
© 2014 IBM Corporation

But What About Updates?

Paul E. McKenney, IBM Distinguished Engineer, Linux Technology Center
Member, IBM Academy of Technology

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

© 2014 IBM Corporation2

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Overview

Aren't parallel updates a solved problem?

Special cases for parallel updates
–Split counters
–Per-CPU/thread processing
–Stream-based applications
–Read-only traversal to location being updated
–Hardware lock elision

Possible additions to parallel-programming toolbox

© 2014 IBM Corporation3

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Aren't Parallel Updates A Solved Problem?

© 2014 IBM Corporation4

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Parallel-Processing Workhorse: Hash Tables

Lock

Lock

Lock

Lock

Lock

Lock

A

B

E

G

F

C D

Perfect partitioning leads to perfect performance and stunning scalability!Perfect partitioning leads to perfect performance and stunning scalability!

© 2014 IBM Corporation5

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Parallel-Processing Workhorse: Hash Tables

Lock

Lock

Lock

Lock

Lock

Lock

A

B

E

G

F

C D

Perfect partitioning leads to perfect performance and stunning scalability!Perfect partitioning leads to perfect performance and stunning scalability!
In theory, anyway...In theory, anyway...

© 2014 IBM Corporation6

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Read-Mostly Workloads Scale Well: Hash Table

© 2014 IBM Corporation7

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Update-Heavy Workloads, Not So Much...

And the horrible thing? Updates are all locking ops!

© 2014 IBM Corporation8

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

But Hash Tables Are Partitionable! What is Wrong?

???

© 2014 IBM Corporation9

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

But Hash Tables Are Partitionable! # of Buckets?

S
o

m
e

im
p

ro
ve

m
en

t,
 b

u
t.

. .

© 2014 IBM Corporation10

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

But Hash Tables Are Partitionable! What is Wrong?

NUMA effects:
–First eight CPUs on one socket, ninth on another
–No hash-bucket locality in workload: partitioned data, but not workload
–High cache-miss overhead: Buckets pass from one socket to the other

© 2014 IBM Corporation11

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Hardware Structure and Laws of Physics

Electrons move at 0.03C to 0.3C in transistors and, so need locality of referenceElectrons move at 0.03C to 0.3C in transistors and, so need locality of reference

S
O

L
 R

T
 @

 2
G

H
z

S
O

L
 R

T
 @

 2
G

H
z

7.
5

ce
n

ti
m

et
er

s
7.

5
ce

n
ti

m
et

er
s CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

© 2014 IBM Corporation12

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Problem With Physics #1: Finite Speed of Light

© 2014 IBM Corporation13

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Problem With Physics #2: Atomic Nature of Matter

© 2014 IBM Corporation14

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Read-Only Accesses Dodge The Laws of Physics!!!
S

O
L

 R
T

 @
 2

G
H

z
S

O
L

 R
T

 @
 2

G
H

z

7.
5

ce
n

ti
m

et
er

s
7.

5
ce

n
ti

m
et

er
s CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Read-only data remains replicated in all cachesRead-only data remains replicated in all caches

© 2014 IBM Corporation15

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Updates, Not So Much...
S

O
L

 R
T

 @
 2

G
H

z
S

O
L

 R
T

 @
 2

G
H

z

7.
5

ce
n

ti
m

et
er

s
7.

5
ce

n
ti

m
et

er
s CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Read-only data remains replicated in all caches,Read-only data remains replicated in all caches,
but each update destroys other replicas!but each update destroys other replicas!

© 2014 IBM Corporation16

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

But Hash Tables Are Partitionable! What is Wrong?

