
N3934: Towards Implementation and Use of

memory order consume

Doc. No.: WG21/N3934
Date: 2014-02-14

Reply to: Paul E. McKenney
Other contributors: Olivier Giroux, Lawrence Crowl, ...

Email: paulmck@linux.vnet.ibm.com

February 16, 2014

1 Introduction

Although RCU is gaining significant use both within
and outside of the Linux kernel, there are no know
high-performance implementations of memory order

consume loads in any C11 or C++11 environments.
This situation suggests that some change is in or-
der: After all, if the standard does not support this
use case, the corresponding users can be expected to
continue to exploit whatever implementation-specific
facilities provide the required functionality. This doc-
ument therefore provides a brief overview of RCU
in Section 2 and surveys memory order consume use
cases within the Linux kernel in Section 3. Section 4
looks at how dependency ordering is currently sup-
ported in pre-C11 implementations, and then Sec-
tion 5 looks at possible ways to support those use
cases in existing C11 and C++11 implementations,
followed by some thoughts on incremental paths to-
wards official support of these use cases in the stan-
dards.

Note: SC22/WG14 liason issue.

2 Introduction to RCU

The RCU synchronization mechanism is often used as
a replacement for reader-writer locking because RCU
avoids the high-overhead cache thrashing that is char-
acteristic of many common reader-writer-locking im-

plementations. RCU is based on three fundamental
concepts:

1. Light-weight in-memory publish-subscribe oper-
ation.

2. Operation that waits for pre-existing readers.

3. Maintaining multiple versions of data to avoid
disrupting old readers that are still referencing
old versions.

C11/C++11 memory order consume is intended to
implement RCU’s lightweight subscribe operation.

In one typical RCU use case, updaters publish
new versions of a data structure while readers con-
currently subscribe to whatever version is current
at the time a given reader starts. Once all pre-
existing readers complete, old versions can be re-
claimed. This sort of use case may be a bit unfa-
miliar to many, but it is extremely effective in many
situations, offering excellent performance, scalability,
real-time latency, deadlock avoidance, and read-side
composability. More details on RCU are readily avail-
able [2, 5, 6, 7, 8, 9, 10].

Figure 1 shows the growth of RCU usage over time
within the Linux kernel, which is strong evidence of
RCU’s effectiveness. However, RCU is a specialized
mechanism, so its use is much smaller than general-
purpose techniques such as locking, as can be seen in

1

0

1000

2000

3000

4000

5000

6000

7000

8000

9000
2
0
0
2

2
0
0
4

2
0
0
6

2
0
0
8

2
0
1
0

2
0
1
2

2
0
1
4

2
0
1
6

#
R

C
U

A
P

I
U

s
e
s

Year

Figure 1: Growth of RCU Usage

Figure 2. It is unlikely that RCU’s usage will ever
approach that of locking because RCU coordinates
only between readers and updaters, which means
that some other mechanism is required to coordinate
among concurrent updates. In the Linux kernel, that
update-side mechanism is normally locking, although
pretty much any synchronization mechanism may be
used, including transactional memory [3, 4, 12].

However RCU is now being used in many situa-
tions where reader-writer locking would be used. Fig-
ure 3 shows that the use of reader-writer locking has
changed little since RCU was introduced. This data
suggests that RCU is at least as important to parallel
software as is reader-writer locking.

In more recent years, a user-level library implemen-
tation of RCU has been available [1]. This library is
now available for many platforms and has been in-
cluded in a number of Linux distributions. It has
been pressed into service for a number of open-source
software projects, proprietary products, and reserch
efforts.

