
Models of RCU Read-Side Critical Sections and Grace Periods

Paul E. McKenney
paulmck@linux.vnet.ibm.com

December 7, 2015

1 Introduction

RCU is a synchronization mechanism that is used
heavily in the Linux kernel, perhaps most notably
as a high-performance replacement for reader-writer
locking for linked structures [4]. In this use case,
RCU read-side critical sections are delimited by rcu

read lock() and rcu read unlock(). The rcu

read lock() and rcu read unlock() primitives are
extremely lightweight, having exactly zero overhead
in server-class builds of the Linux kernel (CONFIG
PREEMPT=n). Of course, this means that RCU up-
daters cannot exclude RCU readers, which means
that updaters must take care to avoid disrupting read-
ers. Updaters avoid read-side disruption via use of
synchronize rcu(), which waits for all pre-existing
readers to complete. The period of time required for
all pre-existing readers to complete is termed a grace
period.

As noted earlier, RCU is used primarily for linked
data structures. However, this paper will use simple
litmus tests to simplify demonstration of the relation-
ships between RCU read-side critical sections and
grace periods, as exemplified by Figure 1. This litmus
test demonstrates that an RCU read-side critical sec-
tion cannot completely overlap a grace period, which
is to be expected given that a grace period must
wait for all pre-existing RCU readers to complete [3].
The diagram below the litmus test illustrates this: If
Thread 1’s read see Thread 0’s write, then Thread 0’s
RCU read-side critical section cannot extend beyond
the end of Thread 1’s grace period, and therefore
Thread 1’s write cannot affect the value read by
Thread 0’s read.

Thread 0 Thread 1
rcu read lock(); r1 = READ ONCE(b);

r1 = READ ONCE(a); synchronize rcu();

WRITE ONCE(b, 1); WRITE ONCE(a, 1);

rcu read unlock();

BUG ON(0:r1 == 1 && 1:r1 == 1);

(Cycle prohibited)

rcu_read_lock();
r1 = READ_ONCE(a);
WRITE_ONCE(b, 1);
rcu_read_unlock(); r1 = READ_ONCE(b);

synchronize_rcu();

WRITE_ONCE(a, 1);

Figure 1: Sample RCU Release-Acquire Litmus Test

1

2.1 Consequences of Fundamental RCU Guarantee

2 Modeling RCU

@@@ Roadmap

2.1 Consequences of Fundamental
RCU Guarantee

As noted in the previous section, RCU’s fundamental
guarantee is that any given RCU read-side critical
section cannot completely overlap any given RCU
grace period. This guarantee can be restated as
follows:

1. If any part of a given RCU read-side critical
section precedes the beginning of a given RCU
grace period, then that entire critical section
must precede the end of that grace period. This
rule is illustrated by the litmus test in Figure 5
on page 7, as are the next two rules.

2. If any part of a given RCU read-side critical
section follows the end of a given RCU grace
period, then that entire critical section must
follow the beginning of that grace period.

3. It is possible for an RCU grace period to com-
pletely overlap a given RCU read-side critical
section, so that the grace period starts before
the critical section begins and ends after the
critical section ends. However, as a consequence
of the previous two rules, it is not possible for
an RCU read-side critical section to completely
overlap a given grace period.

4. If a given RCU read-side critical section is con-
strained to precede the end of a given RCU grace
period, then any other RCU read-side critical
section preceding the given critical section in
program order is also constrained to precede the
end of that same grace period.1 This rule and
the next rule are illustrated by the litmus test
in Figure 10 on Page 10.

1 This constraint does not apply to code outside of an RCU
read-side critical section. That said, all implementations I am
aware of would also constrain all prior code, whether within
an RCU read-side critical section or not.

5. If a given RCU read-side critical section is con-
strained to follow the beginning of a given RCU
grace period, then any other RCU read-side crit-
ical section following the given critical section
in program order is also constrained to follow
the beginning of that same grace period.2

6. RCU read-side critical sections impose no order-
ing other than that specified by the preceding
items. In particular, in a program that had no
RCU grace periods, RCU read-side critical sec-
tions would have no effect, as illustrated by the
litmus tests in Figure 8 on Page 9.

7. In the absence of RCU read-side critical sections,
RCU grace periods have the same ordering prop-
erties as do full memory barriers (smp mb() for
the Linux kernel, or f[mb] in LISA). That said,
if a cycle in a given litmus test is forbidden with-
out RCU readers, adding rcu read lock() and
rcu read unlock() (f[lock] and f[unlock]

in LISA) to existing processes cannot cause that
cycle to be allowed.

The only way to detect the relationship between a
given RCU read-side critical section and a given grace
period is by means of accesses to shared variables
within the critical section and surrounding the grace
period.

This suggests a modeling strategy of discarding
any execution that fails to adhere to this restated
guarantee.

One way to detect that a given RCU read-side
critical section starts after a given RCU grace period
starts is so have the grace period start by executing
a memory barrier (smp mb(), in Linux kernel par-
lance), followed by an assignment to variable specific
to that grace period (WRITE ONCE(gpstart0, 1), in
Linux kernel parlance). The critical section could
then begin by reading from this variable, and, if that
read returned the value one, executing a memory
barrier. The combination of these two memory barri-
ers ensures that if the RCU read-side critical section

2 Similar to the previous rule, this has no effect on code not
within an RCU read-side critical section, but, again similar
to the previous rule, all known implementations constrain all
code.

2

2.2 Counter-Temporal Models???

starts after the grace period does, then the code in
the critical section will see the results of all code
preceding that grace period, as required.

Similarly, one way to detect that a given RCU
read-side critical section ends before a given RCU
grace period ends is so have the grace period end by
executing an assignment to variable specific to that
grace period (WRITE ONCE(gpend0, 1), in Linux ker-
nel parlance), followed by a memory barrier (smp
mb(), in Linux kernel parlance). The critical section
could then end by reading from this variable, and, if
that read returned the value one, executing a mem-
ory barrier before the read.3 The combination of
these two memory barriers ensures that if the RCU
read-side critical section ends before the grace period
does, then the code following that grace period will
see the results of all code with that critical section,
as required.

