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1 Introduction

I presented an overview of read-copy update
(RCU) [22, 17, 11] at the May 2015 Dagstuhl
workshop on Compositional Verification Methods for
Next-Generation Concurrency, and was pleasantly
but profoundly surprised to learn that a number of
the formal-verification researchers in attendance were
disappointed to have not seen any RCU code. This
document is an attempt to give them some degree of
satisfaction.

This document therefore illustrates a few simple
examples of concurrent data structures, each of which
has roughly similar counterparts in the Linux kernel.
Each of these examples should be short enough to be
compatible with formal-verification techniques, and
is accompanied by an overview of the reasoning pro-
cess that a kernel hacker might use when deciding
whether or not a given example is applicable to the
situation at hand.

To that end, Section 2 presents a warm-up exercise
involving split counters, Section 3 shows a toy imple-
mentation of the RCU infrastructure, Section 4 gives
an RCU implementation of bags, Section 5 overviews
an RCU implementation of bags that is suitable for
very large sets, and Section 6 overviews one kernel
hacker’s view of RCU.

2 Warmup Exercise: Split
Counters

Although RCU is conceptually quite simple, effec-
tive use of RCU often requires a subtle but profound

change in thinking about concurrency. This docu-
ment therefore starts not with RCU, but rather with
a warmup exercise involving one of the simplest and
most intuitive possible algorithms, namely that of in-
teger addition, in the guise of the split counter. The
semantics of a split counter are similar to those of
an atomically manipulated single global counter, but
with the addition of relaxed ordering semantics in
conjunction with weakly ordered hardware and com-
pilers.

The remainder of this section is organized as fol-
lows: Section 2.1 presents the implementation of a
simple split counter, Section 2.2 gives an extreme
elaboration of kernel-hacker thought process as to
why this implementation is correct, Section 2.3 pro-
vides an error-injected version of the split-counter im-
plementation for use in verifying verifiers, Section 2.4
lists the behaviors exhibited by split counters com-
pared to an atomically manipulated global counter,
and finally Section 2.5 gives the thought process that
a kernel hacker might actually use when selecting
split counters to solve a counting problem.

2.1 Split-Counter Implementation

Because the canonical implementation of split coun-
ters is trivial, this discussion will start with the im-
plemntation.

Split counters are implemented by providing a sep-
arate counter for each thread. To update the counter,
a given thread updates its per-thread counter using
simple relaxed loads and stores. To read out the value
of the counter, all threads’ counters are accessed us-
ing relaxed loads, and the values loaded are summed.
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1 DEFINE_SPLIT_COUNTER(mycount);
2
3 void add_split_counter(unsigned long v)
4 {
5 WRITE_ONCE(__get_thread_var(mycount),
6 READ_ONCE(__get_thread_var(mycount)) + v);
7 }
8
9 unsigned long read_split_counter(void)

10 {
11 int t;
12 unsigned long sum = 0;
13
14 for_each_thread(t)
15 sum += READ_ONCE(__get_thread_var(mycount));
16 return sum;
17 }

Figure 1: Split Counter

There is no use of any sort of memory-ordering con-
straints or of any sort of read-modify-write atomic
operations. These counters are bounded and exhibit
the same wrap-around behavior that is exhibited by a
simple C-language unsigned integer variable. Sample
code is shown in Figure 1. Note that READ ONCE()

(WRITE ONCE()) can be thought of as a C11 memory

order relaxed load (respectively store) with volatile
semantics.1

This trivial algorithm is used very heavily in ker-
nels and server applications in order to provide ex-
tremely lightweight gathering of important statistical
values, for but one example, the amount of network
data transmitted and received by the system. The
normal use case is to periodically read out and log
the aggregate counter value. Rate information can be
calculated from the logged values, and unusual rates
can then be flagged to initiate troubleshooting. For
example, an unexpected order-of-magnitude decrease
in packet rate would normally indicate a problem that
needs to be investigated.

2.2 Kernel-Hacker Split-Counter Cor-
rectness Argument

Split counters rely on the commutative and associa-
tive laws of modular addition. The effect of a split
counter is to form the following sum:

1 Within the Linux kernel, these primitives are implemented
via casts to volatile.

S =
∑

t∈T,0≤i≤Nt

At,i (1)

Where S is the desired sum, T is the set of threads,
Nt is the number of addition operations executed by
thread t, and At,i is the value of thread t’s ith addition
operations.

The associative law of modular addition allows ar-
bitrary grouping of the addition operations. When
running on real hardware, a wise choice is to group
by thread, which is implemented using the per-thread
counters. These per-thread counters can then be
summed to arrive at the correct value of S. The com-
mutative law of addition further allows use of weak-
memory ordering, because the order of addition has
no effect on the sum.

However, this line of reasoning must face the addi-
itonal challenge of summation operations proceeding
concurrently with addition operations. Bounds on
the sum are needed.

