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ABSTRACT

Of the 200+ parallel-programming languages and environ-
ments created in the 1990s, almost all are now defunct.
Given that parallel systems are now well within the budget
of the typical hobbyist or graduate student, it is not unrea-
sonable to expect a new cohort in excess of several thousand
parallel languages and environments to appear in the 2010s.
If this expected new cohort is to have more practical im-
pact than did its 1990s counterpart, a robust and widely
applicable framework will be required that encompasses ex-
actly what, if anything, is hard about parallel programming.
This paper revisits the fundamental precepts of concurrent
programming to outline such a framework.

1. INTRODUCTION

Whatever difficulties might be faced by parallel program-
mers cannot be blamed on a dearth of parallel program-
ming languages and environments, given that Mattson [9]
lists more than 200 developed in the 1990s. As noted above,
the 2010s might well see thousands of such languages. This
situation cries out for a conceptual framework for parallel
programming, as such a framework will be needed to select
the most effective languages and environments.

However, such a framework is even more urgently needed
to guide the creators of parallel-programing languages and
environments. Although there are many loud assertions that
parallel programming is extremely difficult, if not in fact
impossible, there has been relatively little focus on identify-
ing precisely what is difficult about parallel programming in
general, as opposed to what is difficult about specific par-
allel programming methodologies. It is important to note
that parallel programming cannot be analyzed purely theo-
retically, but must also take human factors into account.

In a perfect world, such a framework would therefore be
constructed based on human factors studies [4], however,
such studies on parallel programming are quite limited [3,
4, 7, 16]. This paper therefore takes a different approach,
basing an evaluation and comparison framework on the tasks
required for parallel programming over and above those re-
quired for sequential programming. Design and evaluation
of parallel programming languages and environments can
then be based on assisting developers with these tasks.

One challenge to any such framework is the many styles
of parallel programming. We address this challenge draw-
ing on different fields: Paul from operating-system kernels,
Manish from distributed computing, Maged from parallel
algorithms, and Jon from parallel video applications. We
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enlisted Josh and Phil, both Ph.D. candidates, to combat
expert’s bias. This paper distills the resulting framework
from a series of often-spirited discussions within this group.
We believe this framework will prove generally applicable.
It is also important to note that we believe that parallel
programming is feasible, and hold up the large number of
parallel operating systems, databases, and scientific applica-
tions as evidence. We find it particularly impressive that a
number of these examples were created as open-source soft-
ware projects, which leads us to believe that the requisite
skills are readily available. Open-source projects have the
additional advantage that their entire source base may be
analyzed at any time by anyone, providing unprecedented
opportunities for parallel-programming self-education.
Section 2 gives a high-level summary of the framework,
Section 3 provides more detail on the capabilities defined by
this framework, Section 4 applies the framework to a few
heavily used parallel programming languages and environ-
ments, and finally, Section 5 presents concluding remarks.

2. EVALUATION AND COMPARISON
FRAMEWORK OVERVIEW

Parallel languages and environments must provide four
basic capabilities, and their overall effectiveness may be mea-
sured in three dimensions. These capabilities and measures
of effectiveness are introduced in the following sections.

2.1 Parallel Capabilities

The four parallel capabilities are work partitioning, paral-
lel access control, resource partitioning, and interaction with
hardware. Note that these capabilities need not be fully con-
trolled by the developer. On the contrary, it can be quite
beneficial to embed these capabilities into the programming
language or environment so as to ease the developer’s job,
in turn increasing productivity.

Parallel execution cannot occur without work partitioning,
which ranges from the extremely fine-grained execution of
superscalar CPUs to the equally coarse-grained structure of
SETI@QHOME. Each partition of work is termed a “thread”.

In sequential code, the sole thread owns all resources. In
contrast, partitioning work across multiple threads requires
parallel access control to prevent destructive interference
among concurrent threads. Resources include data struc-
tures and hardware devices, and the partitioning may either
be static (as in classic distributed shared-nothing systems)
or dynamic (as in transactional systems). Parallel access
control concerns both the syntax of the accesses and the



semantics of the underlying synchronization mechanisms.

The best performance and scalability is obtained via re-
source partitioning [2], permitting parallelism to increase
with problem size. Such partitioning may be strict, or may
involve replication of some or all of the relevant resources.

Finally, it is necessary to interact with hardware. This
capability is often implemented in compilers and operating
systems, thus allowing developers to ignore it. However,
special-purpose hetergeneous multicore hardware may grow
in importance given the limited growth in single-threaded
performance of general-purpose CPUs.

