Paul E. McKenney, IBM Distinguished Engineer, Linux Technology Center
Member, IBM Academy of Technology
The Royal Society: Verified Trustworthy Software Systems, April 4, 2016

Linux-Kernel Community Validation Practices

© 2016 IBM Corporation

The Royal Society: Verified Trustworthy Software Systems, April 4, 2016

Two Definitions and a Consequence

" A non-trivial software system contains at least one bug
" A reliable software system contains no known bugs

" Therefore, any non-trivial reliable software system contains at
least one bug that you don't know about

"Yet there are more than a billion users of the Linux kernel
—In practice, validation is about reducing risk
—Can formal verification now take a front-row seat in this risk reduction?

" What would need to happen for me to include formal
verification in my Linux-kernel RCU regression testing?

2 © 2016 IBM Corporation

The Royal Society: Verified Trustworthy Software Systems, April 4, 2016

Current Linux-Kernel Regression Testing

" Stress-test suite example: “rcutorture”
—http://lwn.net/Articles/154107/, http://lwn.net/Articles/622404/

"“Intelligent fuzz testing”: “trinity”, “syzkaller”
—http://codemonkey.org.uk/projects/trinity/
—https://github.com/google/syzkaller/wiki/Found-Bugs

" Test suite including static analysis: “O-day test robot”
—https://lwn.net/Articles/514278/

" Integration testing: “linux-next tree”
—https://lwn.net/Articles/571980/

"Above is old technology — but not entirely ineffective
—2010: wait for -rc3 or -rc4. 2013: No problems with -rcl

" Formal verification in design, but not in regression testing
—http://lwn.net/Articles/243851/, https://lwn.net/Articles/470681/,
https://lwn.net/Articles/608550/

3 © 2016 IBM Corporation

The Royal Society: Verified Trustworthy Software Systems, April 4, 2016

Formal Verification and Regression Testing:
Requirements

(1) Either automatic translation or no translation required
— Automatic discarding of irrelevant portions of the code
— Manual translation provides opportunity for human error!

(2) Correctly handle environment, including memory model
— The QRCU validation benchmark is an excellent cautionary tale

(3) Reasonable memory and CPU overhead
— Bugs must be located in practice as well as in theory
— Linux-kernel RCU is 15KLoC (plus 5KLoC tests) and release cycles are short

(4) Map to source code line(s) containing the bug
—“Something is wrong somewhere” is not helpful: | already know bugs exist

(5) Modest input outside of source code under test
— Preferably glean much of the specification from the source code itself (empirical spec!)
— Specifications are software and can have their own bugs

(6) Find relevant bugs

— Low false-positive rate, weight towards likelihood of occurrence (fixes create bugs!)

4 © 2016 IBM Corporation

The Royal Society: Verified Trustworthy Software Systems, April 4, 2016

Discussion

© 2016 IBM Corporation

The Royal Society: Verified Trustworthy Software Systems, April 4, 2016

Ongoing Work

* Ahmed, Groce, and Jensen: Use mutation generation and

formal verification to find holes in rcutorture
—Several holes found, one hiding a real bug

" Liang, Tautschnig, and Kroening: Experiments verifying RCU
and uses of RCU using CBMC

" Alglave, Maranget, Parri, Stern, and many arch maintainers:

Derive formal memory model for Linux kernel
—Including RCU, and will drive other tool development

"] hope to someday apply L4's technigues
—But these currently don't handle all of RCU's code

6 © 2016 IBM Corporation

The Royal Society: Verified Trustworthy Software Systems, April 4, 2016

Formal Validation Tools Used and Regression Testing

" Promela and Spin
—Holzmann: “The Spin Model Checker”

— | have used Promela/Spin in design for more than 20 years, but:
* Limited problem size, long run times, large memory consumption
* Does not implement memory models (assumes sequential consistency)
* Special language, difficult to translate from C

* ARMMEM and PPCMEM (2)

—Alglave, Maranget, Pawan, Sarkar, Sewell, Williams, Nardelli:
“PPCMEM/ARMMEM: A Tool for Exploring the POWER and ARM Memory
Models”

* Very limited problem size, long run times, large memory consumption
* Restricted pseudo-assembly language, manual translation required

"Herd (2, 3)
—Alglave, Maranget, and Tautschnig: “Herding Cats: Modelling, Simulation,

Testing, and Data-mining for Weak Memory”

* Very limited problem size (but much improved run times and memory consumption)
* Restricted pseudo-assembly language, manual translation required