Rough bounds can be provided by a mythical
global counter that reflects the current aggregate
value of the split counter. This global counter might
take of the sequence of values that would be taken
on by an atomically manipulated global counter, but
the mythical status avoids the pathological levels of
memory contention that would be experienced by a
concrete implemmnetation running on a large system.

Let V be the set of values taken on by the mythical
counter during the execution of a given instance of
read split counter(). The the bounds on S are
given by:

minV ≤ S ≤ maxV (2)

Where minV is the value of the smallest element of
set V and, similarly, maxV is the value of the larges
element of V . Note that “≤” must be defined so as to
take overflow into account. This means that there are
no constraints on S if the summation takes so long
that the mythical counter ranges over all possible val-
ues, which is an intentional and accurate reflection of
reality. The possibility of counter wrapping appears
to pose a substantial challenge to a number of proof
systems, however, this challenge cannot reasonably
be considered to be a fault of the split counter.
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Exact bounds require knowing the maximum time
required for an update carried out by one CPU to
be visible by another. Vendors are unfortunately re-
luctant to release this information, but an estimate
could be derived empirically. Given such an estimate
E, set V is collected over a time period starting E
before the start of a given instance of read split

counter() and ending E after that instance’s com-
pletion.

In practice, these bounds are sufficiently tight for
many use cases.

2.3 Potential Split-Counter Bugs

It is wise to maintain a healthy skepticism of a
successful verification result. After all, a veri-
fication tool might simply unconditionally primt
VERIFICATION SUCCESSFUL. If this tool included
code that did nothing in sufficiently complex ways,
we might be none the wiser even after examining its
source code. It is therefore also wise to run the al-
leged verification tool on a program that contains an
intentional bug.

Given that I have never observed a bug in a split-
counters implmentation in a quarter century of paral-
lel programming, it is safe to assume that split coun-
ters is a trivial software system. The bugs introduced
in Figure 2 will therefore likely seem to be somewhat
contrived. However, contrived or not, a formal veri-
fication run that fails to find the bugs introduced by
any of the FORCE BUG * C-preprocessor symbols must
be viewed with some suspicion.

2.4 Split-Counter Behaviors

The behaviors of a split counter are those of an atom-
ically updated global counter, but with the addition
of weak-memory behaviors. For an example of weak-
memory behavior, consider the following set of con-
current operations:

1. Thread 0: add split counter(1)

2. Thread 1: add split counter(2)

3. Thread 2: r1 = read split counter()

1 DEFINE_SPLIT_COUNTER(mycount);
2
3 void add_split_counter(unsigned long v)
4 {
5 unsigned long v1 = v;
6 unsigned long oldcount;
7
8 #ifdef FORCE_BUG_RAND_ADD
9 v1 = random();

10 #endif
11 #ifdef FORCE_BUG_WRONG_READ
12 oldcount = READ_ONCE(per_thread(mycount,
13 my_smp_thread_id & ~0x1));
14 #else
15 oldcount = READ_ONCE(__get_thread_var(mycount));
16 #endif
17 oldcount += v;
18 #ifdef FORCE_BUG_WRONG_WRITE
19 WRITE_ONCE(per_thread(mycount,
20 my_smp_thread_id & ~0x1), v1);
21 #else
22 WRITE_ONCE(__get_thread_var(mycount),
23 oldcount + v1);
24 #endif
25 }
26
27 unsigned long read_split_counter(void)
28 {
29 int t;
30 unsigned long sum = 0;
31
32 for_each_thread(t) {
33 #ifdef FORCE_BUG_DOUBLE_READ
34 sum += READ_ONCE(per_thread(mycount,
35 my_smp_thread_id & ~0x1));
36 #elif defined(FORCE_BUG_OMIT_READ
37 if (t & 0x1)
38 sum += READ_ONCE(__get_thread_var(mycount));
39 #else
40 sum += READ_ONCE(__get_thread_var(mycount));
41 #endif
42 }
43 return sum;
44 }

Figure 2: Split Counter Bugs
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4. Thread 3: r2 = read split counter()

Given a global atomically manipulated counter, the
following outcomes are allowed:

1. r1 == 0 && r2 == 0

2. r1 == 0 && r2 == 1

3. r1 == 0 && r2 == 2

4. r1 == 0 && r2 == 3

5. r1 == 1 && r2 == 0

6. r1 == 1 && r2 == 1

7. r1 == 1 && r2 == 3

8. r1 == 2 && r2 == 0

9. r1 == 2 && r2 == 2

10. r1 == 2 && r2 == 3

11. r1 == 3 && r2 == 0

12. r1 == 3 && r2 == 1

13. r1 == 3 && r2 == 2

14. r1 == 3 && r2 == 3

Split counters allow the following outcomes in ad-
dition to those listed above:

1. r1 == 1 && r2 == 2

2. r1 == 2 && r2 == 1

The challenge is thus to construct a formal specifi-
cation of split counters, verify a correct implementa-
tion, and locate bugs in erroneous implementations,
as exemplified by those in Figure 2.

