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Abstract

When a transport protocol segment arrives at a receiv-
ing system, the receiving system must determine which
application is to receive the protocol segment. This de-
cision is typically made by looking up a protocol control
block (PCB) for the segment, based on information in
the segment’s header. PCB lookup (a form of demul-
tiplexing) is typically one of the more expensive opera-
tions in handling inbound protocol segments [Fel90].
Many recent protocol optimizations for the Transmis-
sion Control Protocol (TCP) [Jac88] assume that a large
component of TCP traffic is bulk-data transfers, which
result in packet trains [JR86]. If packet trains are preva-
lent, there is a high likelihood that the next TCP seg-
ment is en route to the same application (i.e. uses the
same PCB) as the previous TCP segment. In these en-
vironments a very simple one-PCB cache like those used
in BSD systems yields very high cache hit rates.
However, there are classes of applications that do not
form packet trains, and these applications do not per-
form well with a one-PCB cache. Examples of such ap-
plications are quite common in the area of heads-down
data entry into on-line transaction-processing (OLTP)
systems. OLTP systems make heavy use of computer
communications networks and have large aggregate-
packet-rates but are also characterized by large num-
bers of connections, low per-connection packet rates,
and rather small packets. This combination of charac-
teristcs results in a very low incidence of packet trains.
This paper uses a simple analytic approach to ex-
amine how different PCB lookup schemes perform with

OLTP traffic. One scheme is shown to work an or-
der of magnitude better for OLTP traffic than the one-
PCB cache approach while still maintaining good per-
formance for packet-train traffic.

1 Introduction

A Transmission Control Protocol (TCP) [Pos81] proto-
col control block (PCB) contains state information for
one endpoint of a given connection. A TCP demulti-
plexing (a.k.a. PCB-lookup) algorithm must find the
PCB corresponding to the connection for each newly-
arrived TCP packet. The algorithm does this by map-
ping the packet’s source and destination Internet Pro-
tocol (IP) addresses and TCP ports to the proper PCB.
Since the addresses and ports total 96 bits, simple in-
dexing schemes are not feasible; more complex schemes
must instead be used.

A simple PCB management approach uses a simple,
linear linked list of PCBs. This approach was used in
the initial BSD system. Sequent’s initial TCP imple-
mentation, based on BSD’s, also used a simple linked
list. During 1988, Sequent began designing a parallel
implementation of TCP for its second-generation PTX
operating system [Gar90]. An explicit goal of this effort
was to support thousands of concurrent users connected
by local-area networks. This effort resulted in, among
other things, the algorithm described in Section 3.4.

About the same time, Van Jacobson was conducting
research aimed at increasing TCP’s single stream per-
formance. As aresult of this research, the BSD 4.3-Reno
release augmented the linked list with a single-line cache
referencing the last PCB found. This simple optimiza-
tion has proven very effective in many environments;
it was quickly incorporated into Sequent’s algorithm
because of its greatly-improved handling of bulk-data
transfers.



Recently, the Transaction Processing Council pub-
lished the TPC/A online-transaction-processing bench-
mark [Gra91], which is now in common use by database
software and platform vendors. This benchmark is a
very important development, because it provides a pre-
cise and realistic definition of an important application
that requires large numbers of connections. In partic-
ular, the TPC/A benchmark allows objective compar-
isons of the effects of different protocols and algorithms.

At first glance, the definition of TPC/A is such that
simulation must be used to analyze it. However, this
article shows that there are simple, analytic expres-
sions that give good approximations to the cost of PCB
lookup imposed by the TPC/A benchmark.

Analysis based on TPC/A shows that this benchmark
causes the BSD algorithm to perform very poorly. Simi-
lar analysis predicts that an algorithm suggested by Jon
Crowcroft [Cro91]! and another proposed by Craig Par-
tridge and Stephen Pink [PP91] should achieve signif-
icantly higher performance under TPC/A, and finally
that an algorithm used by Sequent [Dov90] achieves
an additional order of magnitude improvement under
TPC/A while maintaining good performance in other
situations. This increase in performance has protocol-
design implications, since it greatly reduces the need to
add protocol mechanisms (such as connection IDs) that
eliminate the need to search for PCBs.