Thread 0 Thread 1
/* rcu read lock(); */ r1 = READ ONCE(b);
r10 = READ ONCE(gpstart0); /* synchronize rcu(); */
if (r10) smp mb();

smp mb(); WRITE ONCE(gpstart0, 1);
/* rcu read lock(); */ smp mb();
r1 = READ ONCE(a); WRITE ONCE(gpend0, 1);
WRITE ONCE(b, 1); smp mb();
/* rcu read unlock(); */ /* synchronize rcu(); */
if (!future value(r11)) WRITE ONCE(a, 1);

smp mb();
r11 = READ ONCE(gpend0);
/* rcu read unlock(); */

BUG ON(0:r1 == 1 && 1:r1 == 1 && (r10 != 0 || r11 != 1));
(Cycle prohibited)

Figure 2: Detecting Grace Period Beginning and End

Figure 2 shows a straightforward (if wildly counter-
intuitive) conversion of the code in Figure 1 to this
model. Thread 1’s synchronize rcu() is replaced
with the code between the two comments, which
executes a memory barrier, writes to gpstart0, exe-
cutes another memory barrier, writes to gpend0, and
finally executes one last memory barrier.

3 No, that is not a typo, the memory barrier absolutely
must be executed before the read that determines whether or
not the barrier is required. And no, it is not sufficient to just
unconditionally execute the memory barrier, as that will result
in oversynchronization of the RCU read-side critical section
with subsequent code.

Thread 0’s rcu read lock() is replaced by the
code between the two comments, which reads
gpstart0, and if the read returns the value one,
executes a memory barrier. In the case where the
value one is returned, the following write to b is
guaranteed not to affect Thread 1’s prior load, as
required.

Similarly, Thread 0’s rcu read unlock() is re-
placed by an if statement that checks the future
value of r11 using a highly convenient but entirely
mythical future value() function, and if that value
is to be zero, executes a memory barrier. Either way,
the r11 is then read from gpend0. In the case where
zero is read, the prior read from a is guaranteed not
to see Thread 1’s later store, as required.

Of course, Thread 1’s code sequence is not actually
providing RCU’s grace-period guarantee. There is
nothing to stop Thread 0’s write to b from preced-
ing Thread 1’s read, nor is there anything to stop
Thread 0’s read from a from following Thread 1’s
write. For example, either the compiler or the CPU
could reorder Thread 0’s read from a with its write
to b. Then Thread 0 could execute up throught its
write to b, Thread 1 could execute in its entirety,
and finally Thread 0 could continue its execution to
completion. This would trigger the BUG ON() in Fig-
ure 1, even though RCU would prevent that outcome.
This possibility is handled by an additional clause
in the BUG ON() in Figure 2. This clause suppresses
the BUG ON() if Thread 0’s read-side critical section
completely overlapped with Thread 1’s grace period,
that is, if r10 is zero and r11 is one.

This is a common modeling technique. Where a
real implementation would be required to prevent
something from happening, a model can instead dis-
card any execution where that something is seen to
occur.

However, it is necessary to implement the counter-
temporal future value() primitive. This is dis-
cussed in the next section.

2.2 Counter-Temporal Models???

Just to be clear, a real implementation of RCU (or,
for that matter, of pretty much anything else) cannot
be counter-temporal, at least given our current un-

3

2.3 Counter-Temporal Model Description

derstanding of physics.4 However, counter-temporal
models of RCU can function quite well. For exam-
ple, the model can enumerate candidate scenarios
or executions, and then discard any that violate the
counter-temporal constraints. This is exactly the
same technique described in the previous section to
handle RCU’s fundamental guarantee.

2.3 Counter-Temporal Model De-
scription

RCU Read-Side
Grace Period Critical Section

1. remove0 = 1;
2. smp mb();
3. gpstart0 = 1; r1i = gpstarti;
4. if (r1i)
5. smp mb();

. . .
6. rcu read lock();
7. r2 = remove0;
8. . . . r3 = reclaim0;
9. rcu read unlock();

. . .
10. pi = random();
11. if (!pi)
12. smp mb();
13. r4i = gpendi;
14. gpend0 = 1;
15. smp mb();
16. reclaim0 = 1;

Constraints:
BUG ON(!r2 && r3 && pi == r4i && (r1i || !r4i));

Figure 3: Counter-Temporal Model of RCU

Figure 3 shows a rough model of how RCU grace
periods and RCU read-side critical sections inter-
act. This requires a backwards-in-time flow of data
through r4i, which is handled via a prophesy variable

4 Yes, there was that incident a few years ago involving
neutrinos, but that turned out to instead be measurement
error.

pi. This prophesy variable is randomly generated,
and part of the assertion checks that the prophesy
was correct, so that any execution involving an incor-
rect prophesy is discarded. The random() function
can be replaced by an unordered store from an addi-
tional thread.

This table models a grace period in lines 2-15
of the second column and an RCU read-side criti-
cal section in lines 6-9 of the third column. Note
that the rcu read lock() and rcu read unlock()

do not actually do anything, and are included strictly
for readability. Given that the point of this model is
to be independent of any particular implementation,
that implementation is represented by the “. . .” in
the grace-period column.

The assignment to the “remove” array elements
on line 1 represents the removal actions that nor-
mally precede a grace period: In conventional RCU-
protected linked data structures, this assignment
models removing an element from the structure,
thereby making it inaccessible to readers. Similarly,
the assignment to the “reclaim” array element on
line 16 represents the reclamation actions that nor-
mally follow the grace period: In conventional RCU-
protected linked data structures, these assignments
model freeing the data element that was removed
prior to the grace period. In other RCU use cases,
this assignment represents whatever action is taken
preceding and following the grace period.

The assignments to the auxilliary variables “gp-
start” (line 3) and “gpend” (line 14) array elements
model the beginning and end, respectively, of the
grace period. The smp mb() statements force full
ordering at the boundaries of the grace period. In
the model, another smp mb() is required somewhere
between lines 3 and 14.