7 Useful, but not for regression testing © 2016 1BM Corporation

The Royal Society: Verified Trustworthy Software Systems, April 4, 2016

Cautiously Optimistic For Future CBMC Version

(1)Either automatic translation or no translation required
—No translation required from C, discards irrelevant code quite well

(2)Correctly handle environment, including memory model
—SC and TSO, hopefully will do other memory models in the future

(3)Reasonable memory and CPU overhead
—OK for Tiny RCU and some tiny uses of concurrent RCU, Tree RCU WIP
—Jury is out for concurrent linked-list manipulations
—"“If you live by heuristics, you will die by heuristics”

(4)Map to source code line(s) containing the bug
—Yes, reasonably good backtrace capability

(5)Modest input outside of source code under test
—Yes, modest boilerplate required, can use existing assertions

(6)Find relevant bugs
—Jury still out

Kroening, Clarke, and Lerda, “Atool for checking ANSI-C programs”, Tools and Algorithms
for the Construction and Analysis of Systems, 2004, pp. 168-176.

8 © 2016 IBM Corporation

The Royal Society: Verified Trustworthy Software Systems, April 4, 2016

Formal Verification Challenge

© 2016 IBM Corporation

The Royal Society: Verified Trustworthy Software Systems, April 4, 2016

Formal Verification Challenge

" Testing has many shortcomings
—Cannot find bugs in code not exercised
—Cannot reasonably exhaustively test even small software systems

"Nevertheless, a number of independently developed test

harnesses have found bugs in Linux-kernel RCU
—Trinity, O-day test robot, -next testing, mutation testing

" As far as | know, no independently developed formal-

verification model has yet found a bug in Linux-kernel RCU
—Therefore, this challenge:

10 © 2016 IBM Corporation

The Royal Society: Verified Trustworthy Software Systems, April 4, 2016

Formal Verification Challenge

"Can you verify SYSIDLE from C source?
—Or, better yet, find a bug

" This Verification Challenge 2:
—http://paulmck.livejournal.com/38016.html

" Mathieu Desnoyers and | verified (separately) with Promela:
— https://www.kernel.org/pub/linux/kernel/people/paulmck/Validation/sysidle/

" But neither Promela/spin is not suitable for regression testing
" Can your formal-verification tool regression-test SYSIDLE?
" Or find some other Linux-kernel bug?

1 1 © 2016 IBM Corporation

The Royal Society: Verified Trustworthy Software Systems, April 4, 2016

Legal Statement

" This work represents the view of the author and does not
necessarily represent the view of IBM.

"IBM and IBM (logo) are trademarks or registered trademarks
of International Business Machines Corporation in the United
States and/or other countries.

"Linux Is a registered trademark of Linus Torvalds.

" Other company, product, and service names may be
trademarks or service marks of others.

12 © 2016 IBM Corporation

The Royal Society: Verified Trustworthy Software Systems, April 4, 2016

Backup RCU Slides

13

© 2016 IBM Corporation

The Royal Society: Verified Trustworthy Software Systems, April 4, 2016

RCU Removal From Linked List

" Combines waiting for readers and multiple versions:
— Writer removes the cat's element from the list (list_del_rcu())
— Writer waits for all readers to finish (synchronize_rcu())
— Writer can then free the cat's element (kfree())

One Version Two Versions One Version

| g |

boa

14

One Version

© 2016 IBM Corporation

The Royal Society: Verified Trustworthy Software Systems, April 4, 2016

Waiting for Pre-Existing Readers

" Non-preemptive environment (CONFIG_PREEMPT=n)

— RCU readers are not permitted to block
— Same rule as for tasks holding spinlocks

= CPU context switch means all that CPU's readers are done

" Grace period ends after all CPUs execute a context switch

15

2 g
@"}6 &9@
o &

<& =~ .

CPU 0 = R ® | >
|
i
CPU 1 = = e E—— T S Y
synchror_lize_rcu() i
. |

CPU 2 = | | ? >

32 ! > "o
N ' Grace Period OQIQ

© 2016 IBM Corporation

The Royal Society: Verified Trustworthy Software Systems, April 4, 2016

Toy Implementation of RCU: 20 Lines of Code

" Read-side primitives:

#define rcu read lock()

#define rcu read unlock()

#define rcu dereference(p) \

({\
typeof(p) _pl = (*(volatile typeof(p)*)&(p)); \
smp read barrier depends(); \
_pl; \

})

