
© 2015 IBM Corporation

Formal Verification and Linux-Kernel Concurrency

Paul E. McKenney, IBM Distinguished Engineer, Linux Technology Center
Member, IBM Academy of Technology

Beaver BarCamp, April 18, 2015

© 2015 IBM Corporation2

Beaver BarCamp, April 18, 2015

Overview

Two Definitions and a Consequence

Current RCU Regression Testing

How Well Does Linux-Kernel Testing Really Work?

Why Formal Verification?

Formal Verification and Regression Testing: Requirements

Formal Verification Challenge

© 2015 IBM Corporation3

Beaver BarCamp, April 18, 2015

Two Definitions and a Consequence

© 2015 IBM Corporation4

Beaver BarCamp, April 18, 2015

Two Definitions and a Consequence

A software system is non-trivial if it has at least one bug

A reliable software system has no known bugs

© 2015 IBM Corporation5

Beaver BarCamp, April 18, 2015

Two Definitions and a Consequence

A software system is non-trivial if it has at least one bug

A reliable software system has no known bugs

Therefore, any non-trivial reliable software system has at
least one bug that you don't know about

© 2015 IBM Corporation6

Beaver BarCamp, April 18, 2015

Two Definitions and a Consequence

A software system is non-trivial if it has at least one bug

A reliable software system has no known bugs

Therefore, any non-trivial reliable software system has at
least one bug that you don't know about

Yet there are more than a billion users of the Linux kernel

© 2015 IBM Corporation7

Beaver BarCamp, April 18, 2015

Two Definitions and a Consequence

A software system is non-trivial if it has at least one bug

A reliable software system has no known bugs

Therefore, any non-trivial reliable software system has at
least one bug that you don't know about

Yet there are more than a billion users of the Linux kernel
–In practice, validation is about reducing risk
–Can formal verification now take a front-row seat in this risk reduction?

© 2015 IBM Corporation8

Beaver BarCamp, April 18, 2015

Two Definitions and a Consequence

A software system is non-trivial if it has at least one bug

A reliable software system has no known bugs

Therefore, any non-trivial reliable software system has at
least one bug that you don't know about

Yet there are more than a billion users of the Linux kernel
–In practice, validation is about reducing risk
–Can formal verification now take a front-row seat in this risk reduction?

What would need to happen for me to include formal
verification in my RCU regression testing?

© 2015 IBM Corporation9

Beaver BarCamp, April 18, 2015

Current RCU Regression Testing

© 2015 IBM Corporation10

Beaver BarCamp, April 18, 2015

Current RCU Regression Testing
But First, What Is RCU (Read-Copy Update)?

© 2015 IBM Corporation11

Beaver BarCamp, April 18, 2015

RCU Is A Synchronization Mechanism That Avoids
Contention and Expensive Hardware Operations

16-CPU 2.8GHz Intel X5550 (Nehalem) System16-CPU 2.8GHz Intel X5550 (Nehalem) System

Operation Cost (ns) Ratio
Clock period 0.4 1
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache miss 12.9 35.8
CAS cache miss 7.0 19.4

31.2 86.6
31.2 86.5
92.4 256.7
95.9 266.4

Single cache miss (off-core)
CAS cache miss (off-core)
Single cache miss (off-socket)
CAS cache miss (off-socket)

Typical synchronization
mechanisms do this a lot

Heavily
optimized

reader-writer
lock might get

here for readers
(but too bad
about those

poor writers...)

Want to be here!

© 2015 IBM Corporation12

Beaver BarCamp, April 18, 2015

The Conceptual Components of RCU

 Publishing of new data

 Subscribing to the current version of data

 Waiting for pre-existing RCU readers: Avoid disrupting readers by
maintaining multiple versions of the data

– Each reader continues traversing its copy of the data while a new copy might be being
created concurrently by each updater

• Hence the name read-copy update, or RCU
– Once all pre-existing RCU readers are done with them, old versions of the data may be

discarded

 In Linux kernel, frequently used to replace reader-writer locking

 References:
– McKenney and Slingwine: “Read-Copy Update: Using Execution History to Solve