2.5 How Kernel Hackers Really
Model Split Counters

The actual thought process is extremely simple:
A split counter is a mechanism with extremely
lightweight updates and approximate reads, where
the approximation is many orders of magnitude more
than good enough for the intended use cases. There
is therefore absolutely no need to do any sort of er-
ror analysis in practice. It would typically take less
time for the kernel hacker to decide whether or not
to use a split counter than it took you to read this
paragraph. Actually implementing the split counter
would take a similar amount of time.

A counter update is expected to have roughly the
same performance characteristics as that of a sim-
ple addition operation on a private variable, possibly
with an additional small constant cost to compute the
location of the running thread’s per-thread counter.
Reading out the aggregate value of the counter is ex-
pected to take up to N − 1 additions and to incur
up to 2N − 2 cache misses, where N is the number
of threads. One might instead expect N − 1 cache
misses, but that fails to account for the cache misses
incurred by each other thread the next time it at-
tempts to update its per-thread counter.

Please note that this split-counter is merely the
simplest member of a large set of concurrent counter
algorithms[13, Chapter 5]. The more complex mem-
bers pose less trivial verification challenges.

3 RCU Infrastructure

There is a surprisingly large number of indepen-
dent inventions of mechanisms vaguely resembing
RCU [10, 24, 7, 23, 8, 9, 4, 22, 6, 25]. The distinc-
tive feature of RCU in the Linux kernel is the fact
that a large number of developers has successfully
used it. Recently, there has also been a surprisingly
large number of proofs of correctness (both formal
and informal of RCU algorithms and implementa-
tions [1, 5, 26].2 That said, these proofs focus on

2 There is rumored to be an additional Czech-language dis-
sertation proving correctness of RCU, but I do not have a
citation.
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1 #define rcu_read_lock()
2 #define rcu_read_unlock()
3 #define rcu_dereference(p) \
4 ({ \
5 typeof(p) _p1 = (*(volatile typeof(p)*)&(p)); \
6 smp_read_barrier_depends(); \
7 _p1; \
8 })
9 #define rcu_assign_pointer(p, v) \

10 ({ \
11 smp_wmb(); \
12 (p) = (v); \
13 })
14 void synchronize_rcu(void)
15 {
16 int cpu;
17
18 for_each_online_cpu(cpu)
19 run_on(cpu);
20 }

Figure 3: Toy Implementation of RCU Infrastructure

RCU’s safety properties, leaving much unsaid about
RCU’s ordering properties. The rest of this section
therefore fills in this gap.

This section uses very imprecise terminology to de-
note ordering properties. More precise determination
of the ordering properties is left as an exercise for
the reader. This is typical when kernel hacking: The
kernel hacker does not care what ordering a given
algorithm exhibits in any formal sense, but rather
whether or not it is strong enough to do the job at
hand.

3.1 Toy Implementation of RCU In-
frastructure

Figure 3 shows a “toy” implementation of a fragment
of the RCU API for a non-preemptive environment.3

This implementation provides full read-side perfor-
mance, but suffers from a number of problems:

1. It has abysmal update-side scalability and en-
ergy efficiency.

2. The prohibition against blocking while in RCU
read-side critical sections degrades real-time re-
sponse.

3 The full implementation has many tens of API mem-
bers [15].

3. Updaters can degrade real-time response for
readers (or, alternatively, high-priority readers
can starve updaters).

4. Updaters can fail in the presence of CPU-hotplug
operations.

That said, this implementation has the advantage
of abject simplicity. In addition, an early implemen-
tation of RCU within the DYNIX/ptx clusters imple-
mentation used an approach quite similar to this.

The rcu read lock() and rcu read unlock()

primitives on lines 1 and 2 of the figure generate no
code and in fact don’t even reach the compiler back-
end. The purpose of these primitives is not to affect
machine state, but rather to remind the developer of
the need to avoid blocking within the resulting RCU
read-side critical section.

The rcu dereference() primitives on lines 3-8 of
the figure simply applies volatile semantics to the
load [3].4 In conjunction with suitable restrictions on
use of the returned value [21], these volatile semantics
ensure that any dereferences of the pointer returned
from rcu dereference() will be ordered after the
rcu dereference() itself.

The rcu assign pointer() primitive on lines 9-13
of the figure is slightly weaker than a memory order

release() store. (Recent versions of the Linux ker-
nel actually use a memory order release() store.)

Finally, the synchronize rcu() primitive shown
on lines 14-20 of the figure simply schedules on each
online CPU in turn. Because this is a non-preemptive
environment and because RCU read-side critical sec-
tion are not permitted to block, if a given CPU is ex-
ecuting within an RCU read-side critical section, the
run on() on line 19 will delay until that critical sec-
tion completes. Therefore, once synchronize rcu()

completes, all pre-existing RCU read-side critical sec-
tions will have completed, as required.

Please note that any formal verification of this code
should be able to detect an incomplete scan of the
CPUs by synchronize rcu(), for example, as shown
in Figure 4, which ignores all even-numbered CPUs.