Section 2 gives an overview of the communications be-
havior of the TPC/A benchmark; Section 3 analyzes the
behavior of the above algorithms, and Section 4 presents
conclusions.

2 TPC/A Benchmark

The TPC/A benchmark simulates a banking system in
which customers make randomly-generated deposits to
and withdrawals from a bank with several branches.
The benchmark contains scaling rules that protect
against “trivial” benchmark results being issued; these
rules require (for example) that the size of the various
elements of the database increase with increasing trans-
action rate.

The most important rule from a communications
standpoint is that the number of users represented in
the benchmark be at least ten times the transaction
rate. Specifically, a 200 TPC/A TPS benchmark run
must have at least 2,000 simulated users. The TPC/A
rules are quite strict about how users must be simulated;
in particular, the network load must faithfully represent
that of real users.

Each simulated user does the following repeatedly:

1. Enters a transaction.

I This algorithm was independently put forward by Gary Delp.

2. Waits for the response. The time between steps 1
and 2 is called the “response time.” The response
time for at least 90% of the transactions must be
no greater than two seconds in order for the bench-
mark to be valid.

3. Waits for a randomly-selected period of time be-
fore returning to step 1. This time is called “think
time.” The think time is selected from a truncated
negative-exponential distribution whose mean must
be at least 10 seconds and whose maximum value
must be at least 10 times the mean value. The pur-
pose of think time is to simulate real-life delay from
human data-entry personnel.

Therefore, the average time required for a user to enter
a transaction will be at least 10 seconds, which is con-
sistent with the rule that a given transaction rate must
have at least ten times that many users.

3 Analysis

The preceeding description of TPC/A allows us to cal-
culate the hit rates and miss penalties for PCB-lookup
algorithms. In each of the following sections, we as-
sume optimal use of the communications media. Each
transaction requires four packets: (1) the query, (2) the
transport-level acknowledgement for the query, (3) the
response, and (4) the transport-level acknowledgement
for the response.?

We will model the think time as if it were a true
(rather than truncated) negative-exponential distribu-
tion. Since the truncation occurs only for values at least
ten times the mean, this will have negligible effects on
the results. In particular, only 0.004% of the values are
neglected on average, and they sum to less than 0.4%
of the total think time.

We also assume that a user can issue transactions that
are spaced arbitrarily closely. In reality, a user may not
issue a new transaction until he has received the re-
sponse from his previous transaction. Typical TPC/A
runs have fewer than 10% of the users waiting for a re-
sponse at any one time, and as we shall see, the differ-
ences between the algorithms far exceeds this amount.
This assumption is crucial; omitting it would require
the analysis to carry enough state to determine, at any
time, how many users are waiting for responses and con-
sequently are unable to enter new transactions. The
resulting state space for a 2,000-user system would be
truly enormous (even given the low memory costs that
we now enjoy).

2Although delayed acknowledgments can eliminate the need
for the second packet, this will have no effect on the results at the
database server since this packet will be received only by a client.



The figure of merit is the expected number of PCBs
searched. This is especially appropriate for large num-
bers of connections, because all the PCBs will not
fit into contemporary on-chip caches. Since memory
speeds and bandwidths have been and are expected
to continue increasing much more slowly than CPU
speeds [HJ91, SC91], moving the PCBs between main
memory and the on-chip cache is and will continue to
be the primary bottleneck. Hence, the number of PCBs
examined is a very good surrogate for the time required
to find the right PCB.

Since the negative exponential distribution is memo-
ryless, each of the 2,000 users are equally likely to en-
ter the next transaction. The memoryless property is
discussed at length in any text on stochastic modelling
(for example, “Introduction to Operations Research” by
Hillier and Lieberman [HL86]). Memoryless means that
the result of any trial is independent of past history. An
example of a physical process that results in a distribu-
tion with the memoryless property is rolling a fair die
and counting the number of rolls until a six appears.?

