
Memory Ordering in Modern Microprocessors
Paul E. McKenney

Draft of 2005/07/01 18:37

Linux R
�

has supported a large number of SMP sys-
tems based on a variety of CPUs since the 2.0 kernel.
Linux has done an excellent job of abstracting away dif-
ferences among these CPUs, even in kernel code. One
important difference is how CPUs allow memory ac-
cesses to be reordered in SMP systems.

SMMP Hardware
Memory accesses are among the slowest of a CPU’s op-
erations, due to the fact that Moore’s law has increased
CPU instruction performance at a much greater rate than
it has increased memory performance. This difference
in performance increase means that memory operations
have been getting increasingly expensive compared to
simple register-to-register instructions. Modern CPUs
sport increasingly large caches in order to reduce the
overhead of these expensive memory accesses.

These caches can be thought of as simple hardware
hash table with fixed size buckets and no chaining, as
shown in Figure 1. This cache has sixteen “lines” and
two “ways” for a total of 32 “entries”, each entry con-
taining a single 256-byte “cache line”, which is a 256-
byte-aligned block of memory. This cache line size is
a little on the large size, but makes the hexadecimal
arithmetic much simpler. In hardware parlance, this is
a two-way set-associative cache, and is analogous to a
software hash table with sixteen buckets, where each
bucket’s hash chain is limited to at most two elements.
Since this cache is implemented in hardware, the hash
function is extremely simple: extract four bits from the
memory address.

In Figure 1, each box corresponds to a cache entry,
which can contain a 256-byte cache line. However, a
cache entry can be empty, as indicated by the empty
boxes in the figure. The rest of the boxes are flagged
with the memory address of the cache line that they con-
tain. Since the cache lines must be 256-byte aligned, the
low eight bits of each address are zero, and the choice of
hardware hash function means that the next-higher four
bits match the hash line number.

The situation depicted in the figure might arise if the
program’s code were located at address 0x43210E00
through 0x43210EFF, and this program accessed data
sequentially from 0x12345000 through 0x12345EFF.

0xF
0xE
0xD
0xC
0xB
0xA
0x9
0x8
0x7
0x6
0x5
0x4
0x3
0x2
0x1
0x0

Way 0

0x12345E00
0x12345D00
0x12345C00
0x12345B00
0x12345A00
0x12345900
0x12345800
0x12345700
0x12345600
0x12345500
0x12345400
0x12345300
0x12345200
0x12345100
0x12345000

Way 1

0x43210E00

Figure 1: CPU Cache Structure

Suppose that the program were now to access location
0x12345F00. This location hashes to line 0xF, and both
ways of this line are empty, so the corresponding 256-
byte line can be accommodated. If the program were
to access location 0x1233000, which hashes to line 0x0,
the corresponding 256-byte cache line can be accommo-
dated in way 1. However, if the program were to access
location 0x1233E00, which hashes to line 0xE, one of
the existing lines must be ejected from the cache to make
room for the new cache line.

This background on hardware caching allows us to
look at why CPUs reorder memory accesses.

Why Reorder Memory Accesses?
In a word, performance! CPUs have become so fast that
the large multi-megabyte caches cannot keep up with
them. Therefore, caches are often partitioned into nearly
independent “banks”, as shown in Figure 2, allowing
each of the banks to run in parallel, thus better keeping
up with the CPU. Memory is normally divided among
the cache banks by address; for example, all the even-
numbered cache lines might be processed by bank 0 and
all of the odd-numbered cache lines by bank 1.