Turning now to the model of the RCU read-side
critical section in the third column, let’s start at
the rcu read lock() statement on line 6, which in
the model as in the program represents the start
of the RCU read-side critical section. The assign-
ments to the “r2” and “r3” variables capture the
state of the modifications before and after the grace
period, respectively. Finally, both in the model and
in the code, the rcu read unlock() represents the
end of the RCU read-side critical section. Of course,

4

2.4 Handling Multiple Grace Periods

RCU read-side critical sections are not permitted
to span grace periods, hence the last clause of the
constraint, which disables the BUG ON() statement
for any execution where this occurs.

Now, if any part of this RCU read-side critical sec-
tion unambiguously precedes a given grace period (in
this case, there is of course only grace period 0), all
statements within that critical section must happen
before the reclamation following that grace period.
This is modeled by the smp mb() on line 12 (condi-
tioned on pi). The constraint “pi == r4i” comes
into play here, ensuring that any executions with an
incorrect prophesy disable the BUG ON() statement.
Note that lines 10-13 are set up for an arbitrarily
large number of grace periods, when we in fact have
only one in this example.

Similarly, if this RCU read-side critical section
unambiguously follows a given grace period, all the
statements within that critical section must see all
statements preceding that grace period. This is mod-
eled by the smp mb() on line 5 (conditioned on r1i).
Now, if r1i indicates that this RCU read-side critical
section will see a given grace period’s reclamation,
then the smp mb() must be executed, ensuring that
it also sees anything preceding that grace period.

The conditional execution of the smp mb() full
memory barriers must not be thought of as a singu-
lar event. In the grace-period-before case, the only
real requirement is that there be a full memory bar-
rier somewhere after the start of a given grace period
and the start of any RCU read-side critical section
that sees that grace period’s reclamation phase. Sim-
ilarly, in the grace-period-after case, the only real
requirement is that there be a full memory barrier
somewhere before the end of a given grace period
and the end of any RCU read-side critical section
that precedes that grace period’s removal phase. A
single smp mb() might suffice for an arbitrarily large
number of grace periods (as is the case in practice
with entry to or exit from idle in the Linux kernel),
and on the other hand each of several grace periods
might each have its own smp mb() to ensure proper
ordering with a given RCU read-side critical section.
These considerations explain the “. . .” before the
rcu read lock() and after the rcu read unlock():
These represent the arbitrary amount of time and pro-

cessing that might occur between the RCU read-side
critical section and any needed memory barriers.

This gets more complex for threads that have mul-
tiple RCU read-side critical sections, which can of
course interact differently with the grace period. It
gets even more complex given multiple RCU grace
periods and multiple RCU read-side critical sections.

2.4 Handling Multiple Grace Periods

In the worst case, each grace period might need to
update a set of begin/end variables for each thread.
However, let’s start with the Linux kernel, which
serializes grace periods, so that all CPUs agree that
a given grace period ends before its successor grace
period starts. Of course, serialization is normally an
great way to destroy any semblance of performance
and scalability, but the Linux kernel compensates for
serialization with a technique called batching. The
insight behind batching is that a single grace period
can handle an arbitrarily large number of prior re-
quests. In fact, in the Linux kernel, it is not unusual
for a single grace period computation to satisfy more
than a thousand requests [2].

Because of this serialization, it suffices for each
grace period to maintain a single set of variables,
regardless of how many threads, other grace periods,
or RCU read-side critical sections there are.

2.5 Handling Multiple Read-Side
Critical Sections

In general, each read-side critical section must in-
teract with each grace period, with the interaction
taking place at the rcu read lock() and the rcu

read unlock(). But this is not sufficient in general.
If there are statements before a given RCU read-side
critical section, interacting solely at the site of the
rcu read lock() would result in oversynchroniza-
tion because there would always be a full memory
barrier at that location any time that the RCU read-
side critical section followed the start of any grace
period. It is therefore necessary to insert checks
before the rcu read lock() as well as at the rcu

read lock().

5

2.8 Generating Prophesies

Similarly, it is necessary to insert checks after
the rcu read unlock() as well as at the rcu read

unlock().

Fortunately, we can again specialize the model to
the class of RCU implementations in the Linux kernel,
in which a given grace period interacts with each
thread at a given point in the code, using either an
inter-processor interrupt or a pre-existing quiescent
state. This means that these checks can simply be
interleaved with the code; there is no need to produce
permutations of the code and then interleave the
checks.

Please note that this approach ignores the possibil-
ity of code reordering due to compiler optimizations.
Because compiler optimizations are ignored, there
will be some litmus tests for which the auxiliary-
variable approach gives the wrong answer.

2.6 Handling Nested RCU Read-Side
Critical Sections

A nested set of RCU read-side critical sections may
simply be flattened to a single large RCU read-side
critical section. For example, the inner rcu read

lock() and rcu read unlock() invocations can sim-
ply be commented out when translating to auxiliary-
variable form.

In the first version, the remaining RCU read-side
critical section must span the entire thread unless
the litmus test has no grace periods.

2.7 Omitting Checks

Only threads that have RCU read-side critical sec-
tions need check for grace periods.

RCU read-side critical sections in a given thread
need not check for grace periods in that same thread.
Given that the first version only allows RCU read-
side critical sections that span an entire thread, the
only case where a grace period and a read-side critical
section can appear in a single thread is the deadlock
case where the grace period appears within the RCU
read-side critical section, as shown in Figure 4.

Checks need not be inserted before operations that
do not affect memory or memory ordering.

1 LISA LISA1R1Gdeadlock
2 {
3 x0 = 0;
4 x1 = 0;
5 }
6 P0 ;
7 f[lock] ;
8 w[once] x0 1 ;
9 f[sync] ;

10 w[once] x1 1 ;
11 f[unlock] ;
12 exists (x0=1 /\ x0=1)

Figure 4: RCU Self-Deadlock Litmus Test

Checks against prior RCU grace periods need only
be inserted up to the beginning of the last RCU
read-side critical section. Similarly, checks against
subsequent RCU grace periods need only be inserted
after the end of the first RCU read-side critical sec-
tion. In the first version, this means that there will
be one set of checks for prior RCU grace periods at
the beginning of a thread containing an RCU read-
side critical section and another set of checks for
subsequent RCU grace periods at the end of that
thread.

