
© 2011 IBM Corporation

Validating Core Parallel Software

Paul E. McKenney, IBM Distinguished Engineer, Linux Technology Center

16 October 2011

© 2011 IBM Corporation2

Overview

Who is Paul and How Did He Get This Way?

Avoiding Debugging By Design

Avoiding Debugging By Process

Avoiding Debugging By Mechanical Proofs

Avoiding Debugging By Statistical Analysis

Coping With Schedule Pressure

But I Did All This And There Are Still Bugs!!!

Summary and Conclusions

© 2011 IBM Corporation3

Who is Paul and How Did He Get This Way?

© 2011 IBM Corporation4

Who is Paul and How Did He Get This Way?

Grew up in rural Oregon

First use of computer in high school (72-76)
–IBM mainframe: punched cards and FORTRAN
–Later ASR33 TTY and BASIC

BSME & BSCS, Oregon State University (76-81)
–Tuition provided by FORTRAN and COBOL

Contract Programming and Consulting (81-85)
–Building control system (Pascal on z80)
–Security card-access system (Pascal on PDP-11)
–Dining hall system (Pascal on PDP-11)
–Acoustic navigation system (C on PDP-11)

© 2011 IBM Corporation5

Who is Paul and How Did He Get This Way?

28 周年 : 1983 年五月至今

© 2011 IBM Corporation6

Who is Paul and How Did He Get This Way?

SRI International (85-90)
–UNIX systems administration
–Packet-radio research
–Internet protocol research

Sequent Computer Systems (90-00)
–Communications performance
–Memory allocators, TLB, RCU, timers, ...

 IBM LTC (00-present)
–NUMA-aware and brlock-like locking primitive in AIX

• They didn't want RCU
–RCU maintainer for Linux kernel

© 2011 IBM Corporation7

Who is Paul and How Did He Get This Way?

 I have never:
–Used kprobes or SystemTap to find a bug
–Taken a core dump from a Linux system
–Used ftrace to find a bug
–Used “perf” at all

 I sometimes:
–Use debugging printk()s
–Use event tracing
–Use WARN_ON_ONCE()

• Probably more often than printk()

 I often:
–Use special-purpose counters

Why avoid these debug techniques? What to do instead?

© 2011 IBM Corporation8

Avoiding Debugging By Design

© 2011 IBM Corporation9

Avoiding Debugging By Design

Understand the Hardware

Understand the Software Environment

© 2011 IBM Corporation10

Performance of Synchronization Mechanisms

Operation Cost (ns) Ratio
Clock period 0.6 1
Best-case CAS 37.9 63.2
Best-case lock 65.6 109.3
Single cache miss 139.5 232.5
CAS cache miss 306.0 510.0

4-CPU 1.8GHz AMD Opteron 844 system4-CPU 1.8GHz AMD Opteron 844 system

Typical synchronization Typical synchronization
mechanisms do this a lotmechanisms do this a lot

Heavily optimized reader-Heavily optimized reader-
writer lock might get here for writer lock might get here for

readers (but too bad about readers (but too bad about
those poor writers...)those poor writers...)

Need to be here!Need to be here!
(Partitioning/RCU)(Partitioning/RCU)

© 2011 IBM Corporation11

Performance of Synchronization Mechanisms

Operation Cost (ns) Ratio
Clock period 0.6 1
Best-case CAS 37.9 63.2
Best-case lock 65.6 109.3
Single cache miss 139.5 232.5
CAS cache miss 306.0 510.0

4-CPU 1.8GHz AMD Opteron 844 system4-CPU 1.8GHz AMD Opteron 844 system

Typical synchronization Typical synchronization
mechanisms do this a lotmechanisms do this a lot

Heavily optimized reader-Heavily optimized reader-
writer lock might get here for writer lock might get here for

readers (but too bad about readers (but too bad about
those poor writers...)those poor writers...)

Need to be here!Need to be here!
(Partitioning/RCU)(Partitioning/RCU)

But this is an old system...But this is an old system...

