so good... But still a 6x improvement!!! so good... But still a 6x improvement!!!

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 30

Performance of Synchronization Mechanisms

Operation Ratio
Clock period 0.4 1
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache miss 12.9 35.8
CAS cache miss 7.0 19.4

31.2 86.6
31.2 86.5
92.4 256.7
95.9 266.4

Cost (ns)

Single cache miss (off-core)
CAS cache miss (off-core)
Single cache miss (off-socket)
CAS cache miss (off-socket)

16-CPU 2.8GHz Intel X5550 (Nehalem) System16-CPU 2.8GHz Intel X5550 (Nehalem) System

Maybe not such a big difference after all...Maybe not such a big difference after all...
And these are best-case values!!! (Why?)And these are best-case values!!! (Why?)

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 31

Visual Demonstration of Instruction Overhead

The Bogroll Demonstration

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 32

Performance of Synchronization Mechanisms

If you thought a single atomic operation was slow, try lots of them!!!
(Atomic increment of single variable on 1.9GHz Power 5 system)

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 33

Performance of Synchronization Mechanisms

Same effect on a 16-CPU 2.8GHz Intel X5550 (Nehalem) systemSame effect on a 16-CPU 2.8GHz Intel X5550 (Nehalem) system

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 34

System Hardware Structure

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 35

System Hardware Structure

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

S
O

L
R

T
 @

 5
G

H
z

Electrons move at 0.03C to 0.3C in transistors and, so lots of waiting.

3
ce

nt
im

et
er

s

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 36

Atomic Increment of Global Variable

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Lots and Lots of Latency!!!Lots and Lots of Latency!!!

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 37

Atomic Increment of Per-CPU Variable

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Little Latency, Lots of Increments at Core Clock RateLittle Latency, Lots of Increments at Core Clock Rate

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 38

Is There A Better HW XADD Implementation?

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 39

HW-Assist Atomic Increment of Global Variable

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Better than current hardware, but still much worse than per-thread variables!Better than current hardware, but still much worse than per-thread variables!
Parallel software design can be a powerful tool: use it!!!Parallel software design can be a powerful tool: use it!!!

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 40

Shrinking Transistors Won't Save Us

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 41

Who is Gordon Moore Quoting?

Gentlemen, you have two fundamental problems: (1) the
finite speed of light and (2) the atomic nature of matter.

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 42

Is There Any HW Help To Be Had???

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 43

Is There Any HW Help To Be Had??? Maybe...

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 44

Parallel Programming Principles

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 45

IMPORTANT

Work with the hardware!!!
Not against it!!!

Locality of Reference is Golden

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 46

Do Parallelism via Design, Not Implementation

 Traditional synchronization primitives require
global agreement

 Global agreement is inherently slow on today's HW

 Traditional synchronization therefore requires
coarse-grained parallelism

 Otherwise cost of synchronization dominates

Partitioning decisions required at high level
 Low-level partitioning is ineffective

Much fear of parallelism stems from ill-advised
attempts to do low-level partitioning

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 47

Design Principle: Avoid Bottlenecks

Only one of something: bad for performance and scalabilityOnly one of something: bad for performance and scalability

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 48

Design Principle: Avoid Bottlenecks

Many instances of something: great for performance and scalability!Many instances of something: great for performance and scalability!
Any exceptions to this rule?Any exceptions to this rule?

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 49

Parallel Programming Exercise

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 50

Parallel Programming Exercise

 July 2010 IEEE Spectrum “The Trouble With
Multicore” by David Patterson page 31 –
calculating π:

 A sequential approach:
• Π/4 = 1-1/3+1/5-1/7+1/9-...

 A parallel approach:
• Generate a pair of random real numbers in range [-1,1]
• If the pair forms a coordinate within the unit circle, count it
• Π/4 = count/trials

Are these good algorithms?
 If so, why?
 If not, what would be better?

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 51

Evaluation of Sequential Algorithm for π

Iteration Π/4 Error
0 1.0000 4.0000 0.8584
1 0.6667 2.6667 -0.4749
2 0.8667 3.4667 0.3251
3 0.7238 2.8952 -0.2464
4 0.8349 3.3397 0.1981
5 0.7440 2.9760 -0.1655
6 0.8209 3.2837 0.1421
7 0.7543 3.0171 -0.1245
8 0.8131 3.2524 0.1108
9 0.7605 3.0418 -0.0998

10 0.8081 3.2323 0.0907

π

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 52

Better Sequential Algorithm for π

http://en.wikipedia.org/wiki/Numerical_approximations_of_%CF%80#Efficient_methods

John Machin

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 53

Better Sequential Algorithm for π

Term 1 Term 2 Π/4 Error
0 0.200000 0.004184 0.795816 3.183263598 4.17E-02
1 0.197333 0.004184 0.785149 3.140597029 -9.96E-04
2 0.197397 0.004184 0.785405 3.141621029 2.84E-05
3 0.197396 0.004184 0.785398 3.141591772 -8.81E-07
4 0.197396 0.004184 0.785398 3.141592682 2.88E-08
5 0.197396 0.004184 0.785398 3.141592653 -9.74E-10
6 0.197396 0.004184 0.785398 3.141592654 3.46E-11
7 0.197396 0.004184 0.785398 3.141592654 -3.97E-13
8 0.197396 0.004184 0.785398 3.141592654 8.36E-13
9 0.197396 0.004184 0.785398 3.141592654 7.92E-13

10 0.197396 0.004184 0.785398 3.141592654 7.94E-13

π

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 54

Even Better Sequential Algorithms for π

Srinivasa Ramanujan

David Chudnovsky and Gregory Chudnovsky

http://en.wikipedia.org/wiki/Numerical_approximations_of_%CF%80#Efficient_methods

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 55

Evaluation of Parallel Algorithm for π

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 56

Evaluation of Parallel Algorithm for π

Number of Trials Number of Digits
1 0

10 1
100 2

1,000 3
10,000 4

100,000 5
1,000,000 6

10,000,000 7
100,000,000 8

1,000,000,000 9

What should you do instead???