Processes that are completely spanned by a sin-
gle RCU read-side critical section only read a given
prophesy variable once, and therefore do not need
to check consistency across multiple reads. Such
processes need only check the accuracy of that one
prophesy against the read of the corresponding gpend

variable.

2.8 Generating Prophesies

As noted in Section 2.3, line 10 of the counter-
temporal model shown in Figure 3 generates a ran-
dom number generator to provide a prophesy for
the value of r4i. Recall that this is required so that
line 12’s memory barrier can be executed before r4i
is fetched, but only in cases when the value that is
to be fetched will turn out to be zero.

Although it should be no problem generating ran-
dom numbers in a modeling tool, there is a simpler
way. The trick is to create an auxiliary thread that
stores the value zero to each prophesy variable, as in
“pi = 0”. Because this auxiliary thread will have no
memory-ordering directives of any kind, the modeling

6

3.1 Litmus Tests With One Reader and One Grace Period

1 LISA LISA1R1G
2 {
3 x0 = 0;
4 x1 = 0;
5 }
6 P0 | P1 ;
7 f[lock] | r[once] r1 x1 ;
8 w[once] x0 1 | f[sync] ;
9 w[once] x1 1 | r[once] r2 x0 ;

10 f[unlock] | ;
11 exists (1:r1=1 /\ 1:r2=0)

Figure 5: Canonical RCU Litmus Test (1R1G Ø)

tool will automatically analyze all possible orders of
stores and all possible combinations of propagation
speeds to the reading thread.

However, if the litmus test has multiple RCU read-
side critical sections, it is also necessary that the
assignment be momentary, so that the “pi = 0” is
followed by “pi = 1”. This allows one thread preced-
ing a grace period to execute the required memory,
while also allowing another thread following that
same grace period to avoid doing so.

If all grace periods are executed by a single thread,
then they are strongly ordered. Therefore, the pair
of stores to a given grace period’s prophesy variables
can be separated from the other pairs with a full
memory barrier (LISA f[mb]).

3 Litmus Tests and Lessons
Learned

This section takes a tour through a loosely related set
of RCU litmus tests. Section 3.1 looks at tests with
one reader and one grace period, Section 3.2 looks at
tests with several readers but no grace period, Sec-
tion 3.3 looks at tests with two readers and one grace
period, Section 3.4 looks at tests with three readers
and one grace period, Section 3.5 looks at tests with
two readers and two grace periods, Section 3.6 looks
at tests with three readers and two grace periods,
and finally, Section 3.7 discusses solver effectiveness.

1 LISA LISA1R1n1G
2 {
3 x0 = 0;
4 x1 = 0;
5 }
6 P0 | P1 ;
7 f[lock] | r[once] r1 x1 ;
8 w[once] x0 1 | f[sync] ;
9 f[lock] | r[once] r2 x0 ;

10 w[once] x1 1 | ;
11 f[unlock] | ;
12 f[unlock] | ;
13 exists (1:r1=1 /\ 1:r2=0)

Figure 7: Canonical RCU Litmus Test With Nesting
(1R1n1G Ø)

3.1 Litmus Tests With One Reader
and One Grace Period

The canonical RCU litmus test, named 1R1G, is
shown in Figure 5, which is an RCU-mediated form
of message passing. Because P0’s RCU read-side
critical section cannot span P1’s grace period, both
of P0’s stores must happen either before P1’s sec-
ond read or after P1’s first read. Therefore, if P1’s
read from x0 returns the value one, P1’s read from
x1 must do so as well. In other words, the cycle
connecting P0’s x1 write to P1’s x1 read to P1’s x0

write to P0’s x0 read and back to P0’s x1 write is
prohibited. For later litmus tests, “cycle prohibited”
(or Ø in tables) indicates that the counter-intuitive
cycle cannot happen, and “cycle allowed” indicates
that it can.

Figure 6 on page 8 shows this same litmus test, but
converted to auxiliary-variable form. This conversion
replaces rcu read lock() (AKA f[lock]), rcu

read unlock() (AKA f[unlock]), synchronize

rcu() (AKA f[sync]) with the sequences of loads,
stores, memory barriers, comparisons, branches, and
labels required to emulate RCU. The added code
is flagged with comments, as is the extent of the
RCU read-side critical sections. Additional terms are
also added to the exists clause. The resulting code
corresponds closely to that shown in Figure 3.

Figure 7 adds a nested RCU read-side critical sec-
tion. Because nested RCU read-side critical sections
are flattened, this is equivalent to the litmus test
shown in Figure 5.

7

3.1 Litmus Tests With One Reader and One Grace Period

1 LISA LISA1R1G-Auxiliary
2 {
3 x0 = 0;
4 x1 = 0;
5 gpstart01=1;
6 proph01=1;
7 0:r1001=1; 1:r1001=1;
8 0:r101200=1;
9 }

10 P0 | P1 | P2 ;
11 (* f[lock] *) | r[once] r1 x1 | w[once] proph01 0 ;
12 (* preamble 1 *) | (* GP 1 *) | w[once] proph01 1 ;
13 r[once] r101000 gpstart01 | f[mb] | ;
14 b[] r101000 GPSS01010 | w[once] gpstart01 0 | ;
15 f[mb] | f[mb] | ;
16 (* mov r100901 1 *) | w[once] gpend01 1 | ;
17 GPSS01010: | f[mb] | ;
18 (* end preamble 1 *) | (* end GP 1 *) | ;
19 w[once] x0 1 | r[once] r2 x0 | ;
20 w[once] x1 1 | | ;
21 (* f[unlock] *) | | ;
22 (* postamble 1 *) | | ;
23 r[once] r101200 proph01 | | ;
24 b[] r101200 GPES01010 | | ;
25 f[mb] | | ;
26 (* mov r100801 1 *) | | ;
27 GPES01010: | | ;
28 r[once] r101100 gpend01 | | ;
29 (* end postamble 1 *) | | ;
30 exists ((1:r1=1 /\ 1:r2=0)
31 /\ 0:r101100=0:r101200
32 /\ (0:r101000=0 \/ 0:r101100=0))