These four capabilities, work partitioning, parallel access
control, resource partitioning, and interacting with hard-
ware, are required of all parallel languages and environ-
ments. However, design and evaluation of these capabili-
ties requires measures of effectiveness, as discussed in the
following section.

2.2 Parallel Measures of Effectiveness

The three measures of effectiveness are performance, pro-
ductivity, and generality.

The primary measure of effectiveness for a parallel lan-
guage or environment is performance. After all, if perfor-
mance is not an issue, why worry about parallelism? Perfor-
mance is often measured by its proxy, scalability, and often
normalized against some input, as in performance per watt.
Some may object that software reliability is always more
important than performance, which is true, but no more so
than in sequential programs. Furthermore, true fault toler-
ance requires a globally applied design discipline. Although
non-blocking primitives and transactions avoid inter-thread
synchronization dependencies, they are no substitute for the
discipline required to ensure that any failed work will even-
tually be completed.

Furthermore, as the cost of hardware decreases relative to
the cost of labor, the importance of productivity continues
to increase. We believe that this increasing importance of
productivity will motivate significant automation, which has
in fact existed for some decades in the form of SQL, which
often requires little or no effort to run efficiently on a par-
allel machine. Productivity concerns will also increase the
importance of compatibility with legacy software, because
reuse of existing software can be extremely productive.

Finally generality is important, as the development, main-
tenance, and training costs of a more-general language or
environment may be amortized over a greater number of
end users, reducing the per-user development cost.

Although the ideal parallel language or environment would
offer optimal performance, high productivity, and full gener-
ality, this nirvana simply does not exist. A given language or
environment rates highly on at most two of these three mea-
sures. For example, highly productive environments such as
Ruby on Rails typically are tailored to a specific applica-
tion area. Similarly, highly specialized environments can
take advantage of powerful optimizations and paralleliza-
tion techniques that are not generally applicable. Gener-
ality and productivity are often in direct conflict, as illus-
trated by Figure 1. High productivity seems to require a
small abstract distance between the environment and the
user (SQL, spreadsheets, Matlab, etc.), while broad gener-
ality seems to require that the environment remain close to
either the hardware (C, C++, Java, assembly language) or
some abstraction (Haskell, Prolog, Snobol).
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Figure 2: Parallel Evaluation Framework

2.3 Framework Summary

Our evaluation framework includes three measures of ef-
fectiveness (performance, productivity, generality) and four
capabilities (work partitioning, parallel access control, re-
source partitioning, interacting with hardware), as shown in
Figure 2. The next section fleshes out these capabilities.

3. CAPABILITIES

Each of the following sections focuses on a few of the issues
surrounding each of the capabilities introduced in Section 2.

3.1 Work Partitioning

Parallel execution requires that work be partitioned, but
partitioning requires great care. For example, partitioning
the work unevenly can result in single-threaded execution
once the small partitions have completed [1]. In less ex-
treme cases, load balancing may be required to fully utilize
available hardware so as to attain maximum performance.

In addition, partitioning of work can complicate handling
of global errors and events: a parallel program may need
to carry out non-trivial synchronization in order to safely
proceed with such global processing.

Partitioning work requires some sort of communication:
after all, if a given thread did not communicate at all, it
would have no effect and would thus not need to be exe-
cuted. However, communication incurs overhead, so that



careless choices of partition boundaries can result in severe
performance degradation.

Furthermore, the number of concurrent threads must of-
ten be controlled, as each such thread occupies common re-
sources, for example, space in CPU caches. If too many
threads execute concurrently, the CPU caches will overflow,
resulting in high cache miss rate, which in turn degrades
performance. On the other hand, large numbers of threads
are often required to overlap computation and I/0.

Finally, permitting threads to execute concurrently greatly
increases the program’s state space, which can make the pro-
gram difficult to understand, degrading productivity. All
else being equal, smaller state spaces having more regular
structure are more easily understood, but this is a human-
factors statement as opposed to a technical or mathemati-
cal statement. Good parallel designs might have extremely
large state spaces, but nevertheless be easy to understand
due to their regular structure, while poor designs can be im-
penetrable despite having a comparatively small state space.
The best designs exploit embarrassing parallelism, or trans-
form the problem to one having an embarrassingly parallel
solution. In either case, “embarrassingly parallel” is in fact
an embarrassment of riches. The current state of the art
enumerates good designs; more work is required to make
more general judgements on state-space size and structure.

3.2 Parallel AccessControl

Resources are most often in-memory data structures, but
can be CPUs, memory (including caches), I/O devices, com-
putational accelerators, files, and much else besides.