Concurrency Problems”, PDCS 1998
– Desnoyers, McKenney, Stern, Dagenais, and Walpole: “User-Level Implementations of

Read-Copy Update”, Feb. 2012 IEEE TPDS
– McKenney: “Structured Deferral: Synchronization via Procrastination”, July 2013 CACM

© 2015 IBM Corporation13

Beaver BarCamp, April 18, 2015

RCU Has Exceedingly Lightweight Readers

 In non-preemptible (run-to-block) environments, lightest-
weight conceivable read-side primitives

–#define rcu_read_lock()
–#define rcu_read_unlock()
–RCU readers are weakly ordered

Best possible performance, scalability, real-time response,
wait-freedom, and energy efficiency

Uses indirect reasoning to determine when readers are done
–In preemptible environments, rcu_read_lock() and rcu_read_unlock()

manipulate per-thread variables

© 2015 IBM Corporation14

Beaver BarCamp, April 18, 2015

Publication of And Subscription to New Data

A cptr

->a=?
->b=?
->c=?

cptrcptr cptr

in
iti

al
iz

at
io

n

km
a

llo
c(

)

rc
u_

as
si

g n
_p

oi
nt

er
(c

pt
r,

p)

->a=1
->b=2
->c=3

->a=1
->b=2
->c=3

p
=

 r
cu

_d
er

ef
er

en
c e

(c
pt

r)

Key: Dangerous for updates: all readers can access
Still dangerous for updates: pre-existing readers can access (next slide)
Safe for updates: inaccessible to all readers

readertmp tmp tmp

But if all we do is add, we have a big memory leak!!!But if all we do is add, we have a big memory leak!!!

© 2015 IBM Corporation15

Beaver BarCamp, April 18, 2015

RCU Removal From Linked List

 Combines waiting for readers and multiple versions:
– Writer removes the cat's element from the list (list_del_rcu())

– Writer waits for all readers to finish (synchronize_rcu())

– Writer can then free the cat's element (kfree())

A

B

C

boa

cat

gnu

boa

cat

gnu

boa

cat

gnu

boa

gnu
sy

nc
hr

on
i z

e_
rc

u(
)

lis
t_

de
l_

rc
u(

)

One Version Two Versions One Version

Readers? Readers? Readers?X

One Version

© 2015 IBM Corporation16

Beaver BarCamp, April 18, 2015

Waiting for Pre-Existing Readers

 Non-preemptive environment (CONFIG_PREEMPT=n)
– RCU readers are not permitted to block
– Same rule as for tasks holding spinlocks

 CPU context switch means all that CPU's readers are done

 Grace period ends after all CPUs execute a context switch

synchronize_rcu()

CPU 0

CPU 1

CPU 2

co
nt

ex
t

sw
itc

h

Grace Period

RCU re
ad

er

remove data free data

© 2015 IBM Corporation17

Beaver BarCamp, April 18, 2015

Synchronization Without Changing Machine State?

But rcu_read_lock() does not need to change machine state
–Instead, it acts on the developer, who must avoid blocking within RCU

read-side critical sections
–Or, more generally, avoid quiescent states within RCU read-side

critical sections

RCU is therefore synchronization via social engineering

As are all other synchronization mechanisms:
–“Avoid data races”
–“Protect specified variables with the corresponding lock”
–“Access shared variables only within transactions”

© 2015 IBM Corporation18

Beaver BarCamp, April 18, 2015

Toy Implementation of RCU: 20 Lines of Code

 Read-side primitives:
#define rcu_read_lock()
#define rcu_read_unlock()
#define rcu_dereference(p) \
({ \
 typeof(p) _p1 = (*(volatile typeof(p)*)&(p)); \
 smp_read_barrier_depends(); \
 _p1; \
})

 Update-side primitives
#define rcu_assign_pointer(p, v) \
({ \
 smp_wmb(); \
 (p) = (v); \
})
void synchronize_rcu(void)
{
 int cpu;

 for_each_online_cpu(cpu)
 run_on(cpu);
}

Only 9 of which are needed on sequentially consistent systems

© 2015 IBM Corporation19

Beaver BarCamp, April 18, 2015

RCU Performance: Read-Only Hash Table

RCU and hazard pointers scale quite well!!!