Figure 6: RCU Canonical Litmus Test: Auxiliary-Variable Form (1R1G Ø)

8

3.3 Litmus Tests With Two Readers and One Grace Period

1 LISA LISA4R2t
2 {
3 x0 = 0;
4 x1 = 0;
5 }
6 P0 | P1 ;
7 f[lock] | f[lock] ;
8 w[once] x0 1 | r[once] r1 x1 ;
9 f[unlock] | f[unlock] ;

10 f[lock] | f[lock] ;
11 w[once] x1 1 | r[once] r2 x0 ;
12 f[unlock] | f[unlock] ;
13 exists (1:r1=1 /\ 1:r2=0)

Figure 8: RCU Readers Impose No Ordering (4R2t)

3.2 Litmus Test With No Grace Pe-
riod

It is important to note that RCU readers have abso-
lutely no ordering properties except in conjunction
with grace periods. This can be seen in Figure 8,
which features two threads each with two RCU read-
side critical sections. Because RCU readers have no
ordering properties, both the compiler and the CPU
are within their rights to reorder both P0’s stores
and P1’s loads, so that the exists clause on line 13
can and does trigger.

Interestingly enough, because there are no grace
periods, the translation to auxiliary-variable form
simply comments out all the RCU read-side prim-
itives. As a result, this is the only litmus test for
which auxiliary-variable analysis runs as fast as does
herd7’s native analysis.

3.3 Litmus Tests With Two Readers
and One Grace Period

If RCU updaters excluded RCU readers in a man-
ner similar to reader-writer locking, then any cycle
including an updater and a pair of readers would
be prohibited. However, this is not the case. RCU
readers can run concurrently with RCU grace peri-
ods, the only restriction being that a given reader
cannot completely overlap a given grace period. This
is shown in Figure 9. Here P0’s write to x1 hap-
pens before P1’s grace period (given 1:r1=1 in the
exists clause) and P2’s read from r2 happens af-
ter the grace period (given 2:r2=1 in the exists

1 LISA LISA2R1G
2 {
3 x0 = 0;
4 x1 = 0;
5 x2 = 0;
6 }
7 P0 | P1 | P2 ;
8 f[lock] | r[once] r1 x1 | f[lock] ;
9 r[once] r2 x0 | f[sync] | r[once] r2 x2 ;

10 w[once] x1 1 | w[once] x2 1 | w[once] x0 1 ;
11 f[unlock] | | f[unlock] ;
12 exists (1:r1=1 /\ 2:r2=1 /\ 0:r2=1)

Figure 9: Grace Period Outnumbered (2R1G)

clause). It is tempting to assume that P0’s read
from x0 must therefore precede P2’s write, however,
both the compiler and the CPU can reorder both
P0’s and P2’s accesses. Of course, the fundamental
property of RCU prohibits P0’s accesses (specifically
its read from x0) from being reordered to follow the
grace period, and similarly, P2’s accesses (specifically
its write to x0) cannot be reordered to precede the
grace period. However, both process’s x0 accesses
can be reordered to execute concurrently with the
grace period, which is enough to allow P0’s load to
see P2’s store, completing the cycle.

One way to think of this is that each RCU grace
period imposes a delay, and that each RCU read-side
critical section can be reordered to almost cancel out
one grace period’s worth of delay. This leads to a
simple rule: If the number of grace periods in a given
cycle is greater than or equal to the number of RCU
read-side critical sections, that cycle is prohibited.
This rule actually works in a number of situations
and is explored further in Section 4.1.

However, this rule is not without exceptions. One
exception occurs when a given process contains more
than one of the RCU read-side critical sections in the
cycle, as is the case in Figure 10. Because P1’s read
from x1 saw P0’s write, we know that P0’s second
RCU read-side critical section cannot be reordered
to follow the grace period. However, it is also the
case that no prior RCU read-side critical section may
be reordered to follow the grace period, which means
that P1’s read from x0 is guaranteed to see P0’s write,
so that the cycle is prohibited.5 It is therefore not

5 That said, auxiliary-variable analysis gets the right answer

9

3.3 Litmus Tests With Two Readers and One Grace Period

1 LISA LISA2Rt1G
2 {
3 x0 = 0;
4 x1 = 0;
5 }
6 P0 | P1 ;
7 f[lock] | r[once] r1 x1 ;
8 w[once] x0 1 | f[sync] ;
9 f[unlock] | r[once] r2 x0 ;

10 f[lock] | ;
11 w[once] x1 1 | ;
12 f[unlock] | ;
13 exists (1:r1=1 /\ 1:r2=0)

Figure 10: Grace Period Outnumbered, But Readers
Share Process (2Rt1G Ø)

1 LISA LISA2qR1G
2 {
3 x0 = 0;
4 x1 = 0;
5 x2 = 0;
6 }
7 P0 | P1 | P2 ;
8 f[lock] | r[acquire] r1 x1 | f[lock] ;
9 r[once] r2 x0 | f[sync] | r[once] r2 x2 ;

10 w[release] x1 1 | w[once] x2 1 | w[once] x0 1 ;
11 f[unlock] | | f[unlock] ;
12 exists (1:r1=1 /\ 2:r2=1 /\ 0:r2=1)

Figure 11: Grace Period Outnumbered, But Release
and Acquire (2qR1G Ø)

sufficient to count RCU read-side critical sections.
But it turns out that the counting rule has excep-

tions even if each process has no more than one RCU
read-side critical section. One example of this is
shown in Figure 11, where P0’s write-release synchro-
nizes with P1’s read-acquire. This release-acquire
pairing ensures that all of P0’s RCU read-side critical
section precedes P1’s grace period, in turn ensuring
that P0’s read from x0 must precede P2’s write,
which must follow the beginning of the grace period.
The cycle is thus prohibited, despite there being more
RCU read-side critical sections than grace periods.
Although one of the great strengths of RCU is that it
interoperates well with other synchronization mecha-
nisms, this interoperation can make it more difficult
to correctly analyze RCU-related litmus tests.