4 READ ONCE() is the new name for read-side use cases of
the ACCESS ONCE() primitive described in this document.
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1 void synchronize_rcu(void)
2 {
3 int cpu;
4
5 for_each_online_cpu(cpu)
6 if (cpu & 0x1)
7 run_on(cpu);
8 }

Figure 4: Toy Implementation of RCU Infrastructure
With Injected Bug

1 int x, y;
2
3 void t0(void)
4 {
5 rcu_read_lock();
6 r2 = READ_ONCE(y);
7 rcu_read_unlock();
8 rcu_read_lock();
9 r1 = READ_ONCE(x);

10 rcu_read_unlock();
11 }
12
13 void t1(void)
14 {
15 rcu_read_lock();
16 WRITE_ONCE(x, 1);
17 rcu_read_unlock();
18 rcu_read_lock();
19 WRITE_ONCE(y, 1);
20 rcu_read_unlock();
21 }

Figure 5: No RCU Read-Side Critical Section Order-
ing

Any verification that fails to locate this bug will of
course not be taken seriously.

Thus, a toy implementation of RCU requires only
20 lines of code. However, people still insist on as-
serting that RCU is complicated.

3.2 RCU Readers Are Weakly Or-
dered

RCU read-side critical sections begin with rcu read

lock(), end with rcu read unlock(), and can con-
tain RCU iterators and RCU pointer-traversal prim-
itives. Important safety tip: In and of themselves,
rcu read lock() and rcu read unlock() have ab-
solutely no ordering properties whatsoever. For ex-
ample, in the litmus test shown in Figure 5, all four

combinations of the final values of r1 and r2 are al-
lowed.

The primitives demarking RCU read-side critical
sections can therefore be considered to be maximally
weak.

The pointer-access primitive rcu dereference()

has semantics similar to a C11 memory order

consume load. Roughly speaking, subsequent oper-
ations whose address or data depends on the value
returned by rcu dereference() will be ordered af-
ter the rcu dereference(). A more precise defini-
tion of these ordering semantics is work in progress
within the C and C++ standards committees.

3.3 RCU Grace Periods Are Strongly
Ordered

If any portion of any RCU read-side critical section
causally precedes a given RCU grace period, then
the entirety of that RCU read-side critical section
causally precedes any code that causally follows that
same RCU grace period. Similarly, if any portion of
any RCU read-side critical section causally follows a
given RCU grace period, then the entirety of that
RCU read-side critical section causally follows any
code that causally precedes that same RCU grace pe-
riod. If no part of a given RCU read-side critical sec-
tion casally follows or causally precedes a given grace
period, then there is no guarantee of ordering against
any other RCU read-side critical section with respect
to that grace period.5 Roughly speaking, causal or-
dering is defined to be the union of modification or-
der, reads-from, from-reads, and program order.

Figure 6 shows an example of this ordering. If
r1==0, we know that line 6 of t0()’s RCU read-side
critical section causally precedes t1()’s grace period.
Therefore, we know that both lines 6 and 7 causally
precede line 15, implying that r2==0. On the other
hand, if r2==1, we know that line 7 of t0()’s RCU
read-side critical section causally follows t1()’s grace
period. Therefore, we know that both lines 6 and 7
causally follow line 13, implying that r1==1. The
outcome r1==0&&r2==1 is therefore excluded.

5 In this case, the grace period completely overlaps the given
RCU read-side critical section.

6



1 int x, y;
2
3 void t0(void)
4 {
5 rcu_read_lock();
6 r1 = READ_ONCE(x);
7 r2 = READ_ONCE(y);
8 rcu_read_unlock();
9 }

10
11 void t1(void)
12 {
13 WRITE_ONCE(x, 1);
14 synchronize_rcu();
15 WRITE_ONCE(y, 1);
16 }

Figure 6: RCU Grace Periods Provide Strong Order-
ing

In contrast, if all of Figure 6’s loads and stores were
memory order seq cst, and if the synchronize

rcu() on line 14 were omitted, all four possible out-
comes would be allowed.

The ordering provided by the combination of RCU
read-side critical sections and RCU grace periods is
thus extremely strong, and this ordering has proven
to be extremely useful in practice.6

4 RCU Bag

Figure 7 shows a possibly buggy implementation of
a bag (which permits duplicates) using an RCU-
protected linked list. Such an implementation might
be useful when:

1. The bag is to be queried far more frequently than
it is to be modified.

2. The integers in the bag might be quite large,
ruling out use of small arrays of counters.

3. The number of elements in the bag will be quite
small, so that the overhead of traversing the
linked list is negligible.

Of course, very similar code implements mappings,
bags, and ordered sets, but let’s keep things simple.