Fully and fully performant C11/C++11 support
for memory order consume is therefore quite impor-

0

20000

40000

60000

80000

100000

120000

2
0
0
2

2
0
0
4

2
0
0
6

2
0
0
8

2
0
1
0

2
0
1
2

2
0
1
4

2
0
1
6

#
R

C
U

/l
o
c
k
in

g
A

P
I
U

s
e
s

Year

locking

RCU
rwlock

Figure 2: Growth of RCU Usage vs. Locking

tant. However, good progress can often be made in
the short term by focusing on the cases that are com-
monly used in practice rather than on the general
case. The next section therefore takes a rough census
of the Linux kernel’s use of the rcu dereference()

family of primitives, which memory order consume is
intended to implement.

3 Linux-Kernel Use Cases

Section 3.1 lists types of dependency chains in the
Linux kernel, Section 3.2 lists operators used within
these dependency chains, Section‘3.3 lists operators
that are considered to terminate dependency chains,
and finally Section 3.4 surveys a longer-than-average
(but by no means maximal) dependency chain that
appears in the Linux kernel.

3.1 Types of Linux-Kernel Depen-
dency Chains

One goal for memory order consume is to implement
rcu dereference(), which heads a Linux-kernel
dependency-ordering tree. There are a number

2

0

1000

2000

3000

4000

5000

6000

7000

8000

9000
2
0
0
2

2
0
0
4

2
0
0
6

2
0
0
8

2
0
1
0

2
0
1
2

2
0
1
4

2
0
1
6

#
R

C
U

/r
w

lo
c
k
in

g
A

P
I
U

s
e
s

Year

RCU

rwlock

Figure 3: Growth of RCU Usage vs. Reader-Writer
Locking

of variant of rcu dereference() in the Linux
kernel in order to implement the four flavors of
RCU and also to enable RCU usage diagnositics
for code that is shared by readers and updaters.
These additional variants are rcu dereference(),
rcu dereference bh(), rcu dereference

bh check(), rcu dereference bh check(),
rcu dereference check(), rcu dereference

index check(), rcu dereference protected(),
rcu dereference raw(), rcu dereference

sched(), rcu dereference sched check(), srcu

dereference(), and srcu dereference check().
Taken together, there are about 1300 uses of these
functions in version 3.13 of the Linux kernel.
However, about 250 of those are rcu dereference

protected(), which is used only in update-side code
and thus does not head up read-side dependency
chains, which leaves about 1000 uses to be inspected
for dependency-ordering usage.

1 struct foo {
2 int a;
3 };
4 struct foo *fp;
5 struct foo default_foo;
6
7 int bar(void)
8 {
9 struct foo *p;

10
11 p = rcu_dereference(fp);
12 return p ? p->a : default_foo.a;
13 }

Figure 4: Default Value For RCU-Protected Pointer,
Linux Kernel

3.2 Operators in Linux-Kernel De-
pendency Chains

A surprisingly small fraction of the possible C opera-
tors appear in dependency chains in the Linux kernel,
namely ->, infix =, casts, prefix &, prefix *, [], infix
+, infix -, ternary ?:, and infix (bitwise) &.

By far the two most common operators are the
-> pointer field selector and the -> assignment op-
erator. Enabling the carries-dependency relationship
through only these two operators would likely cover
better than 90% of the Linux-kernel use cases.

Casts, the prefix * indirection operator, and the
prefix & address-of operator are used to implement
Linux’s list primitives, which translate from list
pointers embedded in a structure to the structure it-
self. These operators are also used to get some of the
effects of C++ subtyping in the C language.

The [] array-indexing operator, and the infix +

and - arithmetic operators are used to manipulate
RCU-protected arrays, as well as to index into arrays
contained within RCU-protected structures. RCU-
protected arrays are becoming less common because
they are being converted into more complex data
structures, such as trees. However, RCU-protected
structures containing arrays are still fairly common.

The ternary ?: if-then-else expression is used to
handle default values for RCU-protected pointers, for
example, as shown in Figure 4, or in C++11 form
in Figure 5. Note that the dependency is carried
only through the rightmost two operands of ?:, never
through the leftmost one.