The following sections analyze the average cost of
the BSD algorithm, the “move to front” algorithm pro-
posed by Jon Crowcroft, the last-sender /last-receiver al-
gorithm proposed by Craig Partridge and Stephen Pink,
the algorithm in use in Sequent’s TCP/IP product, and
combinations of these algorithms.

3.1 BSD

BSD searches a simple linear list of PCBs, with a single-
entry cache containing the PCB last found. Figure 1
shows a schematic of this list just after the arrival of a
packet for the connections corresponding to PCB “B.”
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Figure 1: BSD PCB List

The hit rate for the PCB cache is 1/N, which is 0.05%
for a 200 TPC/A TPS benchmark. The average cost of
a miss is a linear search scanning up to 2,000 PCBs.
The average number of PCBs that must be examined is
just one if we hit the cache and an additional (N +1)/2
if we miss. The probability of a hit is just 1/N, so the
probability of a miss is (N — 1)/N. Thus:

N2 -1
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CBSD(N) =1+

3This process would result in a geometric distribution. The
time required to see a single particular face of a fair die with an
infinite number of sides that was rolled infinitely quickly would
be exponentially distributed.

approaching N/2 for large N. This equation yields an
average cost of a linear scan of 1,001 PCBs for a 200
TPC/A TPS benchmark. Since this is exactly the cost
of a miss to three places, the cache is clearly providing
little help. Because the data contained in all 2,000 PCBs
will not fit into on-chip data caches for any currently-
available microprocessor of which we are aware, this
scan will involve traffic at least to an off-chip cache.
In many systems, the scan will require accesses to real
memory. This overhead motivates use of a different al-
gorithm.

One might expect that there would be some small
chance that the packets representing a transaction en-
try and the transport-level acknowledgement for the re-
sponse might form a packet train, so that the proper
PCB would be cached when the acknowledgement ar-
rived. One would be right. There is a very small
chance of this; the probability is about 1.9 x 1073 for
a relatively fast 200-millisecond response time in a 200
TPC/A TPS benchmark.? Keep in mind that the re-
sponse time includes full database lookup, processing,
commit, and logging for the transaction as well as the
relatively small communications overhead, which itself
includes a round trip time to the client machine. Thus,
the average cost for the transaction-level acknowledge-
ment will be about 1001 PCBs.

Although the BSD algorithm has served admirably
in many common situations [Mog91], it appears safe
to say that it was not designed with high-end online
transaction processing needs in mind.

3.2 “Move to front” list

Jon Crowcroft proposed maintaining a linear list with a
“move to front” heuristic; namely, when a PCB is found,
it is moved to the front of the linear list. Figure 2 gives
a schematic of the list just before arrival of a packet on
connection “B” and Figure 3 gives a schematic of the
list just after the arrival. Note that PCB “B” has been
pulled to the front of the list.
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Figure 2: Crowcroft’s PCB List Before Arrival
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Figure 3: Crowcroft’s PCB List After Arrival

4 Although there is a 96% probability that any given user will
not offer a transaction or deliver a transport-level acknowledge-
ment to a response during a given 200-millisecond interval, the
probability that none of the 1,999 other users will not do so is
indeed remote.



This heuristic has two consequences: 1) a slight in-
crease in the number of PCBs searched for the TCP
packet representing the entry of a new transaction
and 2) a substantial decrease in the number of PCBs
searched for the transport-level acknowledgement to the
TCP packet representing the response. The decrease re-
sults in a significant overall reduction in overhead com-
pared to the BSD algorithm.

Typically, many of the other users will have entered a
transaction during a given user’s (call him Jon) think-
time interval. Thus, these other users’ PCBs will pre-
cede Jon’s in the list. Analytically, the probability of
any given user having entered at least one transaction
during an interval of time T is

F(T)=1-¢"T | (2)

where a is the per-user average transaction rate of 0.1
transactions per second. This expression is just the cu-
mulative distribution function for the exponential dis-
tribution. The expected number of users from a total
of (N - 1) users (all of them but Jon) to enter at least
one transaction during this time will be