However, this hardware parallelism has a dark side:
memory operations can now complete out of order,
which can result in some confusion, as shown in Fig-

Draft: 2005/07/01 18:37 Page: 1

CPU 0

Cache
Bank 0

Cache
Bank 1

Interconnect
Interface

CPU 1

Cache
Bank 0

Cache
Bank 1

Interconnect
Interface

� �

�

Memory

Figure 2: Hardware Parallelism

Figure 3: CPUs Can Do Things Out of Order

ure 3. CPU 0 might write first to location 0x12345000
(an even-numbered cache line) and then to location
0x12345100 (an odd-numbered cache line). If bank 0
is busy with earlier requests but bank 1 is idle, the first
write will be visible to CPU 1 after the second write, in
other words, the writes will be perceived out of order by
CPU 1. Reads can be reordered in a similar manner.

This reordering will cause many textbook parallel al-
gorithms to fail.

Memory Reordering and SMP Software
A few machines offer “sequential consistency”, in which
all operations happen in the order specified by the code,
and where all CPUs’ views of these operations is con-
sistent with a global ordering of the combined opera-
tions. Sequentially consistent systems have some very
nice properties, but high performance has not tended to
be one of them. The need for global ordering severely
constrains the hardware’s ability to exploit parallelism,
and therefore commodity CPUs and systems do not of-

fer sequential consistency.
On these systems, there are three orderings that must

be accounted for:

1. Program order: the order that the memory oper-
ations are specified in the code running on a given
CPU.

2. Execution order: the order that the individual
memory-reference instructions are executed on a
given CPU. The execution order can differ from
program order due to both compiler and CPU-
implementation optimizations.

3. Perceived order: the order that a given CPU per-
ceives its and other CPUs’ memory operations. The
perceived order can differ from the execution order
due to cachine, interconnect, and memory-system
optimizations.

Popular memory-consistency models include x86’s
“process consistency”, in which writes from a given
CPU are seen in order by all CPUs, and weak consis-
tency, which permits arbitrary reorderings, limited only
by explicit memory-barrier instructions.

For more information on memory-consistency mod-
els, see Gharachorloo’s exhaustive technical report [2].

Summary of Memory Ordering
When it comes to how memory ordering works on dif-
ferent CPUs, there is good news and bad news.

The bad news is that each CPU’s memory ordering is
a bit different. The good news is that there are a few
things you can count on:

� A given CPU will always perceive its own memory
operations as occurring in program order. That is,
memory ordering issues arise only when a CPU is
observing other CPUs’ memory operations.

� An operation will be reordered with a store only if
the operation accesses a different location than does
the store.

� Aligned simple loads and stores are atomic.
� Linux-kernel synchronization primitives contain

any needed memory barriers (which is a good rea-
son to use these primitives!).

The most important differences are called out in Ta-
ble 1. More detailed descriptions of specific CPUs’
features are called out in following sections. The cells
marked with a ”Y” indicate weak memory ordering; the
more ”Y”s, the more reordering is possible. In general, it
is easier to port SMP code from a CPU with many ”Y”s
to a CPU with fewer ”Y”s, though your mileage may
vary. However, note that code that uses standard syn-
chronization primitives (spinlocks, semaphores, RCU)
should not need explicit memory barriers, since any re-
quired barriers are already present in these primitives.
Only “tricky” code that bypasses these synchronization

Draft: 2005/07/01 18:37 Page: 2

Table 1: Summary of Memory Ordering

L
oa

ds
R

eo
rd

er
ed

A
ft

er
L

oa
ds

?

L
oa

ds
R

eo
rd

er
ed

A
ft

er
St

or
es

?

St
or

es
R

eo
rd

er
ed

A
ft

er
St

or
es

?

St
or

es
R

eo
rd

er
ed

A
ft

er
L

oa
ds

?

A
to

m
ic

In
st

ru
ct

io
ns

R
eo

rd
er

ed
W

ith
L

oa
ds

?

A
to

m
ic

In
st

ru
ct

io
ns

R
eo

rd
er

ed
W

ith
St

or
es

?

D
ep

en
de

nt
L

oa
ds

R
eo

rd
er

ed
?