NUMA effects:
–First eight CPUs on one socket, ninth on another
–No hash-bucket locality in workload: partitioned data, but not workload
–High cache-miss overhead: Buckets pass from one socket to the other

Can avoid NUMA effects:
–Partition hash buckets over NUMA nodes

• Just like distributed systems do: See Dynamo paper
–Use tree instead of hash table and do range partitioning
–Do range partitioning across multiple hash tables, one per socket
–If moderate number of updates and lots of memory, replicate hash

table, one instance per socket
–Minimize update footprint: Fine-grained locking

• But if you tune your hash tables properly, this buys you little
–Hardware transactional memory: Avoid locking overhead

• More on this later in this presentation

© 2014 IBM Corporation17

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Update-Heavy Workloads Painful for Parallelism!!!
But There Are Some Special Cases...

© 2014 IBM Corporation18

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

But There Are Some Special Cases

Split counters (used for decades)

Per-CPU/thread processing (perfect partitioning)
–Huge number of examples, including the per-thread/CPU stack
–But not everything can be perfectly partitioned

Stream-based applications

Read-only traversal to location being updated

Hardware lock elision

© 2014 IBM Corporation19

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Split Counters

© 2014 IBM Corporation20

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Split Counters

Have a per-CPU/thread counter: DEFINE_PER_CPU(u32, ctr);

For updates, CPU/thread non-atomically updates its own counter

For reads, sum all the counters

Rely on commutative and associative laws of addition

Plus rely on short-term inaccuracy permitted for statistical counters

Constant work done for updates, linear scaling, great performance

© 2014 IBM Corporation21

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Split Counters Diagram

Counter 0

Counter 1

Counter 2

Counter 3

Counter 4

Counter 5

Increment only your own counter

© 2014 IBM Corporation22

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Split Counters Diagram

Counter 0

Counter 1

Counter 2

Counter 3

Counter 4

Counter 5

Sum all counters

© 2014 IBM Corporation23

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Split Counters Diagram

Counter 0

Counter 1

Counter 2

Counter 3

Counter 4

Counter 5

Sum all counters
While they continue changing

It is possible to avoid the O(n) behavior on reads, see Bare Metal talk.It is possible to avoid the O(n) behavior on reads, see Bare Metal talk.

© 2014 IBM Corporation24

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Split Counters: What If You Need Them To Keep Still?

DEFINE_PER_CPU(count);
br_read_lock();
this_cpu_inc(count);
br_read_unlock();

sum = 0;
br_write_lock();
for_each_possible_cpu(cpu)
 sum += per_cpu(count, cpu);
br_write_unlock();

© 2014 IBM Corporation25

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Split Counters: What If You Need Them To Keep Still?

DEFINE_PER_CPU(count);
br_read_lock();
this_cpu_inc(count);
br_read_unlock();

sum = 0;
br_write_lock();
for_each_possible_cpu(cpu)
 sum += per_cpu(count, cpu);
br_write_unlock();

Yes, the read lock guard updates and the write lock guards reads.Yes, the read lock guard updates and the write lock guards reads.
This is why we now have lglocks (local-global locks)This is why we now have lglocks (local-global locks)

© 2014 IBM Corporation26

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Perfect Partitioning

© 2014 IBM Corporation27

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Perfect Partitioning

Sharded lists
–Given element in partition, modified only by CPUs in that partition

• Partition by key range
• Partition by hashed value (favorite of Google, Amazon, …)
• Forward update to CPU in the corresponding partition, see next section

–Set as special case of list
–Very fast for heavy update workloads, still suffer read-write misses

Localized caches
–For example, per-socket cache
–Blazing lookup speed!!!
–But beware of memory footprint and cache miss rates!