© 2011 IBM Corporation12

Performance of Synchronization Mechanisms

Operation Cost (ns) Ratio
Clock period 0.6 1
Best-case CAS 37.9 63.2
Best-case lock 65.6 109.3
Single cache miss 139.5 232.5
CAS cache miss 306.0 510.0

4-CPU 1.8GHz AMD Opteron 844 system4-CPU 1.8GHz AMD Opteron 844 system

Typical synchronization Typical synchronization
mechanisms do this a lotmechanisms do this a lot

Heavily optimized reader-Heavily optimized reader-
writer lock might get here for writer lock might get here for

readers (but too bad about readers (but too bad about
those poor writers...)those poor writers...)

Need to be here!Need to be here!
(Partitioning/RCU)(Partitioning/RCU)

But this is an old system...But this is an old system... And why low-level details???And why low-level details???

© 2011 IBM Corporation13

Why All These Low-Level Details???

Would you trust a bridge designed by someone who did
not understand strengths of materials?

–Or a ship designed by someone who did not understand the
steel-alloy transition temperatures?

–Or a house designed by someone who did not understand that
unfinished wood rots when wet?

–Or a car designed by someone who did not understand the
corrosion properties of the metals used in the exhaust system?

–Or a space shuttle designed by someone who did not
understand the temperature limitations of O-rings?

So why trust algorithms from someone ignorant of the
properties of the underlying hardware???

© 2011 IBM Corporation14

But Isn't Hardware Just Getting Faster?

© 2011 IBM Corporation15

Performance of Synchronization Mechanisms

Operation Ratio
Clock period 0.4 1
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache miss 12.9 35.8
CAS cache miss 7.0 19.4

Cost (ns)

16-CPU 2.8GHz Intel X5550 (Nehalem) System16-CPU 2.8GHz Intel X5550 (Nehalem) System

What a difference a few years can make!!!What a difference a few years can make!!!

© 2011 IBM Corporation16

Performance of Synchronization Mechanisms

Operation Ratio
Clock period 0.4 1
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache “miss” 12.9 35.8
CAS cache “miss” 7.0 19.4
Single cache miss (off-core) 31.2 86.6
CAS cache miss (off-core) 31.2 86.5

Cost (ns)

16-CPU 2.8GHz Intel X5550 (Nehalem) System16-CPU 2.8GHz Intel X5550 (Nehalem) System

Not Not quitequite so good... But still a 6x improvement!!! so good... But still a 6x improvement!!!

© 2011 IBM Corporation17

Performance of Synchronization Mechanisms

Operation Ratio
Clock period 0.4 1
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache miss 12.9 35.8
CAS cache miss 7.0 19.4
Single cache miss (off-core) 31.2 86.6
CAS cache miss (off-core) 31.2 86.5
Single cache miss (off-socket) 92.4 256.7
CAS cache miss (off-socket) 95.9 266.4

Cost (ns)

16-CPU 2.8GHz Intel X5550 (Nehalem) System16-CPU 2.8GHz Intel X5550 (Nehalem) System

Maybe not such a big difference after all...Maybe not such a big difference after all...
And these are best-case values!!! (Why?)And these are best-case values!!! (Why?)

Operation Ratio
Clock period 0.4 1
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache miss 12.9 35.8
CAS cache miss 7.0 19.4
Single cache miss (off-core) 31.2 86.6
CAS cache miss (off-core) 31.2 86.5
Single cache miss (off-socket) 92.4 256.7
CAS cache miss (off-socket) 95.9 266.4

Cost (ns)

16-CPU 2.8GHz Intel X5550 (Nehalem) System16-CPU 2.8GHz Intel X5550 (Nehalem) System

Maybe not such a big difference after all...Maybe not such a big difference after all...
And these are best-case values!!! (Why?)And these are best-case values!!! (Why?)