N-1 )
Ny =Y i (V) aenye e

i=0

3)
The i factor gives the number of users preceding Jon,
the binomial factor gives number of different groups of
1 users that can be formed out of the N — 1 users other
than Jon, (1 —e~°T)" is the probability that those i
users will precede Jon, and e *T(V-1-9 is the proba-
bility that the rest of the users will follow Jon. Multi-
plying all of these together and summing over ¢ results
in a weighted average (the “i”s are being averaged, the
rest of the factors comprise the weight) that gives the
expected number of users that will precede Jon. Fig-
ure 4 shows a plot of Equation 3 for 2,000 users.
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Figure 4: N(T') for 2,000 TPC/A Users

Now, the probability that Jon’s think time will be
within an interval of width dT" which is centered around
a time T is approximately

f(T) = ae=*TdT . (4)

The approximation gets better as dT" gets smaller. This
expression is just the distribution function for the ex-
ponential distribution (if you ignore the dT" for now).
If the think time T between the transport-level ac-
knowledgement to the response to Jon’s last transac-
tion and Jon’s current transaction is greater than the
response time R, we have the situation shown in Fig-
ure 5. Any packet that arrives during the interval T
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Figure 5: Think Time Greater Than Response Time

will cause the PCB for some user other than Jon to be
placed at the head of the chain. A packet arrival during
T may be caused either directly (by the arrival of a new
transaction from the other user during T") or indirectly
(by the arrival of a new transaction from the other user
during R). Indirect arrival is illustrated by the lower line
in Figure 5: the other user’s transaction arrives during
interval R, and the corresponding response is sent R
time later (denoted by interval Rp in the figure), pro-
voking a transport-layer acknowledgement during 7'. In
either the direct or indirect case, the other user’s PCB
will precede Jon’s when his current transaction arrives.
The expected number of PCBs in line ahead of Jon’s
will be given by N(T + R). Since the probability that
the think time will be within an interval of width dT
surrounding T is f(T'), the corresponding weight (for
use in a weighted average yielding the expected number
of PCBs preceding Jon’s) is just f(T)N(T + R).

On the other hand, if the think time between the
transport-level acknowledgement to the response to
Jon’s last transaction and Jon’s current transaction is
less than the response time, we have the situation shown
in Figure 6. Again, any packet that arrives during the
interval T will cause the PCB for some user other than
Jon to be placed at the head of the chain. A packet
arrival during T' may be caused either directly (by the
arrival of a new transaction from the other user dur-
ing T') or indirectly (by the arrival of a new transaction
from the other user during Tg). Indirect arrival is il-
lustrated by the lower line in Figure 6: the other user’s
transaction arrives during interval Tg, the correspond-
ing response is sent R time later (denoted by interval
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Figure 6: Think Time Less Than Response Time

Ro in the figure), provoking a transport-layer acknowl-
edgement during T'. Again, in either the direct or indi-
rect case, the other user’s PCB will precede Jon’s when
his current transaction arrives. The expected number
of users in line ahead of Jon will be given by N(2T),
resulting in a weight of f(T)N(2T).

Integrating this combined expression from zero to in-
finity in T gives us the expected number of PCBs pre-
ceding Jon’s when his transaction entry arrives, given
his exponentially-distributed think time (see Equation 5
on the next page). The result for a 200 TPS benchmark
is 1,019, 1,045, 1,086, and 1,150 PCBs, corresponding
to response times of 0.2, 0.5, 1.0, and 2.0 seconds, re-
spectively (note that 2 seconds is the maximum allow-
able average response time for the TPC/A benchmark).
This performance is somewhat worse than the BSD al-
gorithm’s 1,001 PCBs. Note that a TPC/A is not the
worst case; if the think times were deterministic (ex-
actly 10 seconds always), Crowcroft’s algorithm would
look through all 2,000 PCBs on each transaction entry.
One example of a system with this behavior is a central
server polling its clients, as seen in many point-of-sale
terminal applications.

Crowcroft’s algorithm does much better during the
response-time interval, shown schematically in Figure 7.
Any transactions arriving in interval R’ will have ac-

Jon’s Txn
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Figure 7: Response Time

knowledgements during interval R, so the number of
PCBs preceding Jon’s when his acknowledgement ar-
rives will be given by N(2R). The length of the PCB
search is 78, 190, 362, and 659 PCBs, for response times
of 0.2, 0.5, 1.0, and 2.0 seconds, respectively.