Per-CPU atomics help userspace per-CPU partitioning
–http://www.linuxplumbersconf.org/2013/ocw//system/presentations/169

5/original/LPC%20-%20PerCpu%20Atomics.pdf

Honorable mention: Queued locking

© 2014 IBM Corporation28

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Stream-Based Applications

© 2014 IBM Corporation29

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Stream-Based Applications

Adrian Sutton of LMAX presented this at linux.conf.au 2013:
–http://www.youtube.com/watch?v=UvE389P6Er4
–http://lca2013.linux.org.au/schedule/30168/view_talk
–http://mechanical-sympathy.blogspot.com/

Only two threads permitted to access a given location

Use fixed-array circular FIFOs to pipe data between data-
processing stages (represented by individual threads/CPUs)

–Confining a processing stage to a single socket is not a bad plan. ;-)

Get nearly uniprocessor performance, especially for heavy-
weight processing

© 2014 IBM Corporation30

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Example Stream-Based Application

Input
Initial

Processing
FIFO Fan-out

FIFOFIFO
More

Processing

More
Processing

FIFO

FIFOFan-inOutput

© 2014 IBM Corporation31

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Read-Only Traversal To Location Being Updated

© 2014 IBM Corporation32

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Read-Only Traversal To Update Location

Consider a radix tree

Classic locking methodology would:
–Lock root
–Use fragment of key to select descendant
–Lock descendant
–Unlock root
–Repeat

The lock contention on the root is not going to be pretty!

© 2014 IBM Corporation33

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Better Read-Only Traversal To Update Location

 Improved locking methodology might:
–rcu_read_lock()
–Traversal:

• Start at root without locking
• Use fragment of key to select descendant
• Repeat until update location is reached
• Acquire locks on update location
• Do consistency checks, retry from start if inconsistent

–Carry out update
–rcu_read_unlock()

Eliminates contention on root node!

But need some sort of consistency-checks mechanism...
–Sequence locking
–“Deleted” flags on individual data elements

© 2014 IBM Corporation34

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Sequence-Locked Read-Only Traversal

 for (;;)
–rcu_read_lock()
–seq = read_seqbegin(&myseq)
–Start at root without locking
–Use fragment of key to select descendant
–Repeat until update location is reached
–Acquire locks on update location
–If (!read_seqretry(&myseq, seq))

• break
–Release locks on update location and rcu_read_unlock()

Carry out update

Release locks on update location and rcu_read_unlock()

© 2014 IBM Corporation35

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Sequence-Locked Read-Only Traversal

 for (;;)
–rcu_read_lock()
–seq = read_seqbegin(&myseq)
–Start at root without locking
–Use fragment of key to select descendant
–Repeat until update location is reached
–Acquire locks on update location
–If (!read_seqretry(&myseq, seq))

• break
–Release locks on update location and rcu_read_unlock()

Carry out update

Release locks on update location and rcu_read_unlock()

But tree-shape updates must write_seqcount_begin

dcache does something sort of like this, see d_move().dcache does something sort of like this, see d_move().

© 2014 IBM Corporation36

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Deletion-Flagged Read-Only Traversal

 for (;;)
–rcu_read_lock()
–Start at root without locking
–Use fragment of key to select descendant
–Repeat until update location is reached
–Acquire locks on update location
–If update location's deleted flag is not set:

• break
–Release locks on update location and rcu_read_unlock()

Carry out update

Release locks on update location and rcu_read_unlock()

Could dcache do something like this?Could dcache do something like this?

© 2014 IBM Corporation37

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Read-Only Traversal To Location Being Updated

Focus contention on portion of structure being updated

Of course, full partitioning is better!

But why not automate read-only traversal?

© 2014 IBM Corporation38

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Hardware Lock Elision

© 2014 IBM Corporation39

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Hardware Lock Elision

 If two lock-based critical sections have no conflicting
accesses, why serialize them?

–Conflicting access: concurrent accesses to the same location, at least
one of which is a write

Recent hardware from IBM and Intel supports this notion
–Andi Kleen's ACM Queue article: http://queue.acm.org/detail.cfm?

id=2579227
–http://www.power.org/documentation/power-isa-version-2-07/
–http://www.intel.com/content/www/us/en/processors/architectures-

software-developer-manuals.html

Good results for some benchmarks on smallish systems:
–http://pcl.intel-research.net/publications/SC13-TSX.pdf

© 2014 IBM Corporation40

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Is Hardware Lock Elision The Silver Bullet?

