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Who is Paul and How Did He Get This Way?
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Who is Paul and How Did He Get This Way?

Grew up in rural Oregon

First use of computer in high school (72-76)
–IBM mainframe: punched cards and FORTRAN
–Later ASR33 TTY and BASIC

BSME & BSCS, Oregon State University (76-81)
–Tuition provided by FORTRAN and COBOL

Contract Programming and Consulting (81-85)
–Building control system (Pascal on z80)
–Security card-access system (Pascal on PDP-11)
–Dining hall system (Pascal on PDP-11)
–Acoustic navigation system (C on PDP-11)
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Who is Paul and How Did He Get This Way?

28 周年 : 1983 年五月至今
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Who is Paul and How Did He Get This Way?

SRI International (85-90)
–UNIX systems administration
–Packet-radio research
–Internet protocol research

Sequent Computer Systems (90-00)
–Communications performance
–Memory allocators, TLB, RCU, timers, ...

 IBM LTC (00-present)
–NUMA-aware and brlock-like locking primitive in AIX

• They didn't want RCU
–RCU maintainer for Linux kernel
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Who is Paul and How Did He Get This Way?

 I have never:
–Used kprobes or SystemTap to find a bug
–Taken a core dump from a Linux system
–Used ftrace to find a bug
–Used “perf” at all

 I sometimes:
–Use debugging printk()s
–Use event tracing
–Use WARN_ON_ONCE()

• Probably more often than printk()

 I often:
–Use special-purpose counters

Why avoid these debug techniques?  What to do instead?
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Avoiding Debugging By Design
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Avoiding Debugging By Design

Understand the Hardware

Understand the Software Environment
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Performance of Synchronization Mechanisms

Operation Cost (ns) Ratio
Clock period 0.6 1
Best-case CAS 37.9 63.2
Best-case lock 65.6 109.3
Single cache miss 139.5 232.5
CAS cache miss 306.0 510.0

4-CPU 1.8GHz AMD Opteron 844 system4-CPU 1.8GHz AMD Opteron 844 system

Typical synchronization Typical synchronization 
mechanisms do this a lotmechanisms do this a lot

Heavily optimized reader-Heavily optimized reader-
writer lock might get here for writer lock might get here for 

readers (but too bad about readers (but too bad about 
those poor writers...)those poor writers...)

Need to be here!Need to be here!
(Partitioning/RCU)(Partitioning/RCU)
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Performance of Synchronization Mechanisms

Operation Cost (ns) Ratio
Clock period 0.6 1
Best-case CAS 37.9 63.2
Best-case lock 65.6 109.3
Single cache miss 139.5 232.5
CAS cache miss 306.0 510.0

4-CPU 1.8GHz AMD Opteron 844 system4-CPU 1.8GHz AMD Opteron 844 system

Typical synchronization Typical synchronization 
mechanisms do this a lotmechanisms do this a lot

Heavily optimized reader-Heavily optimized reader-
writer lock might get here for writer lock might get here for 

readers (but too bad about readers (but too bad about 
those poor writers...)those poor writers...)

Need to be here!Need to be here!
(Partitioning/RCU)(Partitioning/RCU)

But this is an old system...But this is an old system... And why low-level details???And why low-level details???
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Why All These Low-Level Details???

Would you trust a bridge designed by someone who did 
not understand strengths of materials?

–Or a ship designed by someone who did not understand the 
steel-alloy transition temperatures?

–Or a house designed by someone who did not understand that 
unfinished wood rots when wet?

–Or a car designed by someone who did not understand the 
corrosion properties of the metals used in the exhaust system?

–Or a space shuttle designed by someone who did not 
understand the temperature limitations of O-rings?

So why trust algorithms from someone ignorant of the 
properties of the underlying hardware???
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But Isn't Hardware Just Getting Faster?
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Performance of Synchronization Mechanisms

Operation Ratio
Clock period 0.4 1
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache miss 12.9 35.8
CAS cache miss 7.0 19.4

Cost (ns)

16-CPU 2.8GHz Intel X5550 (Nehalem) System16-CPU 2.8GHz Intel X5550 (Nehalem) System

What a difference a few years can make!!!What a difference a few years can make!!!
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Performance of Synchronization Mechanisms

Operation Ratio
Clock period 0.4 1
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache “miss” 12.9 35.8
CAS cache “miss” 7.0 19.4
Single cache miss (off-core) 31.2 86.6
CAS cache miss (off-core) 31.2 86.5

Cost (ns)