6 Kudos to Jade Alglave for calling attention to the strong
ordering characteristics of RCU grace periods.

1 struct elem {
2 struct list_head *list;
3 int key;
4 };
5 LIST_HEAD(mybag);
6 DEFINE_SPINLOCK(mybaglock);
7
8 int member(int key)
9 {

10 struct elem *ep;
11
12 rcu_read_lock();
13 list_for_each_entry_rcu(ep, &mybag, list)
14 if (ep->key == key) {
15 rcu_read_unlock();
16 return 1;
17 }
18 rcu_read_unlock();
19 return 0;
20 }
21
22 int add(int key)
23 {
24 struct elem *ep;
25
26 ep = kmalloc(sizeof(*ep), GFP_KERNEL);
27 if (!ep)
28 return 0;
29 ep->key = key;
30 spin_lock(&mybaglock);
31 list_add_rcu(ep, &mybag);
32 spin_unlock(&mybaglock);
33 return 1;
34 }
35
36 int remove(int key)
37 {
38 struct elem *ep;
39
40 spin_lock(&mybaglock);
41 list_for_each_entry_rcu(ep, &mybag, list)
42 if (ep->key == key) {
43 list_del_rcu(ep);
44 spin_unlock(&mybaglock);
45 synchronize_rcu();
46 kfree(ep);
47 return 1;
48 }
49 spin_unlock(&mybaglock);
50 return 0;
51 }

Figure 7: Bag Implemented Using RCU-Protected
Linked List
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4.1 Bag Implementation

Lines 1-4 show the data structure representing an el-
ement in this bag, which contains a pair of pointers
for insertion into a circular doubly linked list and an
integer representing the value of the element. Line 5
represents the head of the list, which is also a pair
of pointers. Line 6 defines the spinlock that guards
modifcation of this list, initially in unlocked state.

Lines 9-20 show the membership-query function.
Line 12 enters an RCU read-side critical section, and
lines 15 and 18 exit it. Line 13 iterates over the list
headed by the mybag global variable, and for each
element executes the code on lines 14-17. If line 14
determines that the current element matches the de-
sired key, line 15 exits the RCU read-side critical sec-
tion and line 16 returns 1 to indicate that the spec-
ified value is a member of the bag. Otherwise, con-
trol eventually reaches line 18, which exits the RCU
read-side critical section, allowing line 19 to return 0

to indicate that the specified value is not a member
of the bag.

Lines 22-34 show the member-addition function.
Line 26 allocates a new elem structure, and lines 27
and 28 handle the out-of-memory case. Line 29 ini-
tializes the element’s key. Line 30 acquires the lock,
line 31 does the pointer manipulations required to
add the new member to the bag along with any
needed memory-ordering constraints, and line 32 re-
leases the lock. Finally, line 33 returns 1 to indicate
success.

Lines 36-51 show the member-removal function.
This is similar to member(), but substitutes lock-
ing on lines 40, 44, and 49 for the RCU operations
on lines 12, 15, and 18. Because we hold the lock,
there can of course be no concurrent updates to the
linked list. Once an element is found, line 43 does the
linked-list manipulations required to remove the ele-
ment, line 44 releases the lock, and line 45 waits for
an RCU grace period to elapse. Once control reaches
line 46, there can no longer be any readers holding a
reference to the newly deleted element, so line 46 can
safely free it.

This represents a straightforward concurrent im-
plementation of a bag, with excellent read-side per-
formance and scalability.

1 void t0(void)
2 {
3 add(0);
4 }
5
6 void t1(void)
7 {
8 add(1);
9 }

10
11 void t2(void)
12 {
13 r1 = member(0);
14 r2 = member(1);
15 }
16
17 void t3(void)
18 {
19 r1 = member(1);
20 r2 = member(0);
21 }

Figure 8: RCU Bags Strongly Ordered For Addition

Candidate bug injections include omitting the
synchronize rcu(), prematurely terminating the
loops in member() and remove(), randomly refus-
ing to add the element, randomly perturbing the key,
and so on.

4.2 Bag Memory-Ordering Properties

The insertions and removals will be fully ordered,
courtesy of mybaglock. Interestingly enough, if there
are additions but no removals, membership queries
will be strongly ordered, as illustrated by Figure 8.
The key point is that the list pointers are subject to
coherence properties similar to those of C11 memory

order relaxed accesses. Therefore, if element 0 was
added to the list before element 1, if t3() sees el-
ement 1 on line 19, it must also see element 0 on
line 20. The opposite insertion order imposes the cor-
responding constraint of t2(). Therefore, the IRIW
cycle is forbidden.

In short, sequential consistency (or something very
similar to it) has been restored at the linked-list level
for additions and membership queries, despite RCU’s
extremely weak read-side ordering properties.

This raises the question of whether removals and
membership operations are similarly ordered. This
question is left as an exercise for the reader. In
my uneducated opinion, removals and membership
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operations are in fact strongly ordered. If you dis-
agree, provide a trace demonstrating weak ordering,
for exmaple, by replacing the add() calls in Figure 8
with remove().