3

1 class foo {
2 int a;
3 };
4 std::atomic<foo *> fp;
5 foo default_foo;
6
7 int bar(void)
8 {
9 std::atomic<foo *> p;

10
11 p = fp.load_explicit(memory_order_consume);
12 return p ? kill_dependency(p->a) : default_foo.a;
13 }

Figure 5: Default Value For RCU-Protected Pointer,
C++11

The infix & operator is used to mask low-order bits
from RCU pointers. These bits are used by some
algorithms as markers. Such markers, though not
common in the Linux kernel, are well-known in the
art, with hazard pointers being but one example [11].
Note that it is expected that both operands of infix
& are expected to have some non-zero bits, because
otherwise a NULL pointer will result (at least in most
implementations), and NULL pointers cannot reason-
ably be said to carry much of anything, let alone a de-
pendency. Although I did not find any infix | opera-
tors in my census of Linux-kernel dependency chains,
symmetry considerations argue for also including it,
for example, for read-side pointer tagging. Presum-
ably both of the operands of infix | must have at least
one zero bit.

To recap, the operators appearing in Linux-kernel
dependency chains are: ->, infix =, casts, prefix &,
prefix *, [], infix +, infix -, ternary ?:, infix (bitwise)
&, and probably also |.

3.3 Operators Terminating Linux-
Kernel Dependency Chains

Although C++11 has the kill dependency() func-
tion to terminate a dependency chain, no such func-
tion exists in the Linux kernel. Instead, Linux-kernel
dependency chains are judged to have terminated
upon exit from the outermost RCU read-side critical
section,1 when existence guarantees are handed off

1 The beginning of a given RCU read-side critical section is
marked with rcu read lock(), rcu read lock bh(), rcu read

from RCU to some other synchronization mechanism
(usually locking or reference counting), or when the
variable carrying the dependency goes out of scope.

That said, it is possible to analyze Linux-kernel
dependency chains to see what part of the chain is
actually required by the algorithm in question. We
can therefore define the essential subset of a depen-
dency chain to be that subset within which ordering
is required by the algorithm. In the 3.13 version of
the Linux kernel, the following operators always mark
the end of the essential subset of a dependency chain:
(), !, ==, !=, &&, ||, infix *, /, and %.

The postfix () function-invocation operator is an
interesting special case in the Linux kernel. In theory,
RCU could be used to protect JITed function bodies,
but in current practice RCU is instead used to wait
for all pre-existing callers to the function referenced
by the previous pointer. The functions are all com-
piled into the kernel, and the dependency chains are
therefore irrelevant to the () operator. Hence, in ver-
sion 3.13 of the Linux kernel, the () operator marks
the end of the essential subset of any dependency
chain that it resides in.

The !, ==, !=, &&, and || operators are used ex-
clusively in ”if” statements to make control-flow de-
cisions, and therefore also mark the end of the essen-
tial subset of any dependency chains that they reside
in. In theory, these relational and boolean operators
could be used to form array indexes, but in practice
the Linux kernel does not yet do this in RCU depen-
dency chains. The other relational operators (>, <,
>=, and <=) should probably also be added to this
list.

The infix *, /, and % arithmetic operators could
potentially be used for construct array addresses, but
they are not yet used that way in the Linux kernel.
Instead, they are used to do computation on values
fetched as the last operation in an essential subset of
a dependency chain.

In short, in the current Linux kernel, (), !, ==,
!=, &&, ||, infix *, /, and % all mark the end of the

lock sched(), or srcu read lock(), and the end by the cor-
responding primitive from the list rcu read unlock(), rcu

read unlock bh(), rcu read unlock sched(), or srcu read

unlock(). There is currently no C++11 counterpart for an
RCU read-side critical section.

4

essential subset of a dependency chain. That said,
there is potential for them to be used as part of the
essential subset of dependency changes in future ver-
sions of the Linux kernel. And the same is of course
true of the remaining C-language operators, which
did not appear within any of the dependency chains
in version 3.13 of the Linux kernel.