© 2015 IBM Corporation20

Beaver BarCamp, April 18, 2015

RCU Area of Applicability

Update-Mostly, Need Consistent Data
(RCU is Really Unlikely to be the Right Tool For The Job, But It Can:
(1) Provide Existence Guarantees For Update-Friendly Mechanisms

(2) Provide Wait-Free Read-Side Primitives for Real-Time Use)

Read-Write, Need Consistent Data
(RCU Might Be OK...)

Read-Mostly, Need Consistent Data
(RCU Works OK)

Read-Mostly, Stale &
Inconsistent Data OK
(RCU Works Great!!!)

© 2015 IBM Corporation21

Beaver BarCamp, April 18, 2015

RCU Applicability to the Linux Kernel

© 2015 IBM Corporation22

Beaver BarCamp, April 18, 2015

Current RCU Regression Testing

© 2015 IBM Corporation23

Beaver BarCamp, April 18, 2015

The Nature of Testing

One does not simply test correctness into one's program

Common practice applies statistical inference to test results
–For example, “These test results show that the change reduced the

program's failure rate by at least two orders of magnitude, with 99.5%
confidence.”

Bugs can of course be deterministic in nature
–One system deterministically crashed every evening just after backups
–But attempts to reproduce in the lab resulted in 27-hour MTBF
–Once the bug was identified, a 12-minute MTBF test was produced

Not perfect, but commonly used in practice

© 2015 IBM Corporation24

Beaver BarCamp, April 18, 2015

Current RCU Regression Testing

Stress-test suite: “rcutorture”
–http://lwn.net/Articles/154107/, http://lwn.net/Articles/622404/

 “Intelligent fuzz testing”: “trinity”
–http://codemonkey.org.uk/projects/trinity/

Test suite including static analysis: “0-day test robot”
–https://lwn.net/Articles/514278/

 Integration testing: “linux-next tree”
–https://lwn.net/Articles/571980/

© 2015 IBM Corporation25

Beaver BarCamp, April 18, 2015

Current RCU Regression Testing

Stress-test suite: “rcutorture”
–http://lwn.net/Articles/154107/, http://lwn.net/Articles/622404/

 “Intelligent fuzz testing”: “trinity”
–http://codemonkey.org.uk/projects/trinity/

Test suite including static analysis: “0-day test robot”
–https://lwn.net/Articles/514278/

 Integration testing: “linux-next tree”
–https://lwn.net/Articles/571980/

Above is old technology – but not entirely ineffective
–2010: wait for -rc3 or -rc4. 2013: No problems with -rc1

Formal verification in design, but not in regression testing
–http://lwn.net/Articles/243851/, https://lwn.net/Articles/470681/,

https://lwn.net/Articles/608550/

© 2015 IBM Corporation26

Beaver BarCamp, April 18, 2015

How Well Does Linux-Kernel Testing Really Work?

© 2015 IBM Corporation27

Beaver BarCamp, April 18, 2015

Example 1: RCU-Scheduler Mutual Dependency

RCU Scheduler

Synchronization

Schedule Threads
Priority Boosting

Interrupt Handling

© 2015 IBM Corporation28

Beaver BarCamp, April 18, 2015

So, What Was The Problem?

Found during testing of Linux kernel v3.0-rc7:
–RCU read-side critical section is preempted for an extended period
–RCU priority boosting is brought to bear
–RCU read-side critical section ends, notes need for special processing
–Interrupt invokes handler, then starts softirq processing
–Scheduler invoked to wake ksoftirqd kernel thread:

• Acquires runqueue lock and enters RCU read-side critical section
• Leaves RCU read-side critical section, notes need for special processing
• Because in_irq() returns false, special processing attempts deboosting
• Which causes the scheduler to acquire the runqueue lock
• Which results in self-deadlock

–(See http://lwn.net/Articles/453002/ for more details.)

Fix: Add separate “exiting read-side critical section” state
–Also validated my creation of correct patches – without testing!