In
co

he
re

nt
In

st
ru

ct
io

n
C

ac
he

/P
ip

el
in

e?
Alpha Y Y Y Y Y Y Y Y
AMD64 Y Y
IA64 Y Y Y Y Y Y Y
(PA-RISC) Y Y Y Y
PA-RISC CPUs
POWER

TM
Y Y Y Y Y Y Y

(SPARC RMO) Y Y Y Y Y Y Y
(SPARC PSO) Y Y Y Y
SPARC TSO Y Y
x86 Y Y Y Y
(x86 OOStore) Y Y Y Y Y
zSeries R

�
Y Y

primitives needs barriers, see Figure 6 for one exam-
ple of such code. It is important to note that most
atomic operations (for example, atomic inc() and
atomic add()) do not include any memory barriers.

The first four columns indicate whether a given CPU
allows the four possible combinations of loads and stores
to be reordered. The next two columns indicate whether
a given CPU allows loads and stores to be reordered with
atomic instructions. With only six CPUs, we have five
different combinations of load-store reorderings, and
three of the four possible atomic-instruction reorderings.

Parenthesized CPU names indicate modes that are ar-
chitecturally allowed, but rarely used in practice.

The seventh column, dependent reads reordered, re-
quires some explanation, which is undertaken in the fol-
lowing section covering Alpha CPUs. The short ver-
sion is that Alpha requires memory barriers for read-
ers as well as updaters of linked data structures. Yes,
this does mean that Alpha can in effect fetch the data
pointed to before it fetches the pointer itself, strange but
true. Please see: http://www.openvms.compaq.
com/wizard/wiz_2637.html if you think that I

am just making this up. The benefit of this extremely
weak memory model is that Alpha can use simpler cache
hardware, which in turn permitted higher clock fre-
quency in Alpha’s heyday.

The last column indicates whether a given CPU
has a incoherent instruction cache and pipeline. Such
CPUs require special instructions be executed for self-
modifying code. In absence of these instructions, the
CPU might well execute the old rather than the new ver-
sion of the code. This might seem unimportant–after
all, who writes self-modifying code these days? The an-
swer is that every JIT out there does. Writers of JIT
code generators for such CPUs must take special care
to flush instruction caches and pipelines before attempt-
ing to execute any newly generated code. These CPUs
also require that the exec() and page-fault code flush the
instruction caches and pipelines before attempting to ex-
ecute any binaries just read into memory, lest the CPU
end up executing the prior contents of the affected pages.

How Linux Copes
One of Linux’s great advantages is that it runs on a
wide variety of different CPUs. Unfortunately, as we
have seen, these CPUs sport a wide variety of memory-
consistency models. So what is a portable operating sys-
tem to do?

Linux provides a carefully chosen set of memory-
barrier primitives, which are as follows:

� smp mb(): “memory barrier” that orders both
loads and stores. This means that loads and stores
preceding the memory barrier will be committed to
memory before any loads and stores following the
memory barrier.

� smp rmb(): “read memory barrier” that orders
only loads.

� smp wmb(): “write memory barrier” that orders
only stores.

� smp read barrier depends() that forces
subsequent operations that depend on prior opera-
tions to be ordered. This primitive is a no-op on all
platforms except Alpha.

The smp mb(), smp rmb(), and smp wmb() prim-
itives also force the compiler to eschew any op-
timizations that would have the effect of reorder-
ing memory optimizations across the barriers. The
smp read barrier depends() primitive has a
similar effect, but only on Alpha CPUs.

These primitives generate code only in SMP
kernels, however, each also has a UP version
(smp mb(), tt smp rmb(), smp wmb(), and
smp read barrier depends(), respectively)
that generate a memory barrier even in UP kernels. The
smp versions should be used in most cases. However,

Draft: 2005/07/01 18:37 Page: 3

these latter primitives are useful when writing drivers,
because MMIO accesses must remain ordered even in
UP kernels. In absence of memory-barrier instructions,
both CPUs and compilers would happily rearrange
these accesses, which at best would make the device act
strangely, and could crash your kernel or, in some cases,
even damage your hardware.