3.4 Linux-Kernel Dependency Chain
Length

Many Linux-kernel dependency chains are very short
and contained, with a fair number living within the
confines of a single C statement. However, there are
a great many dependency chains that extend across
multiple functions. One relatively modest example
is in the Linux network stack, in the arp process()

function. This dependency chain extends as follows,
with deeper nesting indicating deeper function-call
levels:

• The arp process() function invokes in dev

get rcu(), which returns an RCU-protected
pointer. The head of the dependency chain is
therefore within the in dev get rcu() func-
tion.

• The arp process() function invokes the follow-
ing macros and functions:

– IN DEV ROUTE LOCALNET(), which expands
to the ipv4 devconf get() function.

– arp ignore(), which in turn calls:

∗ IN DEV ARP IGNORE(), which expands
to the ipv4 devconf get() function.

∗ inet confirm addr(), which calls:

· dev net(), which in turn calls
read pnet().

– IN DEV ARPFILTER(), which expands to
ipv4 devconf get().

– IN DEV CONF GET(), which also expands to
ipv4 devconf get().

– arp fwd proxy(), which calls:

∗ IN DEV PROXY ARP(), which expands
to ipv4 devconf get().

∗ IN DEV MEDIUM ID(), which also ex-
pands to ipv4 devconf get().

– arp fwd pvlan(), which calls:

∗ IN DEV PROXY ARP PVLAN(), which ex-
pands to ipv4 devconf get().

– pneigh enqueue().

Again, although a great many dependency chains
in the Linux kernel are quite short, there are quite a
few that spread both widely and deeply. We therefore
cannot expect Linux kernel hackers to look fondly
on any mechanism that requires them to decorate
each and every operator in each and every depen-
dency chain. In fact, even use of kill dependency()

throughout will likely be an extremely difficult sell.

4 Dependency Ordering in Pre-
C11 Implementations

Pre-C11 implementations of the C language do not
have any formal notion of dependency ordering, but
these implementations are nevertheless used to build
the Linux kernel—and most likely all other software
using RCU. This section lays out a few straightfor-
ward rules for both implementers (Section 4.2) and
users of these pre-C11 C-language implementations
(Section 4.1).

4.1 Rules for C-Language RCU Users

The primary rule for developers implementing RCU-
based algorithms is to avoid letting the compiler de-
terming the value of any variable in any dependency
chain. This primary rule implies a number of sec-
ondary rules:

1. Use only intrinsic operators on basic types. If
you are making use of C++ template metapro-
gramming or operator overloading, more elabo-
rate rules apply, and these rules are outside the
scope of this document.

2. Use a volatile load to head the dependency chain.
This is necessary to avoid the compiler repeating
the load or making use of (possibly erroneous)

5

prior knowledge of the contents of the memory
location, each of which can break dependency
chains.

3. Avoid use of single-element RCU-protected ar-
rays. The compiler is within its right to assume
that the value of an index into such an array
must necessarily evaluate to zero. The com-
piler could then substitute the constant zero for
the computation, breaking the dependency chain
and introducing misordering.

4. Avoid cancellation when using the + and - infix
arithmetic operators. For example, for a given
variable x, avoid (x−x). The compiler is within
its rights to substitute zero for any such cancel-
lation, breaking the dependency chain and again
introducing misordering. Similar arithmetic pit-
falls must be avoided if the infix *, /, or % oper-
ators appear in the essential subset of a depen-
dency chain.

5. Avoid all-zero operands to the bitwise & opera-
tor, and similarly avoid all-ones operands to the
bitwise | operator. If the compiler is able to
deduce the value of such operands, it is within
its rights to substitute the corresponding con-
stant for the bitwise operation. Once again, this
breaks the dependency chain, introducing mis-
ordering. Similar rules apply to the boolean &&

and || operators, should you use them in depen-
dency chains such that the resulting value is used
to determine the address of RCU-protected data.
In addition, use of && and || in essential sub-
sets of dependency chains is hazardous because
they are often compiled using branches. Weak-
memory machines such as ARM or PowerPC or-
der stores after such branches, but can speculate
loads, which can break dependency chains.