Note: Remains a bug even under SC

© 2015 IBM Corporation29

Beaver BarCamp, April 18, 2015

Example 2: Grace Period Cleanup/Initialization Bug

1. CPU 0 completes grace period, starts new one, cleaning up and initializing up through first
leaf rcu_node structure

2. CPU 1 passes through quiescent state (new grace period!)

3. CPU 1 does rcu_read_lock() and acquires reference to A

4. CPU 16 exits dyntick-idle mode (back on old grace period)

5. CPU 16 removes A, passes it to call_rcu()

6. CPU 16 associates callback with next grace period

7. CPU 0 completes cleanup/initialization of rcu_node structures

8. CPU 16 callback associated with now-current grace period

9. All remaining CPUs pass through quiescent states

10. Last CPU performs cleanup on all rcu_node structures

11. CPU 16 notices end of grace period, advances callback to “done” state

12. CPU 16 invokes callback, freeing A (too bad CPU 1 is still using it)

Not found via Linux-kernel validation: In production for 5 years!

© 2015 IBM Corporation30

Beaver BarCamp, April 18, 2015

Example 2: Grace Period Cleanup/Initialization Bug

CPU 0

CPU 1

CPU 15

CPU 16

CPU 17

CPU 31

QS

QS

QS

Idle

Idle

Idle

Idle Remove A QS

Read A

QS

Free A

Still
Using A!!!Grace

Period 0
Grace

Period 1
Grace

Period 2

Grace
Period 0

Grace
Period 1

Grace
Period 2

Note: Remains a bug even under SC

© 2015 IBM Corporation31

Beaver BarCamp, April 18, 2015

Example 2: Grace Period Cleanup/Initialization Fix

CPU 0

CPU 1

CPU 15

CPU 16

CPU 17

CPU 31

QS

QS

QS

Idle

Idle

Idle

Idle Remove A QS

Read A

QS

Grace
Period 0

Grace Period
intermission

Grace
Period 1

Grace
Period 0

Grace
Period 1

Grace Period
intermission

Cannot yet free A

Not found via Linux-kernel validation: In production for 5 years!
On systems with up to 4096 CPUs...

© 2015 IBM Corporation32

Beaver BarCamp, April 18, 2015

Why Formal Verification?

© 2015 IBM Corporation33

Beaver BarCamp, April 18, 2015

Why Formal Verification?

At least one billion embedded Linux devices
–A bug that occurs once per million years manifests three times per day
–But assume a 1% duty cycle, 10% in the kernel, and 1% of that in RCU

© 2015 IBM Corporation34

Beaver BarCamp, April 18, 2015

Why Formal Verification?

At least one billion embedded Linux devices
–A bug that occurs once per million years manifests three times per day
–But assume a 1% duty cycle, 10% in the kernel, and 1% of that in RCU
–10,000 device-years of RCU per year: p(RCU) = 10-5

At least 20 million Linux servers
–A bug that occurs once per million years manifests twice per month
–Assume 50% duty cycle, 10% in the kernel, and 1% of that in RCU
–10,000 system-years of RCU per year: p(RCU) = 5(10-4)

© 2015 IBM Corporation35

Beaver BarCamp, April 18, 2015

Why Formal Verification?

At least one billion embedded Linux devices
–A bug that occurs once per million years manifests three times per day
–But assume a 1% duty cycle, 10% in the kernel, and 1% of that in RCU
–10,000 device-years of RCU per year: p(RCU) = 10-5

At least 20 million Linux servers
–A bug that occurs once per million years manifests twice per month
–Assume 50% duty cycle, 10% in the kernel, and 1% of that in RCU
–10,000 system-years of RCU per year: p(RCU) = 5(10-4)

But assume bugs are races between pairs of random events
–N-CPU probability of RCU race bug: p(bug)=(p(RCU)/N)2N(N-1)/2
–Assume rcutorture p(RCU)=1, compute rcutorture speedup:

• Embedded: 1010: 36.5 days of rcutorture testing covers one year
• Server: 4(106): 250 years of rcutorture testing covers one year
• Linux kernel releases are only about 60 days apart: RCU is moving target

© 2015 IBM Corporation36

Beaver BarCamp, April 18, 2015

How Does RCU Work Without Formal Verification?