The overall performance of Crowcroft’s algorithm will
be the average of the performance for the initial trans-
action entry and the transport-level acknowledgement

for the response (see Equation 6 on the next page).

Solving this numerically for 2,000 users gives aver-
age search lengths of 549, 618, 724, and 904 PCBs for
response times of 0.2, 0.5, 1.0, and 2.0 seconds, respec-
tively. These search lengths represent a significant im-
provement over the search length of 1,001 resulting from
the BSD algorithm.

3.3 Last-Sent/Last-Received Cache

Craig Partridge and Stephen Pink proposed modifying
the BSD algorithm so that it caches the PCB corre-
sponding to the last packet sent as well as the last packet
received. This modification was motivated by Mogul’s
work [Mog91], which showed that network traffic often
exhibits significant locality. Figure 8 gives a schematic
of the PCB list after a packet has been sent on connec-
tion “A” and received on connection “B”.
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Figure 8: Last-Sent/Last-Received Cache

This modification results in no significant change
in the number of PCBs searched for the TCP packet
representing the entry of a new transaction, but, like
Crowcroft’s algorithm, gives a substantial decrease in
the number of PCBs that are searched for the transport-
level acknowledgement to the TCP packet representing
the response. This decrease results in a significant over-
all reduction in overhead compared to the BSD algo-
rithm in TPC/A benchmarks with a relatively small
number of users.

The following analysis assumes that the receive cache
is examined before the send cache. The hit rate is a
function of the think time T', the response time R, and
the network round-trip time D. The analysis derives the
number of PCBs searched for three cases: (1) reception
of transaction in which T' > R+D (Ny), (2) reception of
transaction in which T'< R+ D (N,), and (3) reception
of transport-level acknowledgement (N,). The average
number of PCBs searched per packet reception is then
given by:

1
N=§(N1+N2+Na) (7
Note that since N; and N, are counts of mutually ex-

clusive events, they are simply added together rather
than causing a nested average operation.
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3.3.1 Casel: T>R+D

Suppose that one user (call him Stephen) was entering
transactions while another user (call him Craig) was
trying to enter transactions so as to flush the PCB’s
corresponding to Stephen’s connection from the cache
and thus drive his hit ratio down to zero. Figure 9
illustrates one way for Craig to accomplish this. By
the time that Stephen enters his next transaction, the
response to Craig’s transaction has flushed Stephen’s
PCB from both the send and the receive caches.
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Figure 9: T > R+ D

Instead, Craig might time his transaction so that his
packet arrives at the server after Stephen’s response
packet has been transmitted but before the transport-
level acknowledgement for Stephen’s packet has arrived.

NZ— 1 ) (1 _ e—2aT)ie—2aT(N—1—i)dT+

N -1 ) (1 _ e—a(T-}-R))ze—a(T—i—R)(N—l—i)dT (6)

In this case, Craig’s transport-level acknowledgement
will flush Stephen’s PCB from the send cache. Since
T > R+ D, the transport-level acknowledgement to
Craig’s response will arrive before Stephen’s next trans-
action. This acknowledgement will flush Stephen’s PCB
from the receive side, forcing a full miss.

Finally, if Craig timed his transaction to arrive at
the server after the transport-level acknowledgement
to Stephen’s response arrived, the transaction and ac-
knowledgement would again completely flush Stephen’s
PCB from the cache.

In short, if Craig’s transaction arrives at the server
at any time during the interval of length T+ R + D
between the arrival of Stephen’s two transactions, Craig
will succeed in flushing Stephen’s PCB from the caches.

The probability of Craig doing this during a TPC/A
benchmark is just 1 — e~®T+E+D) g6 the probability
that none of the N — 1 users other than Stephen will do
SO is:

pL = e~ (T+R+D)(N~-1) (8)
If Stephen’s cache survives, only one PCB will need to
be examined (both sides of the cache will hold Stephen’s
PCB). Otherwise, (N + 5)/2 PCBs must be searched:
the two cached PCBs and (N +1)/2 of the PCBs in the
chain, on the average. Thus, the expected number of
PCBs to be searched for a given value of the think time
T will be as shown in Equation 9.