16-CPU 2.8GHz Intel X5550 (Nehalem) System16-CPU 2.8GHz Intel X5550 (Nehalem) System

Not Not quitequite so good...  But still a 6x improvement!!! so good...  But still a 6x improvement!!!
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Performance of Synchronization Mechanisms

Operation Ratio
Clock period 0.4 1
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache miss 12.9 35.8
CAS cache miss 7.0 19.4
Single cache miss (off-core) 31.2 86.6
CAS cache miss (off-core) 31.2 86.5
Single cache miss (off-socket) 92.4 256.7
CAS cache miss (off-socket) 95.9 266.4

Cost (ns)

16-CPU 2.8GHz Intel X5550 (Nehalem) System16-CPU 2.8GHz Intel X5550 (Nehalem) System

Maybe not such a big difference after all...Maybe not such a big difference after all...
And these are best-case values!!!  (Why?)And these are best-case values!!!  (Why?)
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Maybe not such a big difference after all...Maybe not such a big difference after all...
And these are best-case values!!!  (Why?)And these are best-case values!!!  (Why?)
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Performance of Synchronization Mechanisms

If you thought a If you thought a singlesingle atomic operation was slow, try lots of the atomic operation was slow, try lots of them!!!m!!!
(Parallel atomic increment of single variable on 1.9GHz Power 5 system)(Parallel atomic increment of single variable on 1.9GHz Power 5 system)
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Performance of Synchronization Mechanisms

Same effect on a 16-CPU 2.8GHz Intel X5550 (Nehalem) systemSame effect on a 16-CPU 2.8GHz Intel X5550 (Nehalem) system
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System Hardware Structure
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Atomic Increment of Global Variable
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Atomic Increment of Per-CPU Variable
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HW-Assist Atomic Increment of Global Variable
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Design Principle: Avoid Bottlenecks

Only one of something: bad for performance and scalabilityOnly one of something: bad for performance and scalability
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Design Principle: Avoid Bottlenecks

Many instances of something good!Many instances of something good!
Any exceptions to this rule?Any exceptions to this rule?
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Understand the Hardware: Summary

A strong understanding of the hardware helps rule out 
infeasible designs early in process

Understanding hardware trends helps reduce the 
amount of future rework required

Ditto for low-level software that your code depends on
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Understand the Software Environment

Understand the Workloads
–Which for Linux means a great many of them
–Your code must take whatever shows up

Google-Search LWN
–But you knew this already

Test Unfamiliar Primitives
–And complain on LKML if they break
–Preferably accompanying the complaint with a fix

Review Others' Code
–See recent ltc-interlock discussion for how-to info

Make a Map
–See next slides...
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Making a Map of Software
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Hierarchical RCU Data Structures

  1 struct rcu_dynticks {
  2   int dynticks_nesting;
  3   int dynticks;
  4   int dynticks_nmi;
  5 };
  6 
  7 struct rcu_node {
  8   spinlock_t lock;
  9   long  gpnum;
 10   long  completed;
 11   unsigned long qsmask;
 12   unsigned long qsmaskinit;
 13   unsigned long grpmask;
 14   int  grplo;
 15   int  grphi;
 16   u8  grpnum;
 17   u8  level;
 18   struct rcu_node *parent;
 19   struct list_head blocked_tasks[2];
 20 }
 21 
 22 struct rcu_data {
 23   long    completed;
 24   long    gpnum;
 25   long    passed_quiesc_completed;
 26   bool    passed_quiesc;
 27   bool    qs_pending;
 28   bool    beenonline;
 29   bool    preemptable;
 30   struct rcu_node *mynode;
 31   unsigned long grpmask;
 32   struct rcu_head *nxtlist;
 33   struct rcu_head **nxttail[RCU_NEXT_SIZE];
 34   long    qlen;
 35   long    qlen_last_fqs_check;
 36   unsigned long  n_force_qs_snap;
 37   long    blimit;
 38 #ifdef CONFIG_NO_HZ
 39   struct rcu_dynticks *dynticks;
 40   int dynticks_snap;
 41   int dynticks_nmi_snap;