So why can so many people use Linux-kernel RCU?
–Other failures mask those of RCU, including hardware failures

• I know of no human artifact with a million-year MTBF
–Increasing CPUs on test system increases race probability

• And embedded systems have very few CPUs
–Rare but critical operations can be forced to happen more frequently

• CPU hotplug, expedited grace periods, RCU barrier operations...
–Knowledge of possible race conditions allows targeted tests

• Plus other dirty tricks learned in 25 years of testing concurrent software
–Formal verification is used for some aspects of RCU design

• Dyntick idle, sysidle, NMI interactions

© 2015 IBM Corporation37

Beaver BarCamp, April 18, 2015

Formal Verification and Regression Testing:
Requirements

© 2015 IBM Corporation38

Beaver BarCamp, April 18, 2015

Formal Verification and Regression Testing:
Requirements

(1)Either automatic translation or no translation required
–Manual translation provides opportunity for human error

(2)Automatic discarding of irrelevant portions of the code
–Manual discarding provides opportunity for human error

(3)Reasonable memory and CPU overhead
–Bugs must be located in practice as well as in theory
–Linux kernel is 20 million lines of code and life is short

(4)Map to source code line(s) containing the bug
–“Something is wrong somewhere” is not a helpful diagnostic

(5)Modest input outside of source code under test
–Preferably glean much of the specification from the source code itself

© 2015 IBM Corporation39

Beaver BarCamp, April 18, 2015

Formal Validation Tools Used and Regression Testing

Promela and Spin
– Holzmann: “The Spin Model Checker”
– I have used Promela/Spin in design for more than 20 years, but:

• Limited problem size, long run times, large memory consumption
• Does not implement memory models (assumes sequential consistency)
• Special language, difficult to translate from C

ARMMEM and PPCMEM
– Alglave, Maranget, Pawan, Sarkar, Sewell, Williams, Nardelli:

“PPCMEM/ARMMEM: A Tool for Exploring the POWER and ARM Memory
Models”

• Very limited problem size, long run times, large memory consumption
• Restricted pseudo-assembly language, manual translation required

Herd (3)
– Alglave, Maranget, and Tautschnig: “Herding Cats: Modelling, Simulation,

Testing, and Data-mining for Weak Memory”
• Very limited problem size (but much improved run times and memory consumption)
• Restricted pseudo-assembly language, manual translation required

Useful, but not for regression testing

© 2015 IBM Corporation40

Beaver BarCamp, April 18, 2015

Promela Model of Incorrect Atomic Increment (1/2)

 1 #define NUMPROCS 2
 2
 3 byte counter = 0;
 4 byte progress[NUMPROCS];
 5
 6 proctype incrementer(byte me)
 7 {
 8 int temp;
 9
 10 temp = counter;
 11 counter = temp + 1;
 12 progress[me] = 1;
 13 }

© 2015 IBM Corporation41

Beaver BarCamp, April 18, 2015

Promela Model of Incorrect Atomic Increment (2/2)
 15 init {
 16 int i = 0;
 17 int sum = 0;
 18
 19 atomic {
 20 i = 0;
 21 do
 22 :: i < NUMPROCS >
 23 progress[i] = 0;
 24 run incrementer(i);
 25 i++
 26 :: i >= NUMPROCS > break
 27 od;
 28 }
 29 atomic {
 30 i = 0;
 31 sum = 0;
 32 do
 33 :: i < NUMPROCS >
 34 sum = sum + progress[i];
 35 i++
 36 :: i >= NUMPROCS > break
 37 od;
 38 assert(sum < NUMPROCS || counter == NUMPROCS)
 39 }
 40 }