Some drawbacks:
–Must have software fallback (aside from small mainframe transactions)

• Not a cure-all for lock-based deadlocks
• However, in some cases, might allow coarser locking

–Still must avoid conflicting accesses
• “Some restructuring may be required”
• Even when the software does not care about the conflicts

–Critical section's data references must fit into cache
–Critical section cannot contain irrevocable operations (like syscalls)
–“Lemming effect”: self-perpetuating software fallback
–Does not repeal the laws of physics

• Speed of light and size of atoms remain the same :-)
–Does not match the 2005 hype (but what would?)

No silver bullet, but promising for a number of cases

© 2014 IBM Corporation41

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Hardware Lock Elision: Toy Example

Toy problem: Create a dequeue that can operate in parallel
–Difficult to create lock-based dequeue that is parallel at both ends
–Problem: Level of concurrency varies with dequeue state

Left
Head

Right
Head

A B C D

Left
Head

Right
Head

A B C

Left
Head

Right
Head

A B

© 2014 IBM Corporation42

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Hardware Lock Elision: Toy Example

Toy problem: Create a dequeue that can operate in parallel
–Difficult to create lock-based dequeue that is parallel at both ends
–Problem: Level of concurrency varies with dequeue state
–But is this really a hard problem?

Left
Head

Right
Head

A B C D

Left
Head

Right
Head

A B C

Left
Head

Right
Head

A B

© 2014 IBM Corporation43

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Hardware Lock Elision: Lock-Based Solution

Use two lock-based dequeues
–Can always insert concurrently: grab dequeue's lock
–Can always remove concurrently unless one or both are empty

• If yours is empty, grab both locks in order!

Left
Head

Right
Head

A B C D

Left
Head

Right
Head

A

© 2014 IBM Corporation44

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Hardware Lock Elision: Lock-Elision Solution

But lock elision is even easier:
–One dequeue protected by one lock!
–The hardware automatically runs parallel when it is safe to do so

© 2014 IBM Corporation45

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Hardware Lock Elision: Lock-Elision Solution

But lock elision is even easier:
–One dequeue protected by one lock!
–The hardware automatically runs parallel when it is safe to do so

However, there are some drawbacks (as always):
–I/O, system calls, and other irrevocable operations defeat elision
–Old hardware defeats elision

• Though I am sure that both Intel and IBM would be more than happy to sell
you some new hardware!

–In many cases, restructuring required to avoid conflicting accesses
–Hardware limitations (cache geometry, etc.) can defeat elision
–Moderate levels of contention result in single-threaded execution even

if the dequeue is full enough to enable concurrent operation

© 2014 IBM Corporation46

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Hardware Lock Elision: Lock-Elision Solution

But lock elision is even easier:
–One dequeue protected by one lock!
–The hardware automatically runs parallel when it is safe to do so

However, there are some drawbacks (as always):
–I/O, system calls, and other irrevocable operations defeat elision
–Old hardware defeats elision

• Though I am sure that both Intel and IBM would be more than happy to sell
you some new hardware!

–In many cases, restructuring required to avoid conflicting accesses
–Hardware limitations (cache geometry, etc.) can defeat elision
–Moderate levels of contention result in single-threaded execution even

if the dequeue is full enough to enable concurrent operation

But why are you putting everything through one dequeue???

© 2014 IBM Corporation47

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Hardware Lock Elision: Potential Game Changers

What must happen for HTM to take over the world?

© 2014 IBM Corporation48

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Hardware Lock Elision: Potential Game Changers

Forward-progress guarantees
–Mainframe is a start, but larger sizes would be helpful

Transaction-size increases

 Improved debugging support
–Gottschich et al: “But how do we really debug transactional memory?”

Handle irrevocable operations (unbuffered I/O, syscalls, ...)

Weak atomicity

© 2014 IBM Corporation49

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Hardware Lock Elision: Potential Game Changers

Forward-progress guarantees
–Mainframe is a start, but larger sizes would be helpful

Transaction-size increases

 Improved debugging support
–Gottschich et al: “But how do we really debug transactional memory?”