So most kernel programmers need not worry about the
memory-barrier peculiarities of each and every CPU, as
long as they stick to these interfaces. If you are work-
ing deep in a given CPU’s architecture-specific code, of
course, all bets are off.

But it gets better. All of Linux’s locking primitives
(spinlocks, reader-writer locks, semaphores, RCU, ...)
include any needed barrier primitives. So if you are
working with code that uses these primitives, you don’t
even need to worry about Linux’s memory-ordering
primitives.

That said, deep knowledge of each CPU’s memory-
consistency model can be very helpful when debugging,
to say nothing of when writing architecture-specific code
or synchronization primitives.

Besides, they say that a little knowledge is a very dan-
gerous thing. Just imagine the damage you could do with
a lot of knowledge! For those who wish to understand
more about individual CPUs’ memory consistency mod-
els, the next sections describes those of the most popular
and prominent CPUs. Although nothing can replace ac-
tually reading a given CPU’s documentation, these sec-
tions give a good overview.

Alpha
It may seem strange to say much of anything about a
CPU whose end of life has been announced, but Al-
pha is interesting because, with the weakest memory or-
dering model, it reorders memory operations the most
aggressively. It therefore has defined the Linux-kernel
memory-ordering primitives, which must work on all
CPUs, including Alpha. Understanding Alpha is there-
fore surprisingly important to the Linux kernel hacker.

The difference between Alpha and the other CPUs
is illustrated by the code shown in Figure 4. This
smp wmb() on line 9 of this figure guarantees that the
element initialization in lines 6-8 is executed before the
element is added to the list on line 10, so that the lock-
free search will work correctly. That is, it makes this
guarantee on all CPUs except Alpha.

Alpha has extremely weak memory ordering such that
the code on line 20 of Figure 4 could see the old garbage
values that were present before the initialization on lines
6-8.

Figure 5 shows how this can happen on an aggres-
sively parallel machine with partitioned caches, so that
alternating caches lines are processed by the different

1 struct el *insert(long key, long data)
2 {
3 struct el *p;
4 p = kmalloc(sizeof(*p), GPF_ATOMIC);
5 spin_lock(&mutex);
6 p->next = head.next;
7 p->key = key;
8 p->data = data;
9 smp_wmb();

10 head.next = p;
11 spin_unlock(&mutex);
12 }
13
14 struct el *search(long key)
15 {
16 struct el *p;
17 p = head.next;
18 while (p != &head) {
19 /* BUG ON ALPHA!!! */
20 if (p->key == key) {
21 return (p);
22 }
23 p = p->next;
24 };
25 return (NULL);
26 }

Figure 4: Insert and Lock-Free Search

(w)mb Sequencing

Cache
Bank 0

Cache
Bank 1

(r)mb Sequencing

Writing CPU Core

(w)mb Sequencing

Cache
Bank 0

Cache
Bank 1

(r)mb Sequencing

Reading CPU Core

�

Interconnect

Figure 5: Why smp read barrier depends() is Required

partitions of the caches. Assume that the list header
head will be processed by cache bank 0, and that the
new element will be processed by cache bank 1. On Al-
pha, the smp wmb()will guarantee that the cache inval-
idates performed by lines 6-8 of Figure 4 will reach the
interconnect before that of line 10 does, but makes ab-
solutely no guarantee about the order in which the new
values will reach the reading CPU’s core. For example,
it is possible that the reading CPU’s cache bank 1 is very
busy, but cache bank 0 is idle. This could result in the
cache invalidates for the new element being delayed, so
that the reading CPU gets the new value for the pointer,
but sees the old cached values for the new element. See
the Web site called out earlier for more information, or,
again, if you think that I am just making all this up.