N(T) — e—a(T-l—R-i—D)(N—l) +

(1 _ e—a(T+R+D)<N—1)) N+5 ()
2

As noted in Section 3.2, the probability that the TPC/A

think time will be in an interval of size dT" centered on

some value T is ae~2TdT, and integrating this quantity
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multiplied by Equation 9 over the interval of interest
gives the expected number of PCBs searched (see Equa-
tion 10 on the next page). Integrating and simplifying
yields:

N+5 _orep)  N+3 _oripyen—1)
2 To LT 11
Ny 5 ¢ aN ¢ (11)

This equation may seem strange at first, because the
number of PCBs searched decreases with increasing re-
sponse time and round-trip delay. The reason for this is
that 7" has been constrained to be greater than R + D
for this case. The exponential distribution for T" means
that larger values of T are less likely to occur; this over-
whelms the increased miss rate caused by large values
of R+ D.

3.3.2 Case 2: T<R+D

If Stephen’s think time is not greater than the response
time plus the round-trip delay, then his PCB cache can
survive an intervening transaction. Figure 10 shows how
this can happen: the receive-side cache is still live when
Stephen’s next transaction arrives.
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Figure 10: T< R+ D

In order to fully flush Stephen’s PCB from the cache,
Craig must cause a packet to arrive at the server dur-
ing the interval of duration T' between the arrival of
the transport-level acknowledgement for Stephen’s last
response and the arrival of Stephen’s next transaction.
Craig can arrange this by having his transaction arrive
either during this interval or during the interval of dura-
tion T' that begins R+ D time units before this interval.

2

The probability of Craig doing this during a TPC/A
benchmark is just 1 — e 227, so the probability that
none of the NV — 1 users other than Stephen will do so
is:

p2 — e—2aT(N—1) (12)

If the receive-side cache is examined first,? then the miss
penalties are exactly the same as in Case 1. Thus, the
above expression is combined with the TPC/A think
time and integrated over the interval of interest (see
Equation 13 on the next page). This equation may be
integrated and simplified as shown in Equation 14.

N+5

, = — 12 (1_ e aBR+D)) _

N - (1 e )
N+3
_ 19 ({1 _ g—a(R+D)(2N-1) 14
2(2N—1)( € ) (14)

As the response time, round-trip delay, and number
of users increase, the number of PCBs searched ap-
proaches (N + 5)/2. In other words, as the stress on
the cache increases, the performance converges to that
of an uncached linked list plus the overhead imposed by
the cache.

3.3.3 Case 3: Acknowledgements

Suppose that Craig is trying to flush Stephen’s PCB
from the cache so that the transport-level acknowledge-
ment to Stephen’s response must search the full PCB
list. One way for Craig to accomplish this is illustrated
in Figure 11. Here, Craig has timed his transaction so
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Figure 11: Transport-Level Acknowledgements

5Examining the receive-side cache makes most sense for TCP
data packets, while examining the send-side cache first makes
most sense for TCP acknowledgement packets.
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that his response packet will flush Stephen’s PCB from
the send-side cache (Craig’s transaction packet will al-
ready have flushed Stephen’s PCB from the receive-side
cache). Craig could also time his transaction to arrive
during the interval of length D between the transmis-
sion of Stephen’s response packet and the reception of
the corresponding transport-level acknowledgement.
Thus, Craig has two windows of duration D in which
to enter his transaction. The probability of a normal
TPC/A user hitting either or both of these windows is:

po = e~ 2P (15)

Assuming that the send-side cache is examined first
when processing an acknowledgment, the hit and miss
penalties are identical to those in Cases 1 and 2. Since
D is assumed constant, no integration is required, and
the expected number of PCBs searched is simply:

N+5 N+3 spv-1)

2 2
As D and N increase, this expression approaches %,

as expected. As D decreases toward zero or N decreases
toward one, the expression approaches just one (the
number of accesses required to check the send side of
the cache).