4.3 RCU Bag Timing

In the absence of updates, readers incur no cache
misses, and on average incur a number of loads that
increases linearly with the number of elemnets in the
bag. This data structure is therefore quite suitable
for situations where the bag has few elements and
updates are rare. In contrast, frequent updates will
of course result in excessive contention on mybaglock,
and will further inflict cache misses on all readers.

5 RCU Large Bag

If a bag has a large number of members, the linked-
list implementation discussed in Section 4 will of
course suffer from poor performance due to a linear
search through a linked list. One time-honored solu-
tion to this problem is to use a hash table, as shown in
Figure 9. The code is quite similar to that in Figure 7,
with the differences being the use of a hash function
hash() to select one of NBUCKETS linked lists instead
of using a single linked list. Note also that global
locking has been replaced by per-bucket locking.

Of course, the need to select a hash-table size at
compile time can be quite inconvenient, however, im-
plementation of RCU-protected resizable hash tables
is reasonably straightforward [28, 27, 20]. Two of
these variants may be found in the Linux kernel. An
overview of one of the simpler implementations is also
available [13, Chapter 10].

The memory-ordering litmus test shown in Fig-
ure 8 also applies to the hash-table implemen-
tation. However, the coherence property no
longer holds because there is now more than
one list header. The hash-table implementation
can therefore produce the counter-intuitive outcome
r1==1&&r2==0&&r3==1&&r4==0, so that the strong
ordering restored at the linked-list level is lost at the
hash-table level.

1 struct elem {
2 struct list_head *list;
3 int key;
4 };
5 struct bucket {
6 struct list_head *head;
7 spinlock_t lock
8 };
9 struct bucket mybag[NBUCKETS];

10
11 int member(int key}
12 {
13 struct elem *ep;
14 int idx = hash(key);
15
16 rcu_read_lock();
17 list_for_each_entry_rcu(ep, &mybag[idx].head, list)
18 if (ep->key == key) {
19 rcu_read_unlock();
20 return 1;
21 }
22 rcu_read_unlock();
23 return 0;
24 }
25
26 int add(int key)
27 {
28 struct elem *ep;
29 int idx = hash(key);
30
31 ep = kmalloc(sizeof(*ep), GFP_KERNEL);
32 if (!ep)
33 return 0;
34 ep->key = key;
35 spin_lock(&mybag[idx].lock);
36 list_add_rcu(ep, &mybag[idx].head);
37 spin_unlock(&mybag[idx].lock);
38 return 1;
39 }
40
41 int remove(int key)
42 {
43 struct elem *ep;
44 int idx = hash(key);
45
46 spin_lock(&mybag[idx].lock);
47 list_for_each_entry_rcu(ep, &mybag[idx].head, list)
48 if (ep->key == key) {
49 list_del_rcu(ep);
50 spin_unlock(&mybag[idx].lock);
51 synchronize_rcu();
52 kfree(ep);
53 return 1;
54 }
55 spin_unlock(&mybag[idx].lock);
56 return 0;
57 }

Figure 9: Bag Implemented Using RCU-Protected
Hash Table
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That said, most Linux-kernel use cases of bags
have very weak ordering requirements, which in turn
means that the typical Linux kernel hacker will likely
consider any discussion of ordering properties to be
a pointless distraction.

The bug-injection candidates are similar to those
called out in Section 4.1, with the addition of bugs
involving inconsistent hash functions for different op-
erations.

The timing of each bucket of this RCU hash-table
bag is similar to that of the linked-list version, al-
though of course the hash-table bag can tolerate
higher update rates, at least assuming that the up-
dates spread nicely across the hash table. Depending
on the size of the hash table, the level of memory
pressure, and the frequency of updates, it might or
might not be wise to cache-align the elements of the
mybag array.

6 Kernel-Hacker View of RCU

RCU is rarely used by itself, but instead in conjunc-
tion with other synchronization techniques, with a
variety of combinations used to achieve a wide range
of synchronization goals [11, 18, 19, 13]. For exam-
ple, RCU can be used in conjunction with locking
to implement an atomic move of elements from one
binary search tree to another, which can be general-
ized to other types of linked structures [14, 12, 16].
This in turn means that it is not sufficient to merely
understand RCU. It is instead necessary to under-
stand RCU usage patterns that involve combinations
of other synchronization primitives. For but one ex-
ample, the Linux kernel’s mechanism for traversing
filesystem directory hierarchies uses a combination
of locking, reference counting, sequence locking, and
RCU. Enumerating the full space of such combina-
tions is beyond the scope of this paper, although
some information may be found elsewhere [13, Chap-
ters 9 and 13]. The remainder of this section focuses
on RCU timing (Section 6.1), RCU semantics (Sec-
tion 6.2), and RCU applicability (Section 6.3.