The first parallel-access-control issue is whether the form
of the access to a given resource is a function of location.
For example, in many message-passing environments, local-
variable access is via expressions and assignments, while
remote-variable acess is via special syntax involving mes-
saging. The POSIX threads environment [15], Structured
Query Language (SQL) [8], and partitioned global address-
space (PGAS) environments such as Universal Parallel C
(UPC) [5] offer implicit access, while Message Passing In-
terface (MPI) [14] offers explicit access because access to
remote data requires explicit messaging.

The other parallel access-control issue is how threads co-
ordinate access to the resources. This coordination is carried
out by the very large number of synchronization mechanisms
provided by various parallel languages and environments,
including message passing, locking, transactions, reference
counting, explicit timing, shared atomic variables, and data
ownership. Many traditional parallel-programming concerns
such as deadlock, livelock, and transaction rollback stem
from this coordination. This framework can be elaborated to
include comparisions of these synchronization mechanisms,
for example locking vs. transactional memory [10], but such
elaboration is beyond the scope of this paper.

3.3 Resource Partitioning

The most effective parallel algorithms and systems exploit
resource parallelism, so much so that it is usually wise to
begin parallelization by partitioning your resources. The
resource in question is most frequently data, which might
be partitioned over computer systems, mass-storage devices,
NUMA nodes, CPU cores (or dies or hardware threads),
pages, cache lines, instances of synchronization primitives,
or critical sections of code. For example, partitioning over

locking primitives is termed “data locking” [2].

Resource partitioning is frequently application dependent,
for example, numerical applications frequently partition ma-
trices by row, column, or sub-matrix, while commercial ap-
plications frequently partition write-intensive data structures
and replicate read-mostly data structures. For example, a
commercial application might assign the data for a given
customer to a given few computer systems out of a large
cluster. An application might statically partition data, or
dynamically change the partitioning over time.

Resource partitioning is extremely effective, but it can be
quite challenging for complex multilinked data structures.

3.4 Interacting With Hardware

Hardware interaction is normally the domain of the op-
erating system, the compiler, libraries, or other software-
environment infrastructure. However, developers working
with novel hardware features and components will often
need to work directly with such hardware. In addition, di-
rect access to the hardware can be required when squeezing
the last drop of performance out of a given system. In this
case, the developer may need to tailor or configure the ap-
plication to the cache geometry, system topology, or inter-
connect protocol of the target hardware.

In some cases, hardware may be considered to be a re-
source which may be subject to partitioning or access con-
trol, as described in the previous sections.

3.5 Composite Capabilities

Although these four capabilities are fundamental, good
engineering practice uses composites of these capabilities.
For example, the data-parallel approach first partitions the
data so as to minimize the need for inter-partition commu-
nication, partitions the code accordingly, and finally maps
data partitions and threads so as to maximize throughput
while minimizing inter-thread communication. The devel-
oper can then consider each partition separately, greatly
reducing the size of the relevant state space, in turn in-
creasing productivity. Of course, some problems are non-
partitionable but on the other hand, clever transformations
into forms permitting partitioning can greatly enhance both
performance and scalability [12].

The next section shows how this framework may be ap-
plied to three heavily used parallel-programming paradigms.

4. CASE STUDIES

This section applies the framework to the “locking plus
threads” (L+T), MPI [14], and SQL [8] parallel-programming
environments, all three of which have seen significant use in
production, and all three of which have large and vital de-
veloper and user communities. Please note that L+T covers
environments ranging from the Linux kernel [17] to POSIX
pthreads [15] to Windows threads [13]. In addition, L+T
has been extended by addition of atomic operations, fine-
grained synchronization, read-copy update (RCU) [11], and
transactional memory [6].

41 Measuresof Effectiveness

All three environments can provide excellent performance,
however, SQL is specialized while L+T and MPI are general
purpose. The following sections therefore focus on produc-
tivity on a task-by-task basis, given that the easiest work is
that which need not be done at all.



4.2 Work Partitioning

The L+T and MPI environments place almost all of the
work-partitioning tasks on the shoulders of the developer,
who must manually partition the work, control utilization
(although in MPI, provisioning a fixed number of threads
per CPU trivializes this task), and manage the state space.
However, both environments provide primitives that prop-
agate global errors (abort() for L+T and MPI_Abort for
MPI), and most L+T environments provide a scheduler that
automatically load-balances across CPUs.

In contrast, the SQL environment automates all work-
partitioning tasks. This is not to say that SQL is perfect, in
fact, a quick Google of “SQL performance” will return tens
of millions of hits. However, the contrast with the L+T and
MPI environments is quite sobering: SQL demands much
less of the developer than do the other two environments.