 42 #ifdef CONFIG_NO_HZ
 43   unsigned long dynticks_fqs;
 44 #endif /* #ifdef CONFIG_NO_HZ */
 45   unsigned long offline_fqs;
 46   unsigned long resched_ipi;
 47   long n_rcu_pending;
 48   long n_rp_qs_pending;
 49   long n_rp_cb_ready;
 50   long n_rp_cpu_needs_gp;
 51   long n_rp_gp_completed;
 52   long n_rp_gp_started;
 53   long n_rp_need_fqs;
 54   long n_rp_need_nothing;
 55   int cpu;
 56 };
 57 
 58 struct rcu_state {
 59   struct rcu_node node[NUM_RCU_NODES];
 60   struct rcu_node *level[NUM_RCU_LVLS];
 61   u32 levelcnt[MAX_RCU_LVLS + 1];
 62   u8 levelspread[NUM_RCU_LVLS];
 63   struct rcu_data *rda[NR_CPUS];
 64   u8  signaled;
 65   long  gpnum;
 66   long  completed;
 67   spinlock_t onofflock;
 68   struct rcu_head *orphan_cbs_list;
 69   struct rcu_head **orphan_cbs_tail;
 70   long orphan_qlen;
 71   spinlock_t fqslock;
 72   unsigned long jiffies_force_qs;
 73   unsigned long n_force_qs;
 74   unsigned long n_force_qs_lh;
 75   unsigned long n_force_qs_ngp;
 76 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
 77   unsigned long gp_start;
 78   unsigned long jiffies_stall;
 79 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
 80   long dynticks_completed;
 81 };
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Mapping Data Structures

rcu_bhrcu_bh
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Placement of rcu_node Within rcu_state

struct rcu_statestruct rcu_state

struct rcu_nodestruct rcu_node

CPUs 2:3CPUs 2:3
->node[2]->node[2]

struct rcu_nodestruct rcu_node

CPUs 0:1CPUs 0:1
->node[1]->node[1]

struct rcu_nodestruct rcu_node

CPUs 0:4CPUs 0:4
->node[0]->node[0]
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Avoiding Debugging By Process
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Avoiding Debugging By Process

Review your own work carefully
–See following slides

Test early, test often, test in small pieces
–Debugging is 2-3 times harder than writing code
–Debugging effort rises as the square of the amount of new 

code added to the testing effort

Where possible, use existing well-tested code
–Even if it is a lot more fun to re-invent the wheel

 I would have scorned this advice as late as the early 
1990s, but have since learned it the hard way

And still sometimes has difficulty following it:
–http://paulmck.livejournal.com/14639.html
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Review Your Own Code Carefully

Paul E. McKenney's self-review rules for complex code:
–Write the code long hand in pen on paper
–Correct bugs as you go
–Copy onto a clean sheet of paper
–Repeat until the last two versions are identical