One could place an smp rmb() primitive between

Draft: 2005/07/01 18:37 Page: 4

1 struct el *insert(long key, long data)
2 {
3 struct el *p;
4 p = kmalloc(sizeof(*p), GPF_ATOMIC);
5 spin_lock(&mutex);
6 p->next = head.next;
7 p->key = key;
8 p->data = data;
9 smp_wmb();

10 head.next = p;
11 spin_unlock(&mutex);
12 }
13
14 struct el *search(long key)
15 {
16 struct el *p;
17 p = head.next;
18 while (p != &head) {
19 smp_read_barrier_depends();
20 if (p->key == key) {
21 return (p);
22 }
23 p = p->next;
24 };
25 return (NULL);
26 }

Figure 6: Safe Insert and Lock-Free Search

the pointer fetch and dereference. However, this imposes
unneeded overhead on systems (such as i386, IA64,
PPC, and SPARC) that respect data dependencies on the
read side. A smp read barrier depends() prim-
itive has been added to the Linux 2.6 kernel to eliminate
overhead on these systems. This primitive may be used
as shown on line 19 of Figure 6.

It is also possible to implement a software barrier that
could be used in place of smp wmb(), which would
force all reading CPUs to see the writing CPU’s writes in
order. However, this approach was deemed by the Linux
community to impose excessive overhead on extremely
weakly ordered CPUs such as Alpha. This software bar-
rier could be implemented by sending inter-processor in-
terrupts (IPIs) to all other CPUs. Upon receipt of such
an IPI, a CPU would execute a memory-barrier instruc-
tion, implementing a memory-barrier shootdown. Addi-
tional logic is required to avoid deadlocks. Of course,
CPUs that respect data dependencies would define such
a barrier to simply be smp wmb(). Perhaps this deci-
sion should be revisited in the future as Alpha fades off
into the sunset.

The Linux memory-barrier primitives took
their names from the Alpha instructions, so
smp mb() is mb, smp rmb() is rmb, and
smp wmb() is wmb. Alpha is the only CPU where
smp read barrier depends() is an smp mb()
rather than a no-op.

For more detail on Alpha, see the reference man-
ual [11].

Figure 7: Half Memory Barrier

AMD64

Although AMD64 is compatible with x86, it offers a
stronger slightly memory-consistency model, in that it
will not reorder a store ahead of a load [1]. After all,
loads are slow, and cannot be buffered, so why reorder
a store ahead of a load? Although it is possible in the-
ory to create a parallel program that will work on some
x86 CPUs but fail on AMD64 due to this difference in
memory-consistency model, in practice this difference
has little effect on porting code from x86 to AMD64.

The AMD64 implementation of the Linux smp mb()
primitive is mfence, smp rmb() is lfence, and
smp wmb() is sfence.

IA64

IA64 offers a weak consistency model, so that in absence
of explicit memory-barrier instructions, IA64 is within
its rights to arbitrarily reorder memory references [5].
IA64 has a memory-fence instruction named mf, but
also has “half-memory fence” modifiers to loads, stores,
and to some of its atomic instructions [4]. The acqmod-
ifier prevents subsequent memory-reference instructions
from being reordered before the acq, but permits prior
memory-reference instructions to be reordered after the
acq, as fancifully illustrated by Figure 7. Similarly, the
rel modifier prevents prior memory-reference instruc-
tions from being reordered after the rel, but allows sub-
sequent memory-reference instructions to be reordered
before the rel.

These half-memory fences are useful for critical sec-
tions, since it is safe to push operations into a critical
section, but can be fatal to allow them to bleed out.

The IA64 mf instruction is used for the smp rmb(),
smp mb(), and smp wmb() primitives in the Linux
kernel. Oh, and despite rumors to the contrary, the “mf”
mneumonic really does stand for “memory fence”.

Draft: 2005/07/01 18:37 Page: 5

PA-RISC
Although the PA-RISC architecture permits full reorder-
ing of loads and stores, actual CPUs run fully or-
dered [9]. This means that the Linux kernel’s memory-
ordering primitives generate no code, however, they do
use the gcc memory attribute to disable compiler op-
timizations that would reorder code across the memory
barrier.