Handle irrevocable operations (unbuffered I/O, syscalls, ...)

Weak atomicity – but the Linux-kernel RCU maintainer and
weak-memory advocate would say that...

© 2014 IBM Corporation50

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Hardware Lock Elision: Potential Game Changers

Forward-progress guarantees
–Mainframe is a start, but larger sizes would be helpful

Transaction-size increases

 Improved debugging support
–Gottschich et al: “But how do we really debug transactional memory?”

Handle irrevocable operations (unbuffered I/O, syscalls, ...)

Weak atomicity: It is not just me saying this!
– Herlihy et al: “Software Transactional Memory for Dynamic-Sized Data Structures”
– Shavit: “Data structures in the multicore age”
– Haas et al: “How FIFO is your FIFO queue?”
– Gramoli et al: “Democratizing transactional memory”

With these additions, much greater scope possible

© 2014 IBM Corporation51

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Special Cases For Parallel Updates: Summary

There is currently no silver bullet:
–Split counters

• Extremely specialized
–Per-CPU/thread processing

• Not all algorithms can be efficiently partitioned
–Stream-based applications

• Specialized
–Read-only traversal to location being updated

• Great for small updates to large data structures, but limited otherwise
–Hardware lock elision

• Some good potential, and some potential limitations

Linux kernel: Good progress by combining approaches

Lots of opportunity for collaboration and innovation

© 2014 IBM Corporation52

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Possible Additions To Parallel-Programming Toolbox

© 2014 IBM Corporation53

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Possible Additions To Parallel-Programming Toolbox

OpLog for update-mostly operations
–http://pdos.csail.mit.edu/papers/sbw-phd-thesis.pdf
–Each CPU/thread maintains a timestamped operation log
–Updates can cancel
–Read operations force updates to be applied, as do some updates
–Prototyped for Linux-kernel rmap with good results

The scalable commutativity rule
– http://www.read.seas.harvard.edu/~kohler/pubs/clements13scalable.pdf
–Operations that cannot commute imply scalability bottleneck

• fork()/exec() does not commute with other threads' address-space, file-
descriptor, or signal-state operations – a combined fork()/exec(), e.g.,
posix_spawn(), would commute (but good luck getting apps to use it!)

• “Lowest available FD” rule limits multithreaded open/close performance
–Excellent guide for future API design
–Similar to http://paulmck.livejournal.com/16478.html

• But way more complete and precise

© 2014 IBM Corporation54

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Summary

© 2014 IBM Corporation55

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Summary

We are farther along with read-mostly methods than with
update-heavy methods

But there are some good approaches for update-heavy
workloads for some special cases

–Split counters
–Per-CPU/thread processing
–Stream-based applications
–Read-only traversal to location being updated
–Hardware lock elision
–Some recent research might prove practical

We can expect specialization for update-heavy workloads
–Though generality would be nice if feasible!

© 2014 IBM Corporation56

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

To Probe Deeper (1/4)
 Hash tables:

– http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Chapter 10

 Spit counters:
– http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Chapter 5
– http://events.linuxfoundation.org/sites/events/files/slides/BareMetal.2014.03.09a.pdf

 Perfect partitioning
– Candide et al: “Dynamo: amazon's highly available key-value store”

• http://doi.acm.org/10.1145/1323293.1294281
– McKenney: “Is Parallel Programming Hard, And, If So, What Can You Do About It?”