What constitutes “not complex”?
–Sequential code, and
–You test it line-by-line

• For example, bash script or single-threaded C-code with gdb)
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So, How Well Did I Do?
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    1 static void rcu_preempt_offline_tasks(struct rcu_state *rsp,1 static void rcu_preempt_offline_tasks(struct rcu_state *rsp,
    2               struct rcu_node *rnp,2               struct rcu_node *rnp,
    3               struct rcu_data *rdp)3               struct rcu_data *rdp)
    4 {4 {
    5   int i;5   int i;
    6   struct list_head *lp;6   struct list_head *lp;
    7   struct list_head *lp_root;7   struct list_head *lp_root;
    8   struct rcu_node *rnp_root = rcu_get_root(rsp);8   struct rcu_node *rnp_root = rcu_get_root(rsp);
    9   struct task_struct *tp;9   struct task_struct *tp;
  10 10 
  11   if (rnp == rnp_root) {11   if (rnp == rnp_root) {
  12     WARN_ONCE(1, "Last CPU thought to be offlined?");12     WARN_ONCE(1, "Last CPU thought to be offlined?");
  13     return;13     return;
  14   }14   }
  15   WARN_ON_ONCE(rnp != rdp->mynode &&15   WARN_ON_ONCE(rnp != rdp->mynode &&
  16          (!list_empty(&rnp->blocked_tasks[0]) ||16          (!list_empty(&rnp->blocked_tasks[0]) ||
  17           !list_empty(&rnp->blocked_tasks[1])));17           !list_empty(&rnp->blocked_tasks[1])));
  18   for (i = 0; i < 2; i++) {18   for (i = 0; i < 2; i++) {
  19     lp = &rnp->blocked_tasks[i];19     lp = &rnp->blocked_tasks[i];
  20     lp_root = &rnp_root->blocked_tasks[i];20     lp_root = &rnp_root->blocked_tasks[i];
  21     while (!list_empty(lp)) {21     while (!list_empty(lp)) {
  22       tp = list_entry(lp->next, typeof(*tp), rcu_node_entry);22       tp = list_entry(lp->next, typeof(*tp), rcu_node_entry);
  23       spin_lock(&rnp_root->lock); /* irqs already disabled */23       spin_lock(&rnp_root->lock); /* irqs already disabled */
  24       list_del(&tp->rcu_node_entry);24       list_del(&tp->rcu_node_entry);
  25       tp->rcu_blocked_node = rnp_root;25       tp->rcu_blocked_node = rnp_root;
  26       list_add(&tp->rcu_node_entry, lp_root);26       list_add(&tp->rcu_node_entry, lp_root);
  27       spin_unlock(&rnp_root->lock); /* irqs remain disabled */27       spin_unlock(&rnp_root->lock); /* irqs remain disabled */
  28     }28     }
  29   }29   }
  30 }30 }
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    1 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,1 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
    2                                      struct rcu_node *rnp,2                                      struct rcu_node *rnp,
    3                                      struct rcu_data *rdp)3                                      struct rcu_data *rdp)
    4 {4 {
    5   int i;5   int i;
    6   struct list_head *lp;6   struct list_head *lp;
    7   struct list_head *lp_root;7   struct list_head *lp_root;
    8   int retval;8   int retval;
    9   struct rcu_node *rnp_root = rcu_get_root(rsp);9   struct rcu_node *rnp_root = rcu_get_root(rsp);
  10   struct task_struct *tp;10   struct task_struct *tp;
  11 11 
  12   if (rnp == rnp_root) {12   if (rnp == rnp_root) {
  13     WARN_ONCE(1, "Last CPU thought to be offlined?");13     WARN_ONCE(1, "Last CPU thought to be offlined?");
  14     return 0;  /* Shouldn't happen: at least one CPU online. */14     return 0;  /* Shouldn't happen: at least one CPU online. */
  15   }15   }
  16   WARN_ON_ONCE(rnp != rdp->mynode &&16   WARN_ON_ONCE(rnp != rdp->mynode &&
  17          (!list_empty(&rnp->blocked_tasks[0]) ||17          (!list_empty(&rnp->blocked_tasks[0]) ||
  18           !list_empty(&rnp->blocked_tasks[1])));18           !list_empty(&rnp->blocked_tasks[1])));
  19   retval = rcu_preempted_readers(rnp);19   retval = rcu_preempted_readers(rnp);
  20   for (i = 0; i < 2; i++) {20   for (i = 0; i < 2; i++) {
  21     lp = &rnp->blocked_tasks[i];21     lp = &rnp->blocked_tasks[i];
  22     lp_root = &rnp_root->blocked_tasks[i];22     lp_root = &rnp_root->blocked_tasks[i];
  23     while (!list_empty(lp)) {23     while (!list_empty(lp)) {
  24       tp = list_entry(lp->next, typeof(*tp), rcu_node_entry);24       tp = list_entry(lp->next, typeof(*tp), rcu_node_entry);
  25       spin_lock(&rnp_root->lock); /* irqs already disabled */25       spin_lock(&rnp_root->lock); /* irqs already disabled */
  26       list_del(&tp->rcu_node_entry);26       list_del(&tp->rcu_node_entry);
  27       tp->rcu_blocked_node = rnp_root;27       tp->rcu_blocked_node = rnp_root;
  28       list_add(&tp->rcu_node_entry, lp_root);28       list_add(&tp->rcu_node_entry, lp_root);
  29       spin_unlock(&rnp_root->lock); /* irqs remain disabled */29       spin_unlock(&rnp_root->lock); /* irqs remain disabled */
  30     }30     }
  31   }31   }
  32   return retval;32   return retval;
  33 }33 }
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Avoiding Debugging By Mechanical Proofs
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Avoiding Debugging By Mechanical Proofs

Works well for small, self-contained algorithms
–http://lwn.net/Articles/243851/ (QRCU)
–http://lwn.net/Articles/279077/ (RCU dynticks I/F)
–git://lttng.org/userspace-rcu formal-model (URCU)

However, the need for formal proof often indicates an 
overly complex design!!!