POWER
The POWER and Power PC R

�
CPU families have a wide

variety of memory-barrier instructions [3, 10]:

1. sync causes all preceding operations to appear to
have completed before any subsequent operations
are started. This instruction is therefore quite ex-
pensive.

2. lwsync (light-weight sync) orders loads with re-
spect to subsequent loads and stores, and also or-
ders stores. However, it does not order stores with
respect to subsequent loads. Interestingly enough,
the lwsync instruction enforces the same ordering
as does zSeries, and coincidentally, SPARC TSO.

3. eieio (enforce in-order execution of I/O, in
case you were wondering) causes all preceding
cacheable stores to appear to have completed before
all subsequent stores. However, stores to cacheable
memory are ordered separately from stores to non-
cacheable memory, which means that eieio will
not force an MMIO store to precede a spinlock re-
lease.

4. isync forces all preceding instructions to appear
to have completed before any subsequent instruc-
tions start execution. This means that the preced-
ing instructions must have progressed far enough
that any traps they might generate have either hap-
pened or are guaranteed not to happen, and that
any side-effects of these instructions (for example,
page-table changes) are seen by the subsequent in-
structions.

Unfortunately, none of these instructions line up ex-
actly with Linux’s wmb() primitive, which requires all
stores to be ordered, but does not require the other high-
overhead actions of the sync instruction. But there is
no choice: ppc64 versions of wmb() and mb() are de-
fined to be the heavyweight sync instruction. How-
ever, Linux’s smp wmb() instruction is never used for
MMIO (since a driver must carefully order MMIOs in
UP as well as SMP kernels, after all), so it is defined to
be the lighter weight eieio instruction. This instruc-
tion may well be unique in having a five-vowel mneu-
monic, which stands for “enforce in-order execution of
I/O”. The smp mb() instruction is also defined to be the
sync instruction, but both smp rmb() and rmb() are

defined to be the lighter-weight lwsync instruction.
Many members of the POWER architecture have in-

coherent instruction caches, so that a store to memory
will not necessarily be reflected in the instruction cache.
Thankfully, few people write self-modifying code these
days, but JITs and compilers do it all the time. Further-
more, recompiling a recently run program looks just like
self-modifying code from the CPU’s viewpoint. The
icbi instruction (instruction cache block invalidate)
invalidates a specified cache line from the instruction
cache, and may be used in these situations.

SPARC RMO, PSO, and TSO
Solaris on SPARC uses TSO (total-store order); how-
ever, the Linux kernel runs SPARC in RMO (relaxed-
memory order) mode [12]. The SPARC architecture also
offers an intermediate PSO (partial store order). Any
program that runs in RMO will also run in either PSO
or TSO, and similarly, a program that runs in PSO will
also run in TSO. Moving a shared-memory parallel pro-
gram in the other direction may require careful inser-
tion of memory barriers, although, as noted earlier, pro-
grams that make standard use of synchronization primi-
tives need not worry about memory barriers.

SPARC has a very flexible memory-barrier instruc-
tion [12] that permits fine-grained control of ordering:

StoreStore: order preceding stores before subse-
quent stores. (This option is used by the Linux
smp wmb() primitive.)

LoadStore: order preceding loads before subsequent
stores.

StoreLoad: order preceding stores before subse-
quent loads.

LoadLoad: order preceding loads before subse-
quent loads. (This option is used by the Linux
smp rmb() primitive.)

Sync: fully complete all preceding operations before
starting any subsequent operations.

MemIssue: complete preceding memory operations
before subsequent memory operations, important
for some instances of memory-mapped I/O.

Lookaside: same as MemIssue, but only applies to
preceding stores and subsequent loads, and even
then only for stores and loads that access the same
memory location.