6.1 RCU Timing

RCU’s read-side primitives are exceedingly fast and
scalable. In the limiting case of a server-class
Linux kernel build, rcu read lock() and rcu read

unlock() are zero cost, as can be seen in Figure 3.
Other implementations require non-atomic updates
to per-thread variables, often with no ordering con-
straints. However, real-time Linux-kernel implemen-
tations that do priority boosting on RCU readers will
require invoking the scheduler in order to do deboost-
ing at rcu read unlock() time. However, if a given
RCU reader is running at the highest possible prior-
ity level, it will not be preempted, and will therefore
not be priority boosted. Therefore, RCU readers run-
ning at the highest priority level enjoy full read-side
performance.

The rcu dereference() primitive applies volatile
semantics, and thus might result in a slight decrease
in performance due to suppression of certain types
of compiler optimizations. In addition, on DEC Al-
pha, rcu dereference() incurs the overhead of a
full memory barrier. However, on current commodity
hardware, rcu dereference() has overhead roughly
that of an unordered load instruction. The overheads
of rcu read lock(), rcu read unlock(), and rcu

dereference() have been empirically shown to be
constant with the number of CPUs up to 1024 CPUs
on a Power server.

The rcu assign pointer() primitive applies
volatile release semantics, which can inflict measur-
able overhead on RCU updaters. However, this over-
head is negligible compared to the latency and over-
head of synchronize rcu(). In the Linux kernel,
synchronize rcu() has a latency of at least several
milliseconds, and sometimes triggers warnings that
are emitted if an RCU grace period lasts longer than
21 seconds. The CPU overhead of a given grace pe-
riod is substantial, consuming microseconds on small
systems and potentially even hundreds of microsec-
onds on thousand-CPU systems. However, the Linux
kernel uses batching, so that a given grace period
might be shared by more than a thousand RCU up-
daters, reducing the per-update CPU overhead to
negligible levels.

10



6.2 RCU Semantics

The two fundamental guarantees of RCU are
the publish-subscribe guarantee linking rcu assign

pointer() with rcu dereference(), and the grace-
period guarantee linking synchronize rcu() with
rcu read lock() and rcu read unlock() [5]. The
grace-period guarantee can be stated in two ways:
(1) The synchronize rcu() primitive waits for all
pre-existing RCU readers, and (2) If a task has exe-
cuted a given rcu read lock() and accesses a given
RCU-protected resource, some property P of that re-
source will be preserved until that task reaches the
corresponding rcu read unlock().

Here are some properties that RCU is used to pre-
serve:

1. Existence.

2. Identity.

3. Type safety.

4. System state.

Each property is discussed in one of the following
sections.

6.2.1 RCU Existence Guarantees

Existence is the property preserved in the RCU-
protected bags discussed in Sections 4 and 5. Up-
dates preserve this property by interposing an RCU
grace period between the time that the resource is
rendered inaccessible to readers and the time that
the resource is reclaimed (in this case, freed).

Reliance on existence guarantees is illustrated by
lines 17-19 of add() in Figure 9. Any element tra-
versed by list for each entry rcu() must remain
in existence (that is, cannot be freed) until after con-
trol reaches one of the rcu read unlock() calls on
either line 19 or 22. This existence guarantee ensures
that the ->key access on line 18 remains meaningful,
even in the face of concurrent removals.

If a guarantee is to be relied on, something some-
where must provide that guarantee, and in this case
the provider is lines 49-52 of remove() in Figure 9.
Line 49 renders the element inaccessible to readers,

1 int go_undercover(int key)
2 {
3 struct elem *ep;
4 int idx = hash(key);
5
6 spin_lock(&mybag[idx].lock);
7 list_for_each_entry_rcu(ep, &mybag[idx].head, list)
8 if (ep->key == key) {
9 list_del_rcu(ep);

10 spin_unlock(&mybag[idx].lock);
11 synchronize_rcu();
12 ep->key = -ep->key;
13 idx = hash(ep->key);
14 spin_lock(&mybag[idx].lock);
15 list_add_rcu(ep, &mybag[idx].head);
16 spin_unlock(&mybag[idx].lock);
17 return 1;
18 }
19 spin_unlock(&mybag[idx].lock);
20 return 0;
21 }

Figure 10: RCU-Protected Hash Table Bag Identity
Change

but the element is not passed to kfree() (line 52)
until after an RCU grace period has elapsed (line 51).

6.2.2 RCU Identity Guarantees

In some cases, a resource is not destroyed, but
rather its identity is changed. For example, con-
sider the function go undercover() shown in Fig-
ure 10. Rather than freeing the element, as is done by
remove(), lines 12-16 negate the element’s key and
then add it back into the bag. This code is therefore
not providing an existence guarantee, but rather an
identity guarantee.

Readers can rely on this guarantee in exactly the
same way that they rely on existence guarantees.