6. If you are using RCU to protect JITed functions,
so that the () function-invocation operator is a
member of the essential subset of the dependency
tree, you may need to interact directly with the
hardware to flush instruction caches. This issue
arises on some systems when a newly JITed func-
tion is using the same memory that was used by
an earlier JITed function.

7. If relational operators (==, !=, >, >=, <, or <=)
appear in the essential subset of a dependency
chain, avoid situations where the compiler can
guess the result, for example, based on prior
knowledge of the signs of the operands. In addi-
tion, use of relational operators in essential sub-
sets of dependency chains can be hazardous be-
cause, like the boolean operators, they are of-
ten compiled using branches. Weak-memory ma-
chines such as ARM or PowerPC order stores af-
ter such branches, but can speculate loads, which
can break dependency chains.

8. Disable any value-speculation optimizations that
your compiler might provide, especially if you are
making use of feedback-based optimizations that
take data collected from prior runs.

4.2 Rules for C-Language Imple-
menters

The main rule for C-language implementers is to
avoid any sort of value speculation, or, at the very
least, provide means for the user to disable such spec-
ulation.

Classic value speculation can fall prey to the follow-
ing sequence of events when applied to the essential
subset of a dependency chain:

1. The compiler incorrectly guesses the value of a
pointer p.

2. The compiler carries out accesses using this
guess, and these accesses therefore return
garbage.

3. Some other thread updates the value of pointer
p, and the new value just happens to match the
guess.

4. The compiler loads the actual value of pointer
p, notes that this value matches the guess, and
incorrectly concludes that the guess is correct.
The aforementioned garbage is therefore passed
into the program. Garbage in, garbage out!

6

Hardware avoids this problem because it moni-
tors cache-coherence protocol events that would re-
sult from some other CPU invalidating the guess.

Interestingly enough, the compiler can use the
branch predictor to gain access to these hardware
cache-coherence events. For example, the compiler
could compare its guess against a load from pointer
p. If this guess had tended to be correct in the re-
cent past, the branch predictor would cause the CPU
to start speculatively executing the code in the then

clause of the if statement. If some other CPU did a
store, this speculative execution would be squashed.

Unfortunately, if the speculation succeeds, the code
has used a constant unconnected to the actual pointer
to access the data. There is therefore no dependency
on the value loaded, and in turn no dependency or-
dering. Although the hardware won’t speculate the
stores, the CPU is within its rights to return old
garbage values for the loads.2

In short, implementers must provide means to dis-
able all forms of value speculation.

Are there other dependency-breaking optimizations
that should be called out separately?

5 Dependency Ordering in C11
and C++11 Implementations

The simplest way to avoid dependency-ordering is-
sues is to strengthen all memory order consume oper-
ations to memory order acquire. This functions cor-
rectly, but may result in unacceptable performance
due to memory-barrier instructions on weakly or-
dered systems such as ARM and PowerPC,3 and may
further unnecessarily suppress code-motion optimiza-
tions.

Another straightforward approach is to avoid value
speculation and other dependency-breaking opti-
mizations. This might result in missed opportu-
nities for optimization, but avoids any need for
dependency-chain annotations and also all issues

2 Kudos to Olivier Giroux for pointing out use of branch
prediction to enable value speculation.

3 From a Linux-kernel community viewpoint, that should
read “will result in unacceptable performance”.

1 int a(struct foo *p [[carries_dependency]])
2 {
3 return kill_dependency(p->a != 0);
4 }
5
6 int b(int x)
7 {
8 return x;
9 }

10
11 foo *c(void)
12 {
13 return fp.load_explicit(memory_order_consume);
14 /* return rcu_dereference(fp) in Linux kernel. */
15 }
16
17 int d(void)
18 {
19 int a;
20 foo *p;
21
22 rcu_read_lock();
23 p = c();
24 a = p->a;
25 rcu_read_unlock();
26 return a;
27 }

Figure 6: Example Functions for Dependency Order-
ing, Part 1

that might otherwise arise from use of dependency-
breaking optimizations. This approach is fully com-
patible with the Linux kernel community’s current
approach to dependency chains.