© 2011 IBM Corporation18

Performance of Synchronization Mechanisms

If you thought a If you thought a singlesingle atomic operation was slow, try lots of the atomic operation was slow, try lots of them!!!m!!!
(Parallel atomic increment of single variable on 1.9GHz Power 5 system)(Parallel atomic increment of single variable on 1.9GHz Power 5 system)

© 2011 IBM Corporation19

Performance of Synchronization Mechanisms

Same effect on a 16-CPU 2.8GHz Intel X5550 (Nehalem) systemSame effect on a 16-CPU 2.8GHz Intel X5550 (Nehalem) system

© 2011 IBM Corporation20

System Hardware Structure

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

S
O

L
 R

T
 @

 5
G

H
z

S
O

L
 R

T
 @

 5
G

H
z

Electrons move at 0.03C to 0.3C in transistors and, so lots of waiting. 3D???Electrons move at 0.03C to 0.3C in transistors and, so lots of waiting. 3D???

3
ce

n
ti

m
et

er
s

3
ce

n
ti

m
et

er
s

© 2011 IBM Corporation21

Atomic Increment of Global Variable

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Lots and Lots of Latency!!!Lots and Lots of Latency!!!

© 2011 IBM Corporation22

Atomic Increment of Per-CPU Variable

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Little Latency, Lots of Increments at Core Clock RateLittle Latency, Lots of Increments at Core Clock Rate

© 2011 IBM Corporation23

HW-Assist Atomic Increment of Global Variable

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

© 2011 IBM Corporation24

Design Principle: Avoid Bottlenecks

Only one of something: bad for performance and scalabilityOnly one of something: bad for performance and scalability

© 2011 IBM Corporation25

Design Principle: Avoid Bottlenecks

Many instances of something good!Many instances of something good!
Any exceptions to this rule?Any exceptions to this rule?

© 2011 IBM Corporation26

Understand the Hardware: Summary

A strong understanding of the hardware helps rule out
infeasible designs early in process

Understanding hardware trends helps reduce the
amount of future rework required

Ditto for low-level software that your code depends on

© 2011 IBM Corporation27

Understand the Software Environment

Understand the Workloads
–Which for Linux means a great many of them
–Your code must take whatever shows up

Google-Search LWN
–But you knew this already

Test Unfamiliar Primitives
–And complain on LKML if they break
–Preferably accompanying the complaint with a fix

Review Others' Code
–See recent ltc-interlock discussion for how-to info

Make a Map
–See next slides...

© 2011 IBM Corporation28

Making a Map of Software

© 2011 IBM Corporation29

Hierarchical RCU Data Structures

 1 struct rcu_dynticks {
 2 int dynticks_nesting;
 3 int dynticks;
 4 int dynticks_nmi;
 5 };
 6
 7 struct rcu_node {
 8 spinlock_t lock;
 9 long gpnum;
 10 long completed;
 11 unsigned long qsmask;
 12 unsigned long qsmaskinit;
 13 unsigned long grpmask;
 14 int grplo;
 15 int grphi;
 16 u8 grpnum;
 17 u8 level;
 18 struct rcu_node *parent;
 19 struct list_head blocked_tasks[2];
 20 }
 21
 22 struct rcu_data {
 23 long completed;
 24 long gpnum;
 25 long passed_quiesc_completed;
 26 bool passed_quiesc;
 27 bool qs_pending;
 28 bool beenonline;
 29 bool preemptable;
 30 struct rcu_node *mynode;
 31 unsigned long grpmask;
 32 struct rcu_head *nxtlist;
 33 struct rcu_head **nxttail[RCU_NEXT_SIZE];
 34 long qlen;
 35 long qlen_last_fqs_check;
 36 unsigned long n_force_qs_snap;
 37 long blimit;
 38 #ifdef CONFIG_NO_HZ
 39 struct rcu_dynticks *dynticks;
 40 int dynticks_snap;
 41 int dynticks_nmi_snap;