4.3 Parallel AccessControl

The L+T and the SQL environments boast implicit re-
source access, while MPI must use explicit messages to ac-
cess remote data. All three environments require manual
access control, with L+T providing locking, reference count-
ing, and shared variables; MPI providing message passing,
and SQL providing transactions. However, SQL’s transac-
tions are typically implemented using underlying synchro-
nization primitives that are managed fully automatically.

4.4 Resource Partitioning

The L+T environment requires manual partitioning of
data over critical sections, storage devices, pages, cache lines,
and (best!) synchronization-primitive instances. That said,
augmenting L+T with RCU can eliminate the need for par-
titioning of read-mostly data structures. The MPI environ-
ment requires manual partitioning of data over the computer
systems in the cluster, and possibly over CPUs, cores, or
sockets within each system.

In contrast, some SQL environments will automatically
partition data as needed. That said, most SQL environ-
ments provide data-placement hints, which is one reason
for the many Google hits on “SQL performance”. Never-
theless, SQL is an illuminating demonstration of parallel-
programming automation.

45 Interacting With Hardware

In principle, all of these three environments are machine
independent, so that the programmer need not be concerned
with hardware interactions. In practice, this laudable princi-
ple does not always apply. High-performance L+T applica-
tions may need to access variables outside of locks, in which
case the developer may need to interact with the memory-
ordering model of the system in question. Extreme MPT in-
stallations may require special high-performance hardware
interconnects. And high-end SQL applications may require
attention to the detailed properties of mass-storage systems.

Nevertheless, it is possible to write competent production-
quality applications in each of these enviroments without
special hardware interactions. This situation might well
change should computational accelerators such as GPUs con-
tinue to increase in popularity.

4.6 CaseStudy Summary

Table 1 provides a summary of the prior sections. In
this table, capital letters indicate advantages, lower-case let-
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Table 1: Summary of Framework Case Study (High
Productivity in Capitals, Low Productivity in Low-
ercase)

ters indicate disadvantages and empty cells indicate non-
applicability. The definitions of the letters are as follows:
“A” indicates automatic, “e” indicates explicit differentia-
tion between local and remote resource references, “h” in-
dicates weakly automatic augmented by manual hints, “H”
indicates automatic optionally augmented by manual hints,
“I” indicates implicit access to remote resource references,
“m” indicates manual operation, “M” indicates manual op-
eration possible, but usually unnecessary.

While the L+T and MPI environments require developers
to deal with parallelism, SQL automates almost all of the
process, thus providing both performance and productivity.
On the other hand, SQL is specific to applications using re-
lational databases, while L4+T and MPI are general-purpose
environments. Therefore, this table indicates that develop-
ers should use SQL in preference to L+T or MPI, but only
within SQL’s domain. This situation does much to explain
the common practice of using multiple parallel programming
models in large data-center applications.

5. CONCLUSIONS

We have constructed a novel framework identifying why
parallel programming is more difficult than is sequential pro-
gramming. We further demonstrated the generality of this
framework via a case study comparing three diverse par-
allel programming environments: “locking plus threads”,
MPI, and SQL. The framework divides these difficulties into
four categories: work partitioning, parallel access control,



resource partitioning, and, in rare cases, interacting with
special-purpose parallel hardware, none of which are re-
quired for sequential programming. However, these difficul-
ties need not necessarily be addressed manually. For exam-
ple, for the special case of read-mostly data structures, RCU
delegates resource partitioning to the underlying hardware
cache-consistency protocol. SQL goes much farther, provid-
ing an impressive example of pervasive parallel automation.
Parallel programming is therefore as hard, or as easy, as we
design it to be.

Unfortunately, SQL is not a general-purpose solution, be-
ing restricted to database queries and updates. However,
we do not know of any parallel programming language or
environment that is world class on more than two of the
three parallel measures of effectiveness: performance, pro-
ductivity, and generality. Therefore, researchers interested
in highly productive parallel languages and environments
should prioritize performance over generality. Similarly, re-
searchers interested in general-purpose parallel programming
languages and environments should prioritize performance
over productivity, focusing on the needs of expert developers
constructing the low-level infrastructure supporting widely
used programming environments. It is conceivable that par-
allel languages and environments might provide world-class
productivity and generality at the expense of performance,
but such environments will not be interesting unless they
demonstrate significant benefits beyond those of existing se-
quential programming environments.

Of course, we cannot rule out the possibility of a par-
allel programming language or environment that provides
world-class performance, productivity, and generality. How-
ever, the historic tendency of highly productive environ-
ments (such as spreadsheets, databases, and computer-aided
design systems) to also be highly specialized augurs against
such a nivana.
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