A third approach is to avoid value speculation
and other dependency-breaking optimizations in any
function containing either a memory order consume

load or a [[carries dependency]] attribute. This
too can result in missed opportunities for optimiza-
tion, though very probably many fewer than the
previous approach. This approach can also result
in issues due to dependency-breaking optimizations
in functions lacking [[carries dependency]] at-
tributes, for example, function d() in Figure 6. It
can also result in spurious memory-barrier instruc-
tions when a dependency chain goes out of scope, for
example, with the return statement of function g()

in Figure 7.

A fourth approach is to add a compile-time op-
eration corresponding to the beginning and end of
RCU read-side critical section. These would need to
be evaluated at compile time, taking into account

7

1 [[carries_dependency]] struct foo *e(void)
2 {
3 return fp.load_explicit(memory_order_consume);
4 /* return rcu_dereference(fp) in Linux kernel. */
5 }
6
7 int f(void)
8 {
9 int a;

10 foo *p;
11
12 rcu_read_lock();
13 p = c();
14 a = p->a;
15 rcu_read_unlock();
16 return kill_dependency(a);
17 }
18
19 int g(void)
20 {
21 int a;
22 foo *p;
23
24 rcu_read_lock();
25 p = c();
26 a = p->a;
27 rcu_read_unlock();
28 return b(a);
29 }

Figure 7: Example Functions for Dependency Order-
ing, Part 2

the fact that these critical sections can nest and can
be conditionally entered and exited. Note that the
exit from an outermost RCU read-side critical sec-
tion should imply a kill dependency() operation on
each variable that is live at that point in the code.4

Although it is probably impossible to precisely de-
termine the bounds of a given RCU read-side critical
section in the general case, conservative approaches
that might overestimate the extent of a given sec-
tion should be acceptable in almost all cases. This
approach would make functions c() and d() in Fig-
ure 6 handle dependency chains in a natural manner,
but avoiding whole-program analysis would require
something similar to the [[carries dependency]]

annotations called out in the C11 and C++11 stan-
dards.

A fifth approach would be to require that all op-

4 What if a given rcu read unlock() sometimes marked the
end of an outermost RCU read-side critical section, but other
times was nested in some other RCU read-side critical section?
In that case, there should be no kill dependency().

erations on the essential subset of any dependency
chain be annotated. This would greatly ease imple-
mentation, but would not be likely to be accepted by
the Linux kernel community.

A sixth approach is to track dependencies as called
out in the C11 and C++11 standards. However, in-
stead of emitting a memory-barrier instruction when
a dependency chain flows into or out of a function
without the benefit of [[carries dependency]], in-
sert an implicit kill dependency() invocation. Im-
plementation should also optionally issue a diagnostic
in this case. The motivation for this approach is that
it is expected that many more kill dependencies()

than [[carries dependency]] would be required to
convert the Linux kernel’s RCU code to C11. This
approach would allow function g() avoid emitting an
unnecessary memory-barrier instruction, but without
function f()’s explicit kill dependency(). Both
functions are in Figure 7.

A seventh and final approach is to track dependen-
cies as called out in in the C11 and C++11 standards.
With this approach, functions e() and f() properly
preserve the required amount of dependency order-
ing.

6 Summary

This document has analyzed Linux-kernel use of de-
pendency ordering and has laid out the status-quo
interaction between the Linux kernel and compilers.
It has also put forward some possible ways forward
building on C11’s and C++11’s handling of depen-
dency ordering, many of which will unfortunately be
quite unpalatable to the Linux kernel community.