 42 #ifdef CONFIG_NO_HZ
 43 unsigned long dynticks_fqs;
 44 #endif /* #ifdef CONFIG_NO_HZ */
 45 unsigned long offline_fqs;
 46 unsigned long resched_ipi;
 47 long n_rcu_pending;
 48 long n_rp_qs_pending;
 49 long n_rp_cb_ready;
 50 long n_rp_cpu_needs_gp;
 51 long n_rp_gp_completed;
 52 long n_rp_gp_started;
 53 long n_rp_need_fqs;
 54 long n_rp_need_nothing;
 55 int cpu;
 56 };
 57
 58 struct rcu_state {
 59 struct rcu_node node[NUM_RCU_NODES];
 60 struct rcu_node *level[NUM_RCU_LVLS];
 61 u32 levelcnt[MAX_RCU_LVLS + 1];
 62 u8 levelspread[NUM_RCU_LVLS];
 63 struct rcu_data *rda[NR_CPUS];
 64 u8 signaled;
 65 long gpnum;
 66 long completed;
 67 spinlock_t onofflock;
 68 struct rcu_head *orphan_cbs_list;
 69 struct rcu_head **orphan_cbs_tail;
 70 long orphan_qlen;
 71 spinlock_t fqslock;
 72 unsigned long jiffies_force_qs;
 73 unsigned long n_force_qs;
 74 unsigned long n_force_qs_lh;
 75 unsigned long n_force_qs_ngp;
 76 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
 77 unsigned long gp_start;
 78 unsigned long jiffies_stall;
 79 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
 80 long dynticks_completed;
 81 };

© 2011 IBM Corporation30

Mapping Data Structures

rcu_bhrcu_bh

struct rcu_nodestruct rcu_node

struct rcu_nodestruct rcu_node struct rcu_nodestruct rcu_node

structstruct
rcu_datarcu_data

structstruct
rcu_datarcu_data

structstruct
rcu_datarcu_data

structstruct
rcu_datarcu_data

rcurcu

struct rcu_nodestruct rcu_node

struct rcu_nodestruct rcu_node struct rcu_nodestruct rcu_node

structstruct
rcu_datarcu_data

structstruct
rcu_datarcu_data

structstruct
rcu_datarcu_data

structstruct
rcu_datarcu_data

structstruct
rcu_dynticksrcu_dynticks

structstruct
rcu_dynticksrcu_dynticks

structstruct
rcu_dynticksrcu_dynticks

structstruct
rcu_dynticksrcu_dynticks

rcu_preemptrcu_preempt

struct rcu_nodestruct rcu_node

struct rcu_nodestruct rcu_node struct rcu_nodestruct rcu_node

structstruct
rcu_datarcu_data

structstruct
rcu_datarcu_data

structstruct
rcu_datarcu_data

structstruct
rcu_datarcu_data

struct rcu_statestruct rcu_state

Per-CPUPer-CPU

GlobalGlobal

© 2011 IBM Corporation31

Placement of rcu_node Within rcu_state

struct rcu_statestruct rcu_state

struct rcu_nodestruct rcu_node

CPUs 2:3CPUs 2:3
->node[2]->node[2]

struct rcu_nodestruct rcu_node

CPUs 0:1CPUs 0:1
->node[1]->node[1]

struct rcu_nodestruct rcu_node

CPUs 0:4CPUs 0:4
->node[0]->node[0]

© 2011 IBM Corporation32

Avoiding Debugging By Process

© 2011 IBM Corporation33

Avoiding Debugging By Process

Review your own work carefully
–See following slides

Test early, test often, test in small pieces
–Debugging is 2-3 times harder than writing code
–Debugging effort rises as the square of the amount of new

code added to the testing effort

Where possible, use existing well-tested code
–Even if it is a lot more fun to re-invent the wheel

 I would have scorned this advice as late as the early
1990s, but have since learned it the hard way

And still sometimes has difficulty following it:
–http://paulmck.livejournal.com/14639.html

© 2011 IBM Corporation34

Review Your Own Code Carefully

Paul E. McKenney's self-review rules for complex code:
–Write the code long hand in pen on paper
–Correct bugs as you go
–Copy onto a clean sheet of paper
–Repeat until the last two versions are identical

What constitutes “not complex”?
–Sequential code, and
–You test it line-by-line

• For example, bash script or single-threaded C-code with gdb)

© 2011 IBM Corporation35

© 2011 IBM Corporation36

© 2011 IBM Corporation37

© 2011 IBM Corporation38

© 2011 IBM Corporation39

So, How Well Did I Do?