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 57

Better Parallelization of Computation of π

 If you really need millions of digits, parallel
arithmetic?

 Need carry propagation for addition, but unlikely to
carry very far

 Multiplication can be block-evaluated
 And this solution would have other uses

• To the extent that huge-number exact computation is useful

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 58

But What Would Be Even Faster???

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 59

But What Would Be Even Faster???

Pi = 3.1415926535897932384626433832795028841971693993751058209
749445923078164062862089986280348253421170679821480865132823
066470938446095505822317253594081284811174502841027019385211
055596446229489549303819644288109756659334461284756482337867
831652712019091456485669234603486104543266482133936072602491
412737245870066063155881748815209209628292540917153643678925
903600113305305488204665213841469519415116094330572703657595
919530921861173819326117931051185480744623799627495673518857
527248912279381830119491298336733624406566430860213949463952
247371907021798609437027705392171762931767523846748184676694
051320005681271452635608277857713427577896091736371787214684
409012249534301465495853710507922796892589235420199561121290
219608640344181598136297747713099605187072113499999983729780
499510597317328160963185950244594553469083026425223082533446
850352619311881710100031378387528865875332083814206171776 ...

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 60

The Role of Non-Technical Issues

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 61

Non-Technical Issues Can Cause Trouble...

Potential Obstacles:
 Project based on inherently sequential algorithm
 Project has multiple proprietary plugins sharing a

single address space, owned by different players
 Currently staffed by “software janitors” incapable of

“big animal” changes
• Nothing against SW janitors, but use the right guy for the job!

 Project unable to fund/support “big animal” changes
 APIs designed without regard to parallelism
 Implemented without regard to parallelism
 Implemented without regard to good software-

development practice

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 62

Preventing Non-Technical Interference

 For parallel programming to be easy, you need:
 Easy access to parallel hardware
 Access to all source code sharing address space
 Enlightened design and coding standards
 Vigorous enforcement of said standards
 Experienced developers to review designs and code
 For existing non-parallel projects, sufficiently many

developers ready, willing, and able to make big-
animal changes

Numerous projects, both proprietary and open-
source, demonstrate what is possible

 Then again, parallelism is one optimization of
many: use the right tool for the job!!!

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 63

Conclusions

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 64

Summary and Conclusions

Why Parallel Programming?
A Brief History of Parallel Programming
Trends in Parallelism
Performance of Synchronization

Mechanisms
System Hardware Structure
Parallel Programming Principles
Parallel Programming Exercise
The Role of Non-Technical Issues
Summary and Conclusions

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 65

To Design Great Parallel Software

Work with the hardware, not against it
 Introduce parallelism into high-level design
Avoid bottlenecks
Don't ignore non-technical obstacles
 Learn from the past, but design for the present

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 66

Summary and Conclusions

UseUse
the right toolthe right tool
for the job!!!for the job!!!

Image copyright © 2004 Melissa McKenney

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 67

If There Is No Right Tool, Invent It!!!

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 68

Legal Statement

 This work represents the view of the author and does not
necessarily represent the view of IBM.

 IBM and IBM (logo) are trademarks or registered
trademarks of International Business Machines
Corporation in the United States and/or other countries.

 Linux is a registered trademark of Linus Torvalds.

 Other company, product, and service names may be
trademarks or service marks of others.

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 69

Questions?

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 70

Questions?

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 71

Backup

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 72

Parallel Programming Tasks: RCU

 For read-mostly data structures, RCU provides
the benefits of the data-parallel model

 But without the need to actually partition or replicate
the RCU-protected data structures

 Readers access data without needing to exclude
each others or updates

• Extremely lightweight read-side primitives

And RCU provides additional read-side
performance and scalability benefits

 With a few limitations and restrictions....

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 73

RCU for Read-Mostly Data Structures

Work
Partitioning

Interacting
With Hardware

Parallel
Access Control

RCU data-parallel approach: first partition resources, then partition work, and
only then worry about parallel access control, and only for updates.

Resource
Partitioning

& Replication

RCU

Almost...

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 74

RCU Usage in the Linux Kernel

IBM Linux Technology Center

Scuola Superiore Sant'Anna RETIS © 2010 IBM Corporation 75

Update-Mostly, Need Consistent Data
(RCU is Really Unlikely to be the Right Tool For The Job)

Read-Write, Need Consistent Data
(RCU Might Be OK...)

Read-Mostly, Need Consistent Data
(RCU Works OK)

RCU Area of Applicability

Read-Mostly, Stale &
Inconsistent Data OK
(RCU Works Great!!!)

	Evolution of Software: The simplification of software development v10a September 5, 2005
	Team
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75