References

[1] Desnoyers, M. [RFC git tree] userspace RCU
(urcu) for Linux. http://urcu.so, February
2009.

[2] Desnoyers, M., McKenney, P. E., Stern,
A., Dagenais, M. R., and Walpole, J.
User-level implementations of read-copy update.

8

http://urcu.so

IEEE Transactions on Parallel and Distributed
Systems 23 (2012), 375–382.

[3] Howard, P. W., and Walpole, J. A rel-
ativistic enhancement to software transactional
memory. In Proceedings of the 3rd USENIX con-
ference on Hot topics in parallelism (Berkeley,
CA, USA, 2011), HotPar’11, USENIX Associa-
tion, pp. 1–6.

[4] Howard, P. W., and Walpole, J. Relativis-
tic red-black trees. Concurrency and Computa-
tion: Practice and Experience (2013), n/a–n/a.

[5] McKenney, P. E. What is RCU? part 2:
Usage. Available: http://lwn.net/Articles/

263130/ [Viewed January 4, 2008], January
2008.

[6] McKenney, P. E. The RCU API, 2010 edi-
tion. http://lwn.net/Articles/418853/, De-
cember 2010.

[7] McKenney, P. E. Is Parallel Programming
Hard, And, If So, What Can You Do About It?
kernel.org, Corvallis, OR, USA, 2012.

[8] McKenney, P. E. Structured deferral: syn-
chronization via procrastination. Commun.
ACM 56, 7 (July 2013), 40–49.

[9] McKenney, P. E., Purcell, C., Al-
gae, Schumin, B., Cornelius, G., Qwer-
tyus, Conway, N., Sbw, Blainster, Ru-
fus, C., Zoicon5, Anome, and Eisen, H.
Read-copy update. http://en.wikipedia.

org/wiki/Read-copy-update, July 2006.

[10] McKenney, P. E., and Walpole, J. What is
RCU, fundamentally? Available: http://lwn.

net/Articles/262464/ [Viewed December 27,
2007], December 2007.

[11] Michael, M. M. Hazard pointers: Safe mem-
ory reclamation for lock-free objects. IEEE
Transactions on Parallel and Distributed Sys-
tems 15, 6 (June 2004), 491–504.

[12] Rossbach, C. J., Hofmann, O. S., Porter,
D. E., Ramadan, H. E., Bhandari, A., and
Witchel, E. TxLinux: Using and managing
hardware transactional memory in an operating
system. In SOSP’07: Twenty-First ACM
Symposium on Operating Systems Principles
(October 2007), ACM SIGOPS. Avail-
able: http://www.sosp2007.org/papers/

sosp056-rossbach.pdf [Viewed October 21,
2007].

9

http://lwn.net/Articles/263130/
http://lwn.net/Articles/263130/
http://lwn.net/Articles/418853/
http://en.wikipedia.org/wiki/Read-copy-update
http://en.wikipedia.org/wiki/Read-copy-update
http://lwn.net/Articles/262464/
http://lwn.net/Articles/262464/
http://www.sosp2007.org/papers/sosp056-rossbach.pdf
http://www.sosp2007.org/papers/sosp056-rossbach.pdf

	1 Introduction
	2 Introduction to RCU
	3 Linux-Kernel Use Cases
	3.1 Types of Linux-Kernel Dependency Chains
	3.2 Operators in Linux-Kernel Dependency Chains
	3.3 Operators Terminating Linux-Kernel Dependency Chains
	3.4 Linux-Kernel Dependency Chain Length

	4 Dependency Ordering in Pre-C11 Implementations
	4.1 Rules for C-Language RCU Users
	4.2 Rules for C-Language Implementers

	5 Dependency Ordering in C11 and C++11 Implementations
	6 Summary