6.2.3 RCU Type-Safety Guarantees

There are several situations in the Linux kernel where
lightweight readers are needed, but where the over-
head and latency of RCU grace periods cannot be
tolerated. The SLAB DESTROY BY RCU slab-allocator
flag is used for this purpose, which allows an imme-
diate free operation, but which guarantees that the
type of the object will not change until the reader
exits its RCU read-side critical section. However, the
identity of the object can change at any time, so read-
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1 #define STATE_NORMAL 0
2 #define STATE_WANT_SERVICE 1
3 #define STATE_SERVICING 2
4
5 int state;
6
7 void do_something_service(void)
8 {
9 int state_snap;

10
11 rcu_read_lock();
12 state_snap = READ_ONCE(state);
13 if (state_snap == STATE_NORMAL)
14 do_something();
15 else
16 do_something_carefully();
17 rcu_read_unlock();
18 }
19
20 void start_service(void)
21 {
22 WRITE_ONCE(state, STATE_WANT_SERVICE);
23 synchronize_rcu();
24 WRITE_ONCE(state, STATE_SERVICING);
25 }

Figure 11: RCU-Mediated System-State Change

ers must carry out identity checks, usually after ac-
quiring a lock or reference count associated with the
object. These identity checks often rely on subtle
global invariants.

6.2.4 RCU System-State Guarantees

A trivial form of system-state guarantee is illustrated
by the code in Figure 11. The system must peri-
odically undergo servicing, during which time nor-
mal operations can still be carried out, but alter-
native implementations of those operations must be
used. For example, during servicing, do something

carefully() must be invoked instead of the usual
do something().

This transition to servicing state is mediated by the
variable state, which can take on the three values
called out on lines 1-3, but which is initially STATE

NORMAL, courtesy of the C language’s default initial-
ization to zero.

The do something service() function on lines 7-
18 enters an RCU read-side critical section, then on
line 12 takes a snapshot of the global state variable.
Line 13 checks for normal state, which results in a
call to do something(), otherwise, do something

Read-Mostly, Stale &
Inconsistent Data OK
(RCU Works Great!!!)

(RCU Works Well)
Read-Mostly, Need Consistent Data

Read-Write, Need Consistent Data

Update-Mostly, Need Consistent Data

(RCU Might Be OK...)

(1) Provide Existence Guarantees For Update-Friendly Mechanisms
(2) Provide Wait-Free Read-Side Primitives for Real-Time Use)

(RCU is Very Unlikely to be the Right Tool For The Job, But it Can:

Figure 12: RCU Areas of Applicability

carefully() is called. This code clearly needs a
system-state guarantee: If line 13 determines that the
state is STATE NORMAL, then the state cannot change
to STATE SERVICING until after do something() re-
turns.

This system-state guarantee is provided by the
start service() function shown on lines 20-25.
Line 22 sets state to STATE WANT SERVICE, and then
line 23 waits for an RCU grace period to elapse. By
the time control passes to line 24, all RCU readers
that might have called do something() have com-
pleted, so it it safe to set state to STATE SERVICING.

This system-state guarantee was one of the first
uses of RCU within Sequent’s DYNIX/ptx clustering
product [22, 17].

6.3 RCU Applicability

RCU can provide excellent performance and scalabil-
ity, but it does so via specialization. As illustrated in
the upper blue box in Figure 12, RCU is best suited to
workloads that are read-mostly in cases where RCU’s
clients do not require consistent data. In such cases,
use of RCU means simply adding RCU “annotations”
similar to those shown in the RCU-protected bag im-
plementations in Sections 4 and 5. The net result is
excellent performance and ease of use.

RCU can also be used for read-mostly workloads
where RCU’s clients require consistent data, as in-
dicated by the green box. One way to achieve this
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is to include a lock and a ->deleted flag in each
data element. When rendering the element inaccessi-
ble to readers, the updater acquires the per-element
lock, renders the element inaccessible to readers, sets
the flag, releases the lock, and then continues as be-
fore. Readers acquire the per-elmeent lock and check
the flag. If the flag is set, they release the lock and
continue as if they had not found the element. Oth-
erwise, if the flag is clear, they release the lock and
proceed normally. This technique was applied to the
Linux kernel’s System-V IPC subsystem [2].

This same technique works for read-write work-
loads where RCU’s clients require consistent data, as
indicated by the yellow box. The same per-elmeent
lock and flag may be used, but the performance and
perhaps also the scalability will likely be somewhat
degraded.

Finally, as indicated by the red box, RCU is un-
likely to be well-suited to write-mostly workloads
where RCU’s clients require consistent data. How-
ever, a couple of exceptions have been found thus far.
In the first exception, RCU takes on the same role
that garbage collectors do for certain types of non-
blocking synchronization algorithms. In the second
exception, a real-time workload has tight response-
time constraints for a few infrequently executed code
paths that include RCU readers, while the code
paths containing RCU updates, though perhaps fre-
quently executed, are not subject to response-time
constraints.

7 Summary

This paper has illustrated a few simple examples of
concurrent data structures, each of which has roughly
similar counterparts in the Linux kernel. Each of
these examples should be small enough to be com-
patible with formal-verification techniques, and is
accompanied by timing information as well as an
overview of the reasoning process that a kernel hacker
might use when deciding whether or not a given ex-
ample is applicable to the situation at hand.
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