Nor are release-acquire pairs the only way to pro-

here by accident, given that it does not yet fully account for
processes containing multiple RCU read-side critical sections.

1 LISA LISA2Re1G
2 {
3 x0 = 0;
4 x1 = 0;
5 x2 = 0;
6 }
7 P0 | P1 | P2 ;
8 f[lock] | r[once] r1 x1 | f[lock] ;
9 r[once] r2 x0 | f[sync] | r[once] r2 x2 ;

10 f[mb] | w[once] x2 1 | w[once] x0 1 ;
11 w[once] x1 1 | | f[unlock] ;
12 f[unlock] | | ;
13 exists (1:r1=1 /\ 2:r2=1 /\ 0:r2=1)

Figure 12: Grace Period Outnumbered, But Memory
Barrier I (2Re1G Ø)

1 LISA LISA2Rf1G
2 {
3 x0 = 0;
4 x1 = 0;
5 x2 = 0;
6 }
7 P0 | P1 | P2 ;
8 f[lock] | r[once] r1 x1 | f[lock] ;
9 r[once] r2 x0 | f[sync] | r[once] r2 x2 ;

10 w[once] x1 1 | w[once] x2 1 | f[mb] ;
11 f[unlock] | | w[once] x0 1 ;
12 | | f[unlock] ;
13 exists (1:r1=1 /\ 2:r2=1 /\ 0:r2=1)

Figure 13: Grace Period Outnumbered, But Memory
Barrier II (2Rf1G Ø)

hibit cycles. Figure 12 shows that a memory barrier
will serve just as well. This should be no surprise,
given that a write-release can be emulated by placing
a full memory barrier before the write, and that a
read-acquire can be emulated by placing an RCU
grace period after the read. One can easily argue
that a grace period is overkill for this purpose, but
it does work. In short, the litmus test in this figure
should prohibit all cycles that are prohibited by that
of Figure 11.

The cycle is also prohibited by a memory barrier in
P2, as shown in Figure 13. In this case, the memory
barrier acts by forcing all of P2’s RCU read-side
critical section to follow P1’s grace period. Because
RCU’s fundamental guarantee prevents any part of
P0’s critical section from being ordered after the
end of P1’s grace period, P0’s read from x0 must
preceded P2’s write.

10

3.4 Litmus Tests With Three Readers and One Grace Period

1 LISA LISA2Rei1G
2 {
3 x0 = 0;
4 x1 = 0;
5 x2 = 0;
6 }
7 P0 | P1 | P2 ;
8 f[lock] | r[once] r1 x1 | f[lock] ;
9 w[once] x1 1 | f[sync] | r[once] r2 x2 ;

10 f[mb] | w[once] x2 1 | w[once] x0 1 ;
11 r[once] r2 x0 | | f[unlock] ;
12 f[unlock] | | ;
exists (1:r1=1 /\ 2:r2=1 /\ 0:r2=1)

Figure 14: Grace Period Outnumbered Despite Mem-
ory Barrier I (2Rei1G)

1 LISA LISA2Rfi1G
2 {
3 x0 = 0;
4 x1 = 0;
5 x2 = 0;
6 }
7 P0 | P1 | P2 ;
8 f[lock] | r[once] r1 x1 | f[lock] ;
9 r[once] r2 x0 | f[sync] | w[once] x0 1 ;

10 w[once] x1 1 | w[once] x2 1 | f[mb] ;
11 f[unlock] | | r[once] r2 x2 ;
12 | | f[unlock] ;
13 exists (1:r1=1 /\ 2:r2=1 /\ 0:r2=1)

Figure 15: Grace Period Outnumbered Despite Mem-
ory Barrier II (2Rfi1G)

At this point, it might be tempting to hypothesize
that a modified counting analysis would work, where-
adding either a release-acquire pair or a memory
barrier to any of the RCU read-side critical sections
excludes that RCU read-side critical section from the
count. Unfortunately, the litmus test in Figure 14
thoroughly invalidates that hypothesis. Although P0
does contain a memory barrier, the fact that the or-
der of P0’s accesses to x0 and x1 have been reversed
completely nullifies the effect of that memory bar-
rier. P0’s write to x1 must precede P1’s grace period,
P0’s write to x0 is free to run concurrently with that
grace period. The memory barrier therefore fails to
prohibit the cycle.

Figure 15 shows that the same thing holds true
for a memory barrier inserted into a reordered P2.
It is not enough to have a memory barrier: The
memory barrier must be properly positions amongst

properly ordered accesses, otherwise the cycle will
still be allowed.

3.4 Litmus Tests With Three Read-
ers and One Grace Period

If cycles through one grace period and two read-
side critical section are good, then cycles through
one grace period and three read-side critical sections
must be even better, and such a cycle is shown in
Figure 16. Here, P0’s write to x2 and P2’s write
to x3 can run concurrently with P1’s grace period,
but P3’s write to x0 can actually precede that grace
period. The cycle is therefore not only allowed, but
with up to almost two grace period’s worth of time
to spare.

As one might expect, adding a release-acquire pair
does not necessarily prohibit the cycle, as can be
seen in Figure 17. This release-acquire pair, which
connects P1 and P2, does force P2’s store to x3

to follow P1’s grace period, which in turn means
that P3’s read from x3 also follows the grace period.
However, both the compiler and the CPU can reorder
P3’s store to x0 to run concurrently with P1’s grace
period. Therefore, despite the added release-acquire
pair, the cycle is allowed.