The Linux smp mb() primitive uses the
first four options together, as in membar
#LoadLoad | #LoadStore | #StoreStore
| #StoreLoad, thus fully ordering memory opera-
tions.

So, why is membar #MemIssue needed? Because
a membar #StoreLoad could permit a subsequent
load to get its value from a write buffer, which would

Draft: 2005/07/01 18:37 Page: 6

be disastrous if the write was to an MMIO register that
induced side effects on the value to be read. In con-
trast, membar #MemIssue would wait until the write
buffers were flushed before permitting the loads to ex-
ecute, thereby ensuring that the load actually gets its
value from the MMIO register. Drivers could instead
use membar #Sync, but the lighter-weight membar
#MemIssue is preferred in cases where the additional
function of the more-expensive membar #Sync are
not required.

The membar #Lookaside is a lighter-weight ver-
sion of membar #MemIssue, which is useful when
writing to a given MMIO register affects the value that
will next be read from that register. However, the
heavier-weight membar #MemIssue must be used
when a write to a given MMIO register affects the value
that will next be read from some other MMIO register.

It is not clear why SPARC does not define wmb()
to be membar #MemIssue and smb wmb() to be
membar #StoreStore, as the current definitions
seem vulnerable to bugs in some drivers. It is quite pos-
sible that all the SPARC CPUs that Linux runs on imple-
ment a more conservative memory-ordering model than
the architecture would permit.

SPARC requires a flush instruction be used be-
tween the time that an instruction is stored and exe-
cuted [12]. This is needed to flush any prior value for
that location from the SPARC’s instruction cache. Note
that flush takes an address, and will flush only that
address from the instruction cache. On SMP systems,
all CPUs’ caches are flushed, but there is no convenient
way to determine when the off-CPU flushes complete,
though there is a reference to an implementation note.

x86
Since the x86 CPUs provide “process ordering” so that
all CPUs agree on the order of a given CPU’s writes to
memory, the smp wmb() primitive is a no-op for the
CPU [7]. However, a compiler directive is required to
prevent the compiler from performing optimizations that
would result in reordering across the smp wmb() prim-
itive.

On the other hand, x86 CPUs give no ordering guaran-
tees for loads, so the smp mb() and smp rmb() prim-
itives expand to lock;addl. This atomic instruction
acts as a barrier to both loads and stores. Note that
some SSE instructions are weakly ordered (clflush
and non-temporal move instructions [6]). CPUs that
have SSE can use mfence for smp mb(), lfence for
smp rmb(), and sfence for smp wmb().

A few versions of the x86 CPU have a mode bit
that enables out-of-order stores, and for these CPUs,
smp wmb() must also be defined to be lock;addl.

Although many older x86 implementations accommo-

dated self-modifying code without the need for any spe-
cial instructions, newer revisions of the x86 architecture
no longer requires x86 CPUs to be so accommodating.
Interestingly enough, this relaxation comes just in time
to inconvenience JIT implementors.

zSeries

The zSeries machines make up the IBM
TM

mainframe
family, previously known as the 360, 370, and 390 [8].
Parallelism came late to zSeries, but given that these
mainframes first shipped in the mid 1960s, this is not
saying much. The bcr 15,0 instruction is used for
the Linux smp mb(), smp rmb(), and smp wmb()
primitives. It also has comparatively strong memory-
ordering semantics, as shown in Table 1, which should
allow the smp wmb() primitive to be a nop (and by
the time you read this, this change may well have hap-
pened).

As with most CPUs, the zSeries architecture does not
guarantee a cache-coherent instruction stream, hence,
self-modifying code must execute a serializing instruc-
tion between updating the instructions and executing
them. That said, many actual zSeries machines do in
fact accommodate self-modifying code without serializ-
ing instructions. The zSeries instruction set provides a
large set of serializing instructions, including compare-
and-swap, some types of branches (for example, the
aforementioned bcr 15,0 instruction), and test-and-
set, among others.