© 2011 IBM Corporation40

 1 static void rcu_preempt_offline_tasks(struct rcu_state *rsp,1 static void rcu_preempt_offline_tasks(struct rcu_state *rsp,
 2 struct rcu_node *rnp,2 struct rcu_node *rnp,
 3 struct rcu_data *rdp)3 struct rcu_data *rdp)
 4 {4 {
 5 int i;5 int i;
 6 struct list_head *lp;6 struct list_head *lp;
 7 struct list_head *lp_root;7 struct list_head *lp_root;
 8 struct rcu_node *rnp_root = rcu_get_root(rsp);8 struct rcu_node *rnp_root = rcu_get_root(rsp);
 9 struct task_struct *tp;9 struct task_struct *tp;
 10 10
 11 if (rnp == rnp_root) {11 if (rnp == rnp_root) {
 12 WARN_ONCE(1, "Last CPU thought to be offlined?");12 WARN_ONCE(1, "Last CPU thought to be offlined?");
 13 return;13 return;
 14 }14 }
 15 WARN_ON_ONCE(rnp != rdp->mynode &&15 WARN_ON_ONCE(rnp != rdp->mynode &&
 16 (!list_empty(&rnp->blocked_tasks[0]) ||16 (!list_empty(&rnp->blocked_tasks[0]) ||
 17 !list_empty(&rnp->blocked_tasks[1])));17 !list_empty(&rnp->blocked_tasks[1])));
 18 for (i = 0; i < 2; i++) {18 for (i = 0; i < 2; i++) {
 19 lp = &rnp->blocked_tasks[i];19 lp = &rnp->blocked_tasks[i];
 20 lp_root = &rnp_root->blocked_tasks[i];20 lp_root = &rnp_root->blocked_tasks[i];
 21 while (!list_empty(lp)) {21 while (!list_empty(lp)) {
 22 tp = list_entry(lp->next, typeof(*tp), rcu_node_entry);22 tp = list_entry(lp->next, typeof(*tp), rcu_node_entry);
 23 spin_lock(&rnp_root->lock); /* irqs already disabled */23 spin_lock(&rnp_root->lock); /* irqs already disabled */
 24 list_del(&tp->rcu_node_entry);24 list_del(&tp->rcu_node_entry);
 25 tp->rcu_blocked_node = rnp_root;25 tp->rcu_blocked_node = rnp_root;
 26 list_add(&tp->rcu_node_entry, lp_root);26 list_add(&tp->rcu_node_entry, lp_root);
 27 spin_unlock(&rnp_root->lock); /* irqs remain disabled */27 spin_unlock(&rnp_root->lock); /* irqs remain disabled */
 28 }28 }
 29 }29 }
 30 }30 }