N, = (16)

3.3.4 Overall Result

Substituting the expressions for Ny, Na, and N, into
Equation 7 and simplifying yields the result shown in
Equation 17 (which is shown on the following page).
This expression approaches just % as N increases, as
expected.

Solving this numerically for 2,000 users and round-
trip delays of 1, 10, and 100 milliseconds gives average
search lengths of 667, 993, and 1002 PCBs, respectively.
The algorithm is extremely insensitive to the value of R
for large values of N. For short round-trip delays, this
is significantly better than the BSD algorithm, and is
roughly of the order of Crowcroft’s algorithm.

3.4 Sequent

Sequent’s algorithm maintains a simple linear list for
each of several hash chains, each containing a single-
entry cache containing the PCB last found on that hash
chain.® Figure 12 shows a schematic of this data struc-
ture just after the arrival of packets on connections “A0”
and “Bn”. Note that hash chain 1 is empty, and thus
its cache points nowhere.

6 A similar approach was suggested on the tcp-ip mailing list
by Lance Vissner [Vis91].
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Figure 12: Sequent PCB List

The hit rate for the PCB cache is H/N where H is
the number of hash chains. This rate comes to just over
0.95% given the installation default of 19 hash chains
running a 200 TPC/A TPS benchmark. The worst-case
cost of a miss is a linear search scanning N/H PCBs, 106
for the installation default number of hash chains. The
average number of PCBs that must be examined is just
one if we hit the cache and an additional (N/H +1)/2 if
we miss. The probability of a hit is just H/N, and the
probability of a miss is (N — H)/N. Thus it is tempting
to assume:

L
CSQNT(N’ H) 1+ o N (18)
H
= Opsp(y) . (19)

approaching N/2H for large N.

However, the decreased number of PCBs serviced by
each cache greatly increases the probability that there
will be no packets arriving at the server during a given
transaction’s response-time interval. The probability
that no packets will arrive during the response-time in-
terval is shown as:

p= e—2aR(%—1) (20)

in which a is 0.1 seconds per transaction for the TPC/A
benchmark, R is the response-time interval, N is the
number of TPC/A users, and H is the number of hash
chains. This probability is about 1.5% for a 2000-user
benchmark with a 200-millisecond response time and
19 hash chains. Decreasing the number of users or the
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response time or increasing the number of hash chains
will greatly increase this probability. For example, if the
number of hash chains is increased to 51, the probability
increases to almost 21%. These compare quite favorably
to the 1.9 x 1073 probability for the single-chain BSD
algorithm.

If no packets arrive during the response-time interval,
only the single cached PCB need be examined. Other-
wise, (N/H +1)/2 PCBs will be examined on the aver-
age. The transport-level acknowledgment packet must
thus search

N N A+l
e—20R(F-1) 4 <1 _ e—zaR(ﬁ—n) H . (21)

PCBs on the average. Assuming negligible loss rates,
half of the packets will be acknowledgements, so the
overall expected number of PCBs to search is given by
the mean of Equations 19 and 21, as shown in Equa-
tion 22 on the following page.

This equation yields an average cost of a linear scan
of 53.0 PCBs for a 200 TPC/A TPS benchmark with
19 hash chains and a 200-millisecond response time. In
contrast, Equation 19 predicts 53.6 for a little more than
1% error. The error gets larger with smaller numbers
of users, smaller response times, and larger numbers of
hash chains, exceeding 10% if 51 hash chains are sub-
stituted into the previous example.

Either equation predicts an order of magnitude im-
provement over the BSD algorithm, Crowcroft’s pro-
posed algorithm, or Partridge’s and Pink’s proposed al-
gorithm, and is more amenable to the sizes of current
on-chip data caches. Of course, the system administra-
tor may increase the value of H in order to get even
better performance, at the expense of a small increase
in the memory used for the hash chain headers.

Although hit ratios of a few percent are typical for a
TPC/A run, ratios as high as 30% have been observed.
However, these runs were done using old versions of
database software that sent three times as many pack-
ets for each transaction as necessary. In fact, if all these
extra packets arrived simultaneously, the hit rate would
be as high as 67%. Nonetheless, the number of PCBs
searched per transaction is at least as large as that for
software exhibiting “poor” hit ratios due to more effi-
cient use of network resources. Focusing strictly on hit
ratio is a common pitfall. The hit ratio is only part
of the story; this is just one example where the miss
penalty dominates the hit ratio.