" Update-side primitives
#define rcu assign pointer(p, v) \
({ \
smp _wmb(); \
(p) = (v); \
})

void synchronize rcu(void)

{

int cpu;

for each online cpu(cpu)
run_on(cpu);

16 Only 9 of which are needed on sequentially consistent systems

© 2016 IBM Corporation

The Royal Society: Verified Trustworthy Software Systems, April 4, 2016

To Probe Deeper (RCU)

" https://queue.acm.org/detail.cfm?id=2488549

— “Structured Deferral: Synchronization via Procrastination” (also in July 2013 CACM)
http://doi.ieeecomputersociety.org/10.1109/TPDS.2011.159 and
http://www.computer.org/cms/Computer.org/dl/trans/td/2012/02/extras/ttd2012020375s.pdf

—“User-Level Implementations of Read-Copy Update”
git://lttng.org/userspace-rcu.git (User-space RCU git tree)
http://people.csail.mit.edu/nickolai/papers/clements-bonsai.pdf

— Applying RCU and weighted-balance tree to Linux mmap_sem.
http://www.usenix.org/event/atcl1/tech/final_files/Triplett.pdf

— RCU-protected resizable hash tables, both in kernel and user space
http://www.usenix.org/event/hotparll/tech/final_files/Howard.pdf

— Combining RCU and software transactional memory
http://wiki.cs.pdx.edu/rp/: Relativistic programming, a generalization of RCU
http://lwn.net/Articles/262464/, http://lwn.net/Articles/263130/, http://lwn.net/Articles/264090/

—“What is RCU?” Series
http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14el.pdf

— RCU motivation, implementations, usage patterns, performance (micro+sys)
http://www.livejournal.com/users/james_morris/2153.html

— System-level performance for SELinux workload: >500x improvement
http://www.rdrop.com/users/paulmck/RCU/hart_ipdps06.pdf

— Comparison of RCU and NBS (later appeared in JPDC)
http://doi.acm.org/10.1145/1400097.1400099

— History of RCU in Linux (Linux changed RCU more than vice versa)
http://read.seas.harvard.edu/cs261/2011/rcu.html

— Harvard University class notes on RCU (Courtesy of Eddie Koher)
http://www.rdrop.com/users/paulmck/RCU/ (More RCU information)

17

© 2016 IBM Corporation

The Royal Society: Verified Trustworthy Software Systems, April 4, 2016

To Probe Deeper (1/5)

* Hash tables:
— http://kernel.org/publ/linux/kernel/people/paulmck/perfbook/perfbook-el.html Chapter 10

= Split counters:
— http://kernel.org/publ/linux/kernel/people/paulmck/perfbook/perfbook.html Chapter 5
— http://events.linuxfoundation.org/sites/events/files/slides/BareMetal.2014.03.09a.pdf

" Perfect partitioning
— Candide et al: “Dynamo: Amazon's highly available key-value store”
* http://doi.acm.org/10.1145/1323293.1294281
— McKenney: “Is Parallel Programming Hard, And, If So, What Can You Do About It?”
* http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Section 6.5
— McKenney: “Retrofitted Parallelism Considered Grossly Suboptimal”
* Embarrassing parallelism vs. humiliating parallelism
* https://www.usenix.org/conference/hotparl2/retro%EF%AC%81tted-parallelism-considered-
grossly-sub-optimal
— McKenney et al: “Experience With an Efficient Parallel Kernel Memory Allocator”
* http://www.rdrop.com/users/paulmck/scalability/paper/mpalloc.pdf
— Bonwick et al: “Magazines and Vmem: Extending the Slab Allocator to Many CPUs and Arbitrary
Resources”
* http://static.usenix.org/event/usenix01/full_papers/bonwick/bonwick _html/
— Turner et al: “PerCPU Atomics”
* http://www.linuxplumbersconf.org/2013/ocw//system/presentations/1695/original/LPC%?20-
%20PerCpu%20Atomics.pdf

18 © 2016 IBM Corporation

The Royal Society: Verified Trustworthy Software Systems, April 4, 2016

To Probe Deeper (2/5)

" Stream-based applications:
— Sutton: “Concurrent Programming With The Disruptor”
* http://www.youtube.com/watch?v=UvE389P6Er4
* http://lca2013.linux.org.au/schedule/30168/view _talk
— Thompson: “Mechanical Sympathy”
* http://mechanical-sympathy.blogspot.com/

" Read-only traversal to update location
— Arcangeli et al: “Using Read-Copy-Update Technigues for System V IPC in the Linux 2.5
Kernel”
* https://www.usenix.org/legacy/events/usenix03/tech/freenix03/full_papers/arcangeli/arcan
geli_html/index.html