• http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Section 6.5
– McKenney: “Retrofitted Parallelism Considered Grossly Suboptimal”

• https://www.usenix.org/conference/hotpar12/retro%EF%AC%81tted-parallelism-considered-
grossly-sub-optimal

– McKenney et al: “Experience With an Efficient Parallel Kernel Memory Allocator”
• http://www.rdrop.com/users/paulmck/scalability/paper/mpalloc.pdf

– Bonwick et al: “Magazines and Vmem: Extending the Slab Allocator to Many CPUs and Arbitrary
Resources”

• http://static.usenix.org/event/usenix01/full_papers/bonwick/bonwick_html/
– Turner et al: “PerCPU Atomics”

• http://www.linuxplumbersconf.org/2013/ocw//system/presentations/1695/original/LPC%20-
%20PerCpu%20Atomics.pdf

© 2014 IBM Corporation57

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

To Probe Deeper (2/4)

 Stream-based applications:
– Sutton: “Concurrent Programming With The Disruptor”

• http://www.youtube.com/watch?v=UvE389P6Er4
• http://lca2013.linux.org.au/schedule/30168/view_talk

– Thompson: “Mechanical Sympathy”
• http://mechanical-sympathy.blogspot.com/

 Read-only traversal to update location
– Arcangeli et al: “Using Read-Copy-Update Techniques for System V IPC in the Linux 2.5

Kernel”
• https://www.usenix.org/legacy/events/usenix03/tech/freenix03/full_papers/arcangeli/arcan

geli_html/index.html
– Corbet: “Dcache scalability and RCU-walk”

• https://lwn.net/Articles/419811/
– Xu: “bridge: Add core IGMP snooping support”

• http://kerneltrap.com/mailarchive/linux-netdev/2010/2/26/6270589
– Howard: “A Relativistic Enhancement to Software Transactional Memory”

• http://www.usenix.org/event/hotpar11/tech/final_files/Howard.pdf
– McKenney et al: “URCU-Protected Hash Tables”

• http://lwn.net/Articles/573431/

© 2014 IBM Corporation58

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

To Probe Deeper (3/4)

 Hardware lock elision: Overviews
– Kleen: “Scaling Existing Lock-based Applications with Lock Elision”

• http://queue.acm.org/detail.cfm?id=2579227

 Hardware lock elision: Hardware description
– POWER ISA Version 2.07

• http://www.power.org/documentation/power-isa-version-2-07/
– Intel® 64 and IA-32 Architectures Software Developer Manuals

• http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
– Jacobi et al: “Transactional Memory Architecture and Implementation for IBM System z”

• http://www.microsymposia.org/micro45/talks-posters/3-jacobi-presentation.pdf

 Hardware lock elision: Evaluations
– http://pcl.intel-research.net/publications/SC13-TSX.pdf
– http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Section 16.3

 Hardware lock elision: Need for weak atomicity
– Herlihy et al: “Software Transactional Memory for Dynamic-Sized Data Structures”

• http://research.sun.com/scalable/pubs/PODC03.pdf
– Shavit et al: “Data structures in the multicore age”

• http://doi.acm.org/10.1145/1897852.1897873
– Haas et al: “How FIFO is your FIFO queue?”

• http://dl.acm.org/citation.cfm?id=2414731
– Gramoli et al: “Democratizing transactional programming”

• http://doi.acm.org/10.1145/2541883.2541900

© 2014 IBM Corporation59

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

To Probe Deeper (4/4)

 Possible future additions
– Boyd-Wickizer: “Optimizing Communications Bottlenecks in Multiprocessor Operating

Systems Kernels”
• http://pdos.csail.mit.edu/papers/sbw-phd-thesis.pdf

– Clements et al: “The Scalable Commutativity Rule: Designing Scalable Software for
Multicore Processors”

• http://www.read.seas.harvard.edu/~kohler/pubs/clements13scalable.pdf

© 2014 IBM Corporation60

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Legal Statement

This work represents the view of the author and does not
necessarily represent the view of IBM.

 IBM and IBM (logo) are trademarks or registered trademarks
of International Business Machines Corporation in the United
States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.

© 2014 IBM Corporation61

Linux Collaboration Summit, Napa Valley, CA, USA, March 27, 2014

Questions?

UseUse
the right toolthe right tool
for the job!!!for the job!!!

Image copyright © 2004 Melissa McKenney

	IBM Presentation Template Full Version
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