© 2015 IBM Corporation42

Beaver BarCamp, April 18, 2015

PPCMEM Example Litmus Test for IRIW

PPC IRIW.litmus
""
(* Traditional IRIW. *)
{
0:r1=1; 0:r2=x;
1:r1=1; 1:r4=y;
2: 2:r2=x; 2:r4=y;
3: 3:r2=x; 3:r4=y;
}
 P0 | P1 | P2 | P3 ;
 stw r1,0(r2) | stw r1,0(r4) | lwz r3,0(r2) | lwz r3,0(r4) ;
 | | sync | sync ;
 | | lwz r5,0(r4) | lwz r5,0(r2) ;

exists
(2:r3=1 /\ 2:r5=0 /\ 3:r3=1 /\ 3:r5=0)

Fourteen CPU hours and 10 GB of memory

© 2015 IBM Corporation43

Beaver BarCamp, April 18, 2015

Herd Example Litmus Test for Incorrect IRIW

PPC IRIWlwsyncf.litmus
""
(* Traditional IRIW. *)
{
0:r1=1; 0:r2=x;
1:r1=1; 1:r4=y;
2: 2:r2=x; 2:r4=y;
3: 3:r2=x; 3:r4=y;
}
 P0 | P1 | P2 | P3 ;
 stw r1,0(r2) | stw r1,0(r4) | lwz r3,0(r2) | lwz r3,0(r4) ;
 | | lwsync | lwsync ;
 | | lwz r5,0(r4) | lwz r5,0(r2) ;

exists
(2:r3=1 /\ 2:r5=0 /\ 3:r3=1 /\ 3:r5=0)

. . .

Positive: 1 Negative: 15
Condition exists (2:r3=1 /\ 2:r5=0 /\ 3:r3=1 /\ 3:r5=0)
Observation IRIW Sometimes 1 15

© 2015 IBM Corporation44

Beaver BarCamp, April 18, 2015

Cautiously Optimistic For Future CBMC Version

(1)Either automatic translation or no translation required
● No translation required from C

(2)Automatic discarding of irrelevant portions of the code
● Seems to do this quite well (sometimes too well)

(3)Reasonable memory and CPU overhead
● OK for Tiny RCU and some tiny uses of concurrent RCU
● Jury is out for concurrent linked-list manipulations

(4)Map to source code line(s) containing the bug
● Yes, reasonably good backtrace capability

(5)Modest input outside of source code under test
● Yes, modest boilerplate required, can use existing assertions

Kroening, Clarke, and Lerda, “A tool for checking ANSI-C programs”, Tools and
Algorithms for the Construction and Analysis of Systems, 2004, pp. 168-176.

© 2015 IBM Corporation45

Beaver BarCamp, April 18, 2015

Ongoing Work

Ahmed, Groce, and Jensen: Use mutation generation and
formal verification to find holes in rcutorture

Tautschnig and Kroening: Experiments verifying RCU and
uses of RCU using CBMC

© 2015 IBM Corporation46

Beaver BarCamp, April 18, 2015

Formal Verification Challenge

© 2015 IBM Corporation47

Beaver BarCamp, April 18, 2015

Formal Verification Challenge

Testing has many shortcomings
–Cannot find bugs in code not exercised
–Cannot reasonably exhaustively test even small software systems

Nevertheless, a number of independently developed test
harnesses have found bugs in Linux-kernel RCU

As far as I know, no independently developed formal-
verification model has yet found a bug in Linux-kernel RCU

© 2015 IBM Corporation48

Beaver BarCamp, April 18, 2015

Formal Verification Challenge

Can you verify SYSIDLE from C source?
–Or, of course, find a bug

This Verification Challenge 2:
–http://paulmck.livejournal.com/38016.html

Mathieu Desnoyers and I verified (separately) with Promela:
– https://www.kernel.org/pub/linux/kernel/people/paulmck/Validation/sysidle/

But neither Promela/spin is not suitable for regression testing

© 2015 IBM Corporation49

Beaver BarCamp, April 18, 2015

Legal Statement

This work represents the view of the author and does not
necessarily represent the view of IBM.

 IBM and IBM (logo) are trademarks or registered trademarks
of International Business Machines Corporation in the United
States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.

© 2015 IBM Corporation50

Beaver BarCamp, April 18, 2015

Questions?

	IBM Presentation Template Full Version
	Selecting a template
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