© 2011 IBM Corporation41

 1 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,1 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
 2 struct rcu_node *rnp,2 struct rcu_node *rnp,
 3 struct rcu_data *rdp)3 struct rcu_data *rdp)
 4 {4 {
 5 int i;5 int i;
 6 struct list_head *lp;6 struct list_head *lp;
 7 struct list_head *lp_root;7 struct list_head *lp_root;
 8 int retval;8 int retval;
 9 struct rcu_node *rnp_root = rcu_get_root(rsp);9 struct rcu_node *rnp_root = rcu_get_root(rsp);
 10 struct task_struct *tp;10 struct task_struct *tp;
 11 11
 12 if (rnp == rnp_root) {12 if (rnp == rnp_root) {
 13 WARN_ONCE(1, "Last CPU thought to be offlined?");13 WARN_ONCE(1, "Last CPU thought to be offlined?");
 14 return 0; /* Shouldn't happen: at least one CPU online. */14 return 0; /* Shouldn't happen: at least one CPU online. */
 15 }15 }
 16 WARN_ON_ONCE(rnp != rdp->mynode &&16 WARN_ON_ONCE(rnp != rdp->mynode &&
 17 (!list_empty(&rnp->blocked_tasks[0]) ||17 (!list_empty(&rnp->blocked_tasks[0]) ||
 18 !list_empty(&rnp->blocked_tasks[1])));18 !list_empty(&rnp->blocked_tasks[1])));
 19 retval = rcu_preempted_readers(rnp);19 retval = rcu_preempted_readers(rnp);
 20 for (i = 0; i < 2; i++) {20 for (i = 0; i < 2; i++) {
 21 lp = &rnp->blocked_tasks[i];21 lp = &rnp->blocked_tasks[i];
 22 lp_root = &rnp_root->blocked_tasks[i];22 lp_root = &rnp_root->blocked_tasks[i];
 23 while (!list_empty(lp)) {23 while (!list_empty(lp)) {
 24 tp = list_entry(lp->next, typeof(*tp), rcu_node_entry);24 tp = list_entry(lp->next, typeof(*tp), rcu_node_entry);
 25 spin_lock(&rnp_root->lock); /* irqs already disabled */25 spin_lock(&rnp_root->lock); /* irqs already disabled */
 26 list_del(&tp->rcu_node_entry);26 list_del(&tp->rcu_node_entry);
 27 tp->rcu_blocked_node = rnp_root;27 tp->rcu_blocked_node = rnp_root;
 28 list_add(&tp->rcu_node_entry, lp_root);28 list_add(&tp->rcu_node_entry, lp_root);
 29 spin_unlock(&rnp_root->lock); /* irqs remain disabled */29 spin_unlock(&rnp_root->lock); /* irqs remain disabled */
 30 }30 }
 31 }31 }
 32 return retval;32 return retval;
 33 }33 }

© 2011 IBM Corporation42

Avoiding Debugging By Mechanical Proofs

© 2011 IBM Corporation43

Avoiding Debugging By Mechanical Proofs

Works well for small, self-contained algorithms
–http://lwn.net/Articles/243851/ (QRCU)
–http://lwn.net/Articles/279077/ (RCU dynticks I/F)
–git://lttng.org/userspace-rcu formal-model (URCU)

However, the need for formal proof often indicates an
overly complex design!!!

–Preemptible RCU's dynticks interface being an extreme case in
point (http://lwn.net/Articles/279077/)

© 2011 IBM Corporation44

Avoiding Debugging By Statistical Analysis

© 2011 IBM Corporation45

Avoiding Debugging By Statistical Analysis

Different kernel configuration options select different code

Suppose that more failure occur with CONFIG_FOO=y
–Focus inspection on code under #ifdef CONFIG_FOO

But what exactly does “more failures” mean?

© 2011 IBM Corporation46

Avoiding Debugging By Statistical Analysis

Different kernel configuration options select different code

Suppose that more failure occur with CONFIG_FOO=y
–Focus inspection on code under #ifdef CONFIG_FOO

But what exactly does “more failures” mean?
–That is where the statistical analysis comes in
–The “more failures” must be enough more to be statistically significant
–One of the most useful classes I took as an undergraduate was a

statistics course!

© 2011 IBM Corporation47

Coping With Schedule Pressure

© 2011 IBM Corporation48

Coping With Schedule Pressure

When you are fixing a critical bug, speed counts

The difference is level of risk
–The code is already broken, so less benefit to using extremely

dainty process steps
–But only if you follow up with careful process
–Which I repeatedly learn the hard way:

http://paulmck.livejournal.com/14639.html
–Failure to invest a few days in early 2009 cost me more than a

month in late 2009!!!

Long-term perspective required
–And that means you – leave the “blame it on management” game to

Dilbert cartoons
–Align with management initiatives, for example, “agile development”

© 2011 IBM Corporation49

But I Did All This And There Are Still Bugs!!!

© 2011 IBM Corporation50

But I Did All This And There Are Still Bugs!!!

 “Be Careful!!! It Is A Real World Out There!!!”

The purpose of careful software-development practices
is to reduce risk

–Strive for perfection, but understand that this goal is rarely
reached in this world

© 2011 IBM Corporation51

But I Did All This And There Are Still Bugs!!!

 “Be Careful!!! It Is A Real World Out There!!!”