— Corbet: “Dcache scalability and RCU-walk”
* https://lwn.net/Articles/419811/

— Xu: “bridge: Add core IGMP snooping support”
* http://kerneltrap.com/mailarchive/linux-netdev/2010/2/26/6270589

— Triplett et al., “Resizable, Scalable, Concurrent Hash Tables via Relativistic Programming”
* http://www.usenix.org/event/atcl1/tech/final_files/Triplett.pdf

— Howard: “A Relativistic Enhancement to Software Transactional Memory”
* http://www.usenix.org/event/hotparll/tech/final_files/Howard.pdf

— McKenney et al: “URCU-Protected Hash Tables”
* http://lwn.net/Articles/573431/

19 © 2016 IBM Corporation

The Royal Society: Verified Trustworthy Software Systems, April 4, 2016

To Probe Deeper (3/5)

* Hardware lock elision: Overviews
— Kleen: “Scaling Existing Lock-based Applications with Lock Elision”
* http://queue.acm.org/detail.cim?id=2579227

* Hardware lock elision: Hardware description
— POWER ISA Version 2.07
* http://www.power.org/documentation/power-isa-version-2-07/
— Intel® 64 and 1A-32 Architectures Software Developer Manuals
* http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
— Jacobi et al: “Transactional Memory Architecture and Implementation for IBM System z”
* http://www.microsymposia.org/micro45/talks-posters/3-jacobi-presentation.pdf

* Hardware lock elision: Evaluations
— http://pcl.intel-research.net/publications/SC13-TSX.pdf
— http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Section 16.3

* Hardware lock elision: Need for weak atomicity

— Herlihy et al: “Software Transactional Memory for Dynamic-Sized Data Structures”
* http://research.sun.com/scalable/pubs/PODCO03.pdf

— Shavit et al: “Data structures in the multicore age”
* http://doi.acm.org/10.1145/1897852.1897873

— Haas et al: “How FIFO is your FIFO queue?”
* http://dl.acm.org/citation.cfm?id=2414731

— Gramoli et al: “Democratizing transactional programming”
* http://doi.acm.org/10.1145/2541883.2541900

20 © 2016 IBM Corporation

The Royal Society: Verified Trustworthy Software Systems, April 4, 2016

To Probe Deeper (4/5)

" RCU

— Desnoyers et al.: “User-Level Implementations of Read-Copy Update”
* http://www.rdrop.com/users/paulmck/RCU/urcu-main-accepted.2011.08.30a.pdf
* http://'www.computer.org/cms/Computer.org/dl/trans/td/2012/02/extras/ttd2012020375s.pdf
— McKenney et al.: “RCU Usage In the Linux Kernel: One Decade Later”
* http://rdrop.com/users/paulmck/techreports/survey.2012.09.17a.pdf
* http://rdrop.com/users/paulmck/techreports/RCUUsage.2013.02.24a.pdf
— McKenney: “Structured deferral: synchronization via procrastination”
* http://doi.acm.org/10.1145/2483852.2483867
— McKenney et al.: “User-space RCU” https://lwn.net/Articles/573424/

" Possible future additions
— Boyd-Wickizer: “Optimizing Communications Bottlenecks in Multiprocessor Operating
Systems Kernels”
* http://pdos.csail.mit.edu/papers/sbw-phd-thesis.pdf
— Clements et al: “The Scalable Commutativity Rule: Designing Scalable Software for
Multicore Processors”
* http://www.read.seas.harvard.edu/~kohler/pubs/clements13scalable.pdf
— McKenney: “N4037: Non-Transactional Implementation of Atomic Tree Move”
* http://www.rdrop.com/users/paulmck/scalability/paper/AtomicTreeMove.2014.05.26a.pdf
— McKenney: “C++ Memory Model Meets High-Update-Rate Data Structures”
* http://www2.rdrop.com/users/paulmck/RCU/C++Updates.2014.09.11a.pdf

2 1 © 2016 IBM Corporation

The Royal Society: Verified Trustworthy Software Systems, April 4, 2016

To Probe Deeper (5/5)