Conclusions

As noted earlier, the good news is that Linux’s memory-
ordering primitives and synchronization primitives make
it unnecessary for most Linux kernel hackers to worry
about memory barriers. This is especially good news
given the large number of CPUs and systems that Linux
supports, and the resulting wide variety of memory-
consistency models. However, there are times when
knowing about memory barriers can be helpful, and I
hope that this article has served as a good introduction
to them.

Acknowledgements

I owe thanks to many CPU architects for patiently ex-
plaining the instruction- and memory-reordering fea-
tures of their CPUs, particularly Wayne Cardoza, Ed
Silha, Anton Blanchard, Tim Slegel, Juergen Probst,
Ingo Adlung, and Ravi Arimilli. Wayne deserves special
thanks for his patience in explaining Alpha’s reordering
of dependent loads, a lesson that I resisted quite strenu-
ously!

Draft: 2005/07/01 18:37 Page: 7

Legal Statement
This work represents the view of the author and does not nec-
essarily represent the view of IBM.
IBM, zSeries, and Power PC are trademarks or registered
trademarks of International Business Machines Corporation in
the United States, other countries, or both.
Linux is a registered trademark of Linus Torvalds.
i386 is a trademarks of Intel Corporation or its subsidiaries in
the United States, other countries, or both.
Other company, product, and service names may be trade-
marks or service marks of such companies.
Copyright c

�
2005 by IBM Corporation.

References
[1] ADVANCED MICRO DEVICES. AMD x86-64

Architecture Programmer’s Manual Volumes 1-5,
2002.

[2] GHRACHORLOO, K. Memory consistency models
for shared-memory multiprocessors. Tech. Rep.
CSL-TR-95-685, Computer Systems Labora-
tory, Departments of Electrical Engineering and
Computer Science, Stanford University, Stan-
ford, CA, December 1995. Available: http:
//www.hpl.hp.com/techreports/
Compaq-DEC/WRL-95-9.pdf [Viewed:
October 11, 2004].

[3] IBM MICROELECTRONICS AND MOTOROLA.
PowerPC Microprocessor Family: The Program-
ming Environments, 1994.

[4] INTEL CORPORATION. Intel Itanium Architecture
Software Developer’s Manual Volume 3: Instruc-
tion Set Reference, 2002.

[5] INTEL CORPORATION. Intel Itanium Architecture
Software Developer’s Manual Volume 3: System
Architecture, 2002.

[6] INTEL CORPORATION. IA-32 Intel Architecture
Software Developer’s Manual Volume 2B: In-
struction Set Reference, N-Z, 2004. Available:
ftp://download.intel.com/design/
Pentium4/manuals/25366714.pdf
[Viewed: February 16, 2005].

[7] INTEL CORPORATION. IA-32 Intel Architec-
ture Software Developer’s Manual Volume 3:
System Programming Guide, 2004. Available:
ftp://download.intel.com/design/
Pentium4/manuals/25366814.pdf
[Viewed: February 16, 2005].

[8] INTERNATIONAL BUSINESS MACHINES CORPO-
RATION. z/Architecture principles of operation.
Available: http://publibz.boulder.
ibm.com/epubs/pdf/dz9zr003.pdf
[Viewed: February 16, 2005], May 2004.

[9] KANE, G. PA-RISC 2.0 Architecture. Hewlett-
Packard Professional Books, 1996.

[10] LYONS, M., SILHA, E., AND HAY, B. Pow-
erPC storage model and AIX programming.
Available: http://www-106.ibm.com/
developerworks/eserver/articles/
powerpc.html [Viewed: January 31, 2005],
August 2002.

[11] SITES, R. L., AND WITEK, R. T. Alpha AXP Ar-
chitecture, second ed. Digital Press, 1995.

[12] SPARC INTERNATIONAL. The SPARC Architec-
ture Manual, 1994.

Draft: 2005/07/01 18:37 Page: 8