One obvious thing to try is to make a release-
acquire pair connect not consecutive processes in
the cycle, but instead have the pair skip one of the
processes. Figure 18 takes just this approach, with
a release in P0 synchronizing with an acquire in
P2. This release-acquire pair forces the whole of
P0’s RCU read-side critical section to precede P1’s
grace period. Unfortunately, it has little effect on the
ordering of P2’s critical section with respect to the
grace period. After all, all that the release-acquire
pair can do is to force P2’s code to follow P0’s store
to v0, and that store could execute concurrently with
P1’s grace period. Therefore, all that the release-
acquire pair has done for P2 is to force P2’s code to
execute after the start of P1’s grace period, which
RCU’s fundamental guarantee was already doing.
Therefore, the cycle is still allowed, despite the skip-
process release-acquire pair.

It is clear that having a release-acquire pair skip
the grace-period process isn’t as helpful as one might

11

3.4 Litmus Tests With Three Readers and One Grace Period

1 LISA LISA3R1G
2 {
3 x0 = 0;
4 x1 = 0;
5 x2 = 0;
6 x3 = 0;
7 }
8 P0 | P1 | P2 | P3 ;
9 f[lock] | r[once] r1 x1 | f[lock] | f[lock] ;

10 r[once] r2 x0 | f[sync] | r[once] r2 x2 | r[once] r3 x3 ;
11 w[once] x1 1 | w[once] x2 1 | w[once] x3 1 | w[once] x0 1 ;
12 f[unlock] | | f[unlock] | f[unlock] ;
13 exists (1:r1=1 /\ 2:r2=1 /\ 3:r3=1 /\ 0:r2=1)

Figure 16: Grace Period Triply Outnumbered (3R1G)

LISA LISA3R1Gq
{
x0 = 0;
x1 = 0;
x2 = 0;
x3 = 0;
}
P0 | P1 | P2 | P3 ;
f[lock] | r[once] r1 x1 | f[lock] | f[lock] ;
r[once] r2 x0 | f[sync] | r[acquire] r2 x2 | r[once] r3 x3 ;
w[once] x1 1 | w[release] x2 1 | w[once] x3 1 | w[once] x0 1 ;
f[unlock] | | f[unlock] | f[unlock] ;

exists (1:r1=1 /\ 2:r2=1 /\ 3:r3=1 /\ 0:r2=1)

Figure 17: Grace Period Triply Outnumbered, Despite Release and Acquire (3R1Gq)

1 LISA LISA3qRq1G
2 {
3 x0 = 0;
4 x1 = 0;
5 x2 = 0;
6 x3 = 0;
7 v0 = 0;
8 }
9 P0 | P1 | P2 | P3 ;

10 f[lock] | r[once] r1 x1 | f[lock] | f[lock] ;
11 r[once] r2 x0 | f[sync] | r[acquire] r4 v0 | r[once] r3 x3 ;
12 w[once] x1 1 | w[once] x2 1 | r[once] r2 x2 | w[once] x0 1 ;
13 w[release] v0 1 | | w[once] x3 1 | f[unlock] ;
14 f[unlock] | | f[unlock] | ;
15 exists (1:r1=1 /\ 2:r2=1 /\ 3:r3=1 /\ 0:r2=1 /\ 2:r4=1)

Figure 18: Grace Period Triply Outnumbered, Despite Skip-Process Release and Acquire (3qRq1G)

12

3.5 Litmus Tests With Two Readers and Two Grace Periods

1 LISA LISA3Rqq1G
2 {
3 x0 = 0;
4 x1 = 0;
5 x2 = 0;
6 x3 = 0;
7 v0 = 0;
8 }
9 P0 | P1 | P2 | P3 ;

10 f[lock] | r[once] r1 x1 | f[lock] | f[lock] ;
11 r[once] r2 x0 | f[sync] | r[once] r2 x2 | r[acquire] r4 v0 ;
12 w[once] x1 1 | w[once] x2 1 | w[once] x3 1 | r[once] r3 x3 ;
13 f[unlock] | w[release] v0 1 | f[unlock] | w[once] x0 1 ;
14 | | | f[unlock] ;
15 exists (1:r1=1 /\ 2:r2=1 /\ 3:r3=1 /\ 3:r4=1 /\ 0:r2=1)

Figure 19: Grace Period Triply Outnumbered, But Non-Grace-Period Skip-Process Release and Acquire
(3Rqq1G Ø)

like. What if we instead skip one of the RCU read-
ers? Figure 19 tries this out, and we finally have a
litmus test with one grace period and three readers
where the cycle is prohibited! P1’s write-release of
v0 synchronizes with P2’s read-acquire, which forces
the entirety of P2’s RCU read-side critical section
to follow the end of P1’s grace period. Because P0’s
load from x0 cannot follow the end of the grace pe-
riod, that load cannot return the value that P3 stores,
thereby prohibiting the cycle.

For litmus tests containing one grace period and
three RCU read-side critical sections, each in its own
process, it appears that the rule is that a skip-process
release-acquire pair is required to prohibit the cycle,
and that even this is not always sufficient.

However, appearances can be deceiving, as can
be seen in the litmus test shown in Figure 20. In
this litmus test, a release-acquire pair connects the
adjacent processes P2 and P3. P2’s write-release,
in combination with RCU’s fundamental property,
force the entirety of P2’s RCU read-side critical sec-
tion to follow P1’s grace period. In addition, the
fact that P2’s write-release synchronizes with P3’s
read-acquire means that the entirety of P3’s critical
section also follows P1’s grace period. Because RCU’s
fundamental guarantee also ensures that P0’s read
from x0 precedes the end of P1’s grace period, P0’s
read cannot return the value written by P3. This in
turn means that the cycle is prohibited, despite the
fact that there is only one release-acquire pair that

connects consecutive processes in the cycle.

Then again, perhaps Figure 20 is merely the ex-
ception that proves the rule.

But if so, how do we explain Figure 21, which
shows a different way to prohibit the cycle with but
one release-acquire pair connecting consecutive pro-
cesses? The determination as to whether or not
a given cycle is prohibited clearly depends on fine
details of everything making up that cycle.