–Preemptible RCU's dynticks interface being an extreme case in 
point (http://lwn.net/Articles/279077/)
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Avoiding Debugging By Statistical Analysis
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Avoiding Debugging By Statistical Analysis

Different kernel configuration options select different code

Suppose that more failure occur with CONFIG_FOO=y
–Focus inspection on code under #ifdef CONFIG_FOO

But what exactly does “more failures” mean?
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Avoiding Debugging By Statistical Analysis

Different kernel configuration options select different code

Suppose that more failure occur with CONFIG_FOO=y
–Focus inspection on code under #ifdef CONFIG_FOO

But what exactly does “more failures” mean?
–That is where the statistical analysis comes in
–The “more failures” must be enough more to be statistically significant
–One of the most useful classes I took as an undergraduate was a 

statistics course!
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Coping With Schedule Pressure



© 2011 IBM Corporation48

Coping With Schedule Pressure

When you are fixing a critical bug, speed counts

The difference is level of risk
–The code is already broken, so less benefit to using extremely 

dainty process steps
–But only if you follow up with careful process
–Which I repeatedly learn the hard way:

http://paulmck.livejournal.com/14639.html 
–Failure to invest a few days in early 2009 cost me more than a 

month in late 2009!!!

Long-term perspective required
–And that means you – leave the “blame it on management” game to 

Dilbert cartoons
–Align with management initiatives, for example, “agile development”
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But I Did All This And There Are Still Bugs!!!
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But I Did All This And There Are Still Bugs!!!

 “Be Careful!!! It Is A Real World Out There!!!”

The purpose of careful software-development practices 
is to reduce risk

–Strive for perfection, but understand that this goal is rarely 
reached in this world
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But I Did All This And There Are Still Bugs!!!

 “Be Careful!!! It Is A Real World Out There!!!”

The purpose of careful software-development practices 
is to reduce risk

–Strive for perfection, but understand that this goal is rarely 
reached in this world

But you still need to fix your bugs!!!
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Fixing Bugs

The first challenge is locating the bugs
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Fixing Bugs

The first challenge is locating the bugs
–The computer knows where the bugs are
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Fixing Bugs

The first challenge is locating the bugs
–The computer knows where the bugs are
–So your job is to make it tell you!

Ways to make the computer tell you where the bugs are:
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Fixing Bugs

The first challenge is locating the bugs
–The computer knows where the bugs are
–So your job is to make it tell you!

Ways to make the computer tell you where the bugs are:
–Debugging printk()s and assertions
–Event tracing and ftrace
–Lock dependency checker (CONFIG_PROVE_LOCKING and 

CONFIG_PROVE_RCU)
–Static analysis (and pay attention to compiler warnings!!!)
–Structured testing: Use an experimental approach
–Record all test results, including environment
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Fixing Bugs

The first challenge is locating the bugs
–The computer knows where the bugs are
–So your job is to make it tell you!
–But getting another person's viewpoint can be helpful

• To 10,000 educated and experienced eyes, all bugs are shallow

Gaining other people's viewpoints
–Have other people review your code
–Explain your code to someone else
–Special case of explaining code: Document it

• Think of questions you might ask if someone else showed you the code
• Focus on the parts of the code you are most proud of: Most likely buggy!
• Try making a copy of the code, removing the comments, and then 

documenting it: Perhaps the comments are confusing you
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Event tracing for RCU: 35MB of trace events for each failure

Way too much to read and analyze by hand all the time

What to do?  Scripting!!!

How to generate useful scripts:
–Do it by hand the first few times
–But keep detailed notes on what you did and what you found
–Incrementally construct scripts to carry out the most laborious tasks
–Eventually, you will have a script that analyzes the failures

But suppose you are working on many different projects?
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But What If The Computer Knows Too Much?

Event tracing for RCU: 35MB of trace events for each failure

Way too much to read and analyze by hand all the time

What to do?  Scripting!!!

How to generate useful scripts:
–Do it by hand the first few times
–But keep detailed notes on what you did and what you found
–Incrementally construct scripts to carry out the most laborious tasks
–Eventually, you will have a script that analyzes the failures

But suppose you are working on many different projects?
–Script the common cases that occur in many projects
–Take advantage of tools others have constructed
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Summary and Conclusions

Avoid Debugging By Design

Avoid Debugging By Process

Avoid Debugging By Mechanical Proofs

Avoid Debugging By Statistical Analysis

Avoid Schedule Pressure via Long-Term View

But Even If You Do All This, You Will Still Do Some 
Debugging (http://lwn.net/Articles/453002/)

–Yes, you are living in the real world!!!
–Might be painful sometimes, but it sure beats all known 

alternatives...
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Legal Statement

 This work represents the view of the author and does not 
necessarily represent the view of IBM.

 IBM and IBM (logo) are trademarks or registered 
trademarks of International Business Machines Corporation 
in the United States and/or other countries.

 Linux is a registered trademark of Linus Torvalds.

 Other company, product, and service names may be 
trademarks or service marks of others.
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