" RCU theory and semantics, academic contributions (partial list)
— Gamsa et al., “Tornado: Maximizing Locality and Concurrency in a Shared Memory
Multiprocessor Operating System”
* http://www.usenix.org/events/osdi99/full_papers/gamsa/gamsa.pdf
— McKenney, “Exploiting Deferred Destruction: An Analysis of RCU Techniques”
* http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14el.pdf
— Hart, “Applying Lock-free Techniques to the Linux Kernel”
* http://www.cs.toronto.edu/~tomhart/masters_thesis.html
— Olsson et al., “TRASH: A dynamic LC-trie and hash data structure”
* http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4281239
— Desnoyers, “Low-Impact Operating System Tracing”
* http://lwww.lttng.org/pub/thesis/desnoyers-dissertation-2009-12.pdf
— Dalton, “The Design and Implementation of Dynamic Information Flow Tracking ...”
* http://csl.stanford.edu/~christos/publications/2009.michael_dalton.phd_thesis.pdf
— Gotsman et al., “Verifying Highly Concurrent Algorithms with Grace (extended version)”
* http://software.imdea.org/~gotsman/papers/recycling-esopl3-ext.pdf
— Liu et al., “Mindicators: A Scalable Approach to Quiescence”
* http://dx.doi.org/10.1109/ICDCS.2013.39
— Tu et al., “Speedy Transactions in Multicore In-memory Databases”
* http://doi.acm.org/10.1145/2517349.2522713
— Arbel et al., “Concurrent Updates with RCU: Search Tree as an Example”
* http://www.cs.technion.ac.il/~mayaarl/podc047f.pdf

22 © 2016 IBM Corporation

The Royal Society: Verified Trustworthy Software Systems, April 4, 2016

Backup Promela/lPPCMEM/Herd Slides

23

© 2016 IBM Corporation

The Royal Society: Verified Trustworthy Software Systems, April 4, 2016

Promela Model of Incorrect Atomic Increment (1/2)

#define NUMPROCS 2

byte counter = 0;
byte progress[NUMPROCS];

proctype incrementer (byte me)

{

int temp;

0O JdJOo 0l b WDN R

10 temp = counter;

11 counter = temp + 1;
12 progress[me] = 1;
13 }

24 © 2016 IBM Corporation

The Royal Society: Verified Trustworthy Software Systems, April 4, 2016

Promela Model of Incorrect Atomic Increment (2/2)

25

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

init {
int i = 0;
int sum = 0;
atomic {
i = 0;
do
i < NUMPROCS ->
progress[i] = 0;
run incrementer(i);
i++
i >= NUMPROCS -> break
od;
}
atomic {
i = 0;
sum = 0;
do
:: i1 < NUMPROCS ->
sum = sum + progress[i];
i++
i >= NUMPROCS -> break
od;
assert(sum < NUMPROCS || counter
}

NUMPROCS)

© 2016 IBM Corporation

The Royal Society: Verified Trustworthy Software Systems, April 4, 2016

PPCMEM Example Litmus Test for IRIW

PPC IRIW.litmus

(* Traditional IRIW. *)
{

O:rl=1; O0:r2=x;

l:r1=1; l:rd=y;
2: 2:r2=x; 2:rd=y;
3: 3:r2=x; 3:ri=y;
¥

Pl
stw rl,0(r4)

PO
stw rl,0(r2)

exists
(2:r3=1 /\ 2:r5=0 /\ 3:r3=1 /\

26

P2

lwz r3,0(xr2)
sync

1wz r5,0(r4)

3:r5=0)

P3

lwz r3,0(r4)
sync

1wz r5,0(r2)

Fourteen CPU hours and 10 GB of memory

~e ~e ~e ~e

© 2016 IBM Corporation

The Royal Society: Verified Trustworthy Software Systems, April 4, 2016

Herd Example Litmus Test for Incorrect IRIW

27

PPC IRIW-lwsync-f.litmus

(* Traditional IRIW. *)

{

O:rl=1; O0:r2=x;

l:r1=1; l:rd=y;

2: 2:r2=Xx; 2:ri=y;

3: 3:r2=x; 3:ri=y;

¥

PO | P1 | P2

stw rl,0(r2) | stw rl,0(r4) | lwz r3,0(r2)
| | lwsync
| | 1wz r5,0(r4)

exists

(2:r3=1 /\ 2:xr5=0 /\ 3:r3=1 /\ 3:r5=0)

Positive: 1 Negative: 15

P3

1wz r3,0(r4)
lwsync

1wz r5,0(r2)

Condition exists (2:r3=1 /\ 2:r5=0 /\ 3:r3=1 /\ 3:r5=0)

Observation IRIW Sometimes 1 15

© 2016 IBM Corporation

	IBM Presentation Template Full Version
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