) ((1 — N)e “B+D)N-1) _ N) + N+5 wefsz(Nfl) (17)
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3.5 Comparison

Figure 13 plots the cost of the PCB search against the
number of TPC/A users. The lines labelled “MTF 1.0”,
“MTF 0.5”, and “MTF 0.2” show the performance of
Crowcroft’s move-to-front algorithm given a response
time of 1.0, 0.5, and 0.2 seconds, respectively. The
line labelled “SR 1” shows the performance of Par-
tridge’s and Pink’s send-receive cache given a round-
trip time of 1 millisecond. Crowcroft’s move-to-front
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Figure 13: Comparison of TCP Demultiplexing Algo-
rithms

algorithm is significantly better than the stock BSD al-
gorithm, and improves as the response time decreases.
Partridge’s and Pink’s send/receive cache algorithm is
significantly better than the stock BSD algorithm for
small numbers of users (see Figure 14), and asymtoti-
cally approaches the BSD algorithm’s performance for
large numbers of users. This behavior is due to the
fact that the send/receive cache relies on packet trains,
which rarely occur in large TPC/A benchmarks.

The Sequent algorithm is roughly an order of magni-
tude better than the other algorithms. The only added
cost of the Sequent algorithm over BSD is the mem-
ory required for the hash-chain headers and the com-
putation of the hash function itself. Memory is still
decreasing rapidly in price, and efficient hash functions
for protocol addresses are well known [Jai89, McK91].

One could imagine combining move-to-front with
hash chains. However, better results can be obtained
simply by increasing the number of hash chains. For
example, if the number of hash chains in the above ex-
ample is increased from 19 to 100, the average number of
PCBs searched drops from 53 to less than 9. This factor-
of-five improvement compares favorably with the best-
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Figure 14: Comparison of TCP Demultiplexing Algo-
rithms (Detail)

case factor-of-two improvement that would be obtained
by adding move-to-front. Since a relatively small num-
ber of hash chains can reduce the PCB-lookup overhead
to an insignificant fraction of the other packet-reception
overheads,” there is little motivation to combine move-
to-front.

In addition, this reduction in PCB-searching reduces
the need to add connection IDs to TCP, such as those
found in TP4, X.25, and XTP. These protocols allow
the two communicating hosts to negotiate the value
of a pair of small integers, called connection IDs, in
each data packet header. These connection IDs are typ-
ically used to directly index an array of PCBs, thus
completely eliminating the need to search. The much
cheaper search provided by hashing eliminates the mo-
tivation for connection IDs on hosts that must do sig-

nificant per-packet processing such as that required by
TPC/A.

4 Conclusions

Good analytic approximations are available to describe
the behavior of various TCP demultiplexing algorithms
when presented TPC/A-style traffic. These approxi-
mations show that heads-down data-entry applications
(and benchmarks based on them) result in very poor
performance from the BSD TCP demultiplexing al-

"Note that the number of users is usually sharply limited by
other factors such as memory size, swap space, and disk band-
width. If the system could really support an infinite number of
users, this argument would not be valid.
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gorithm.  Significant improvement can be obtained
through use of Jon Crowcroft’s move-to-front modi-
fication to this algorithm and Craig Partridge’s and
Stephen Pink’s last-sender/last-receiver scheme, but
order-of-magnitude improvements result from applica-
tion of hashing techniques such as those used in the Se-
quent TCP product. These approximations have been
qualitatively confirmed by benchmarks.

The Sequent algorithm also greatly reduces the need
to add new features to the protocol itself (such as con-
nection IDs) that would eliminate the need to search
for PCBs. In fact, it is far from clear whether such an
improvement would win widespread acceptance unless
combined with significant new capabilities. One exam-
ple might be features allowing applications to specify
their bandwidth and delay requirements, which may be
necessary for multimedia applications.
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