The purpose of careful software-development practices
is to reduce risk

–Strive for perfection, but understand that this goal is rarely
reached in this world

But you still need to fix your bugs!!!

© 2011 IBM Corporation52

Fixing Bugs

The first challenge is locating the bugs

© 2011 IBM Corporation53

Fixing Bugs

The first challenge is locating the bugs
–The computer knows where the bugs are

© 2011 IBM Corporation54

Fixing Bugs

The first challenge is locating the bugs
–The computer knows where the bugs are
–So your job is to make it tell you!

Ways to make the computer tell you where the bugs are:

© 2011 IBM Corporation55

Fixing Bugs

The first challenge is locating the bugs
–The computer knows where the bugs are
–So your job is to make it tell you!

Ways to make the computer tell you where the bugs are:
–Debugging printk()s and assertions
–Event tracing and ftrace
–Lock dependency checker (CONFIG_PROVE_LOCKING and

CONFIG_PROVE_RCU)
–Static analysis (and pay attention to compiler warnings!!!)
–Structured testing: Use an experimental approach
–Record all test results, including environment

© 2011 IBM Corporation56

Fixing Bugs

The first challenge is locating the bugs
–The computer knows where the bugs are
–So your job is to make it tell you!
–But getting another person's viewpoint can be helpful

• To 10,000 educated and experienced eyes, all bugs are shallow

Gaining other people's viewpoints

© 2011 IBM Corporation57

Fixing Bugs

The first challenge is locating the bugs
–The computer knows where the bugs are
–So your job is to make it tell you!
–But getting another person's viewpoint can be helpful

• To 10,000 educated and experienced eyes, all bugs are shallow

Gaining other people's viewpoints
–Have other people review your code
–Explain your code to someone else
–Special case of explaining code: Document it

• Think of questions you might ask if someone else showed you the code
• Focus on the parts of the code you are most proud of: Most likely buggy!
• Try making a copy of the code, removing the comments, and then

documenting it: Perhaps the comments are confusing you

© 2011 IBM Corporation58

But What If The Computer Knows Too Much?

Event tracing for RCU: 35MB of trace events for failure

Way too much to read and analyze by hand

What to do?

© 2011 IBM Corporation59

But What If The Computer Knows Too Much?

Event tracing for RCU: 35MB of trace events for each failure

Way too much to read and analyze by hand all the time

What to do? Scripting!!!

How to generate useful scripts:
–Do it by hand the first few times
–But keep detailed notes on what you did and what you found
–Incrementally construct scripts to carry out the most laborious tasks
–Eventually, you will have a script that analyzes the failures

But suppose you are working on many different projects?

© 2011 IBM Corporation60

But What If The Computer Knows Too Much?

Event tracing for RCU: 35MB of trace events for each failure

Way too much to read and analyze by hand all the time

What to do? Scripting!!!

How to generate useful scripts:
–Do it by hand the first few times
–But keep detailed notes on what you did and what you found
–Incrementally construct scripts to carry out the most laborious tasks
–Eventually, you will have a script that analyzes the failures

But suppose you are working on many different projects?
–Script the common cases that occur in many projects
–Take advantage of tools others have constructed

© 2011 IBM Corporation61

Summary and Conclusions

© 2011 IBM Corporation62

Summary and Conclusions

Avoid Debugging By Design

Avoid Debugging By Process

Avoid Debugging By Mechanical Proofs

Avoid Debugging By Statistical Analysis

Avoid Schedule Pressure via Long-Term View

But Even If You Do All This, You Will Still Do Some
Debugging (http://lwn.net/Articles/453002/)

–Yes, you are living in the real world!!!
–Might be painful sometimes, but it sure beats all known

alternatives...

© 2011 IBM Corporation63

Legal Statement

 This work represents the view of the author and does not
necessarily represent the view of IBM.

 IBM and IBM (logo) are trademarks or registered
trademarks of International Business Machines Corporation
in the United States and/or other countries.

 Linux is a registered trademark of Linus Torvalds.

 Other company, product, and service names may be
trademarks or service marks of others.

	IBM Presentation Template Full Version
	Team
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