3.5 Litmus Tests With Two Readers
and Two Grace Periods

Figure 22 shows several grace periods having two
readers and two grace periods each. The cycles in all
three litmus tests are prohibited, as expected given
that there are as many grace periods as there are
readers. The cycles are prohibited when both grace
periods are run by the same process (second test)
and when both critical sections are run by the same
process (third test).

In the third test, there are two independent cycles,
one through P0’s first critical section and P1, and
the other through P0’s second critical section and P2.
The first version of the auxiliary-variable analysis
would be expected to mis-analyze this litmus test,
given that this analysis does not yet properly account
for multiple critical sections in the same process. In
reality, the analysis is far worse than that, as it hits
a stack overflow.

13

3.5 Litmus Tests With Two Readers and Two Grace Periods

1 LISA LISA3Rq1G
2 {
3 x0 = 0;
4 x1 = 0;
5 x2 = 0;
6 x3 = 0;
7 v0 = 0;
8 }
9 P0 | P1 | P2 | P3 ;

10 f[lock] | r[once] r1 x1 | f[lock] | f[lock] ;
11 r[once] r2 x0 | f[sync] | r[once] r2 x2 | r[acquire] r3 x3 ;
12 w[once] x1 1 | w[once] x2 1 | w[release] x3 1 | w[once] x0 1 ;
13 f[unlock] | | f[unlock] | f[unlock] ;
14 exists (1:r1=1 /\ 2:r2=1 /\ 3:r3=1 /\ 0:r2=1)

Figure 20: Grace Period Triply Outnumbered, But Release and Acquire I (3Rq1G Ø)

1 LISA LISAq3R1G
2 {
3 x0 = 0;
4 x1 = 0;
5 x2 = 0;
6 x3 = 0;
7 }
8 P0 | P1 | P2 | P3 ;
9 f[lock] | r[once] r1 x1 | f[lock] | f[lock] ;

10 r[acquire] r2 x0 | f[sync] | r[once] r2 x2 | r[once] r3 x3 ;
11 w[once] x1 1 | w[once] x2 1 | w[once] x3 1 | w[release] x0 1 ;
12 f[unlock] | | f[unlock] | f[unlock] ;
13 exists (1:r1=1 /\ 2:r2=1 /\ 3:r3=1 /\ 0:r2=1)

Figure 21: Grace Period Triply Outnumbered, But Release and Acquire II (q3R1G Ø)

14

3.5 Litmus Tests With Two Readers and Two Grace Periods

1 LISA LISA2R2G
2 {
3 x0 = 0;
4 x1 = 0;
5 x2 = 0;
6 x3 = 0;
7 }
8 P0 | P1 | P2 | P3 ;
9 f[lock] | r[once] r1 x1 | r[once] r1 x2 | f[lock] ;

10 r[once] r2 x0 | f[sync] | f[sync] | r[once] r3 x3 ;
11 w[once] x1 1 | w[once] x2 1 | w[once] x3 1 | w[once] x0 1 ;
12 f[unlock] | | | f[unlock] ;
13 exists (1:r1=1 /\ 2:r2=1 /\ 3:r3=1 /\ 0:r2=1)

1 LISA LISA2R2Gt
2 {
3 x0 = 0;
4 x1 = 0;
5 x2 = 0;
6 }
7 P0 | P1 | P2 ;
8 f[lock] | r[once] r1 x1 | f[lock] ;
9 r[once] r2 x0 | f[sync] | r[once] r2 x2 ;

10 w[once] x1 1 | f[sync] | w[once] x0 1 ;
11 f[unlock] | w[once] x2 1 | f[unlock] ;
12 exists (1:r1=1 /\ 2:r2=1 /\ 0:r2=1)

1 LISA LISA2Rt2G
2 {
3 x0 = 0;
4 x1 = 0;
5 x2 = 0;
6 x3 = 0;
7 }
8 P0 | P1 | P2 ;
9 f[lock] | r[once] r1 x1 | r[once] r3 x3 ;

10 w[once] x0 1 | f[sync] | f[sync] ;
11 w[once] x1 1 | r[once] r2 x0 | r[once] r4 x2 ;
12 f[unlock] | | ;
13 f[lock] | | ;
14 w[once] x2 1 | | ;
15 w[once] x3 1 | | ;
16 f[unlock] | | ;
17 exists (1:r1=0 /\ 1:r2=1 /\ 2:r3=0 /\ 2:r1=1)

Figure 22: Litmus Tests With Two Readers and Two Grace Periods Ø

1 LISA LISA3R2G
2 {
3 x0 = 0;
4 x1 = 0;
5 x2 = 0;
6 x3 = 0;
7 }
8 P0 | P1 | P2 | P3 ;
9 f[lock] | r[once] r1 x1 | f[lock] | f[lock] ;

10 r[once] r2 x0 | f[sync] | r[once] r2 x2 | r[once] r3 x3 ;
11 w[once] x1 1 | f[sync] | w[once] x3 1 | w[once] x0 1 ;
12 f[unlock] | w[once] x2 1 | f[unlock] | f[unlock] ;
13 exists (1:r1=1 /\ 2:r2=1 /\ 3:r3=1 /\ 0:r2=1)

Figure 23: Litmus Tests With Three Readers and Two Grace Periods (3R2G)

15

3.6 Litmus Tests With Three Readers and Two Grace Periods

3.6 Litmus Tests With Three Read-
ers and Two Grace Periods

Figure 23 shows a litmus test with three readers and
two grace periods, but with both grace periods on P1.
Given that there are more readers than grace periods,
and given that there is no other ordering, the cycle
should be allowed. Unfortunately, neither analysis
method handles this case correctly. The speed and
accuracy of analysis is covered by the next section.

3.7 Solver Effectiveness

The herd7 solver [1] correctly solves the canonical
litmus test shown in Figure 5 in less than ten millisec-
onds and also correctly solves the auxiliary-variable
form in about 30 milliseconds.

3.7.1 Modified Cat Grace Definition

Table 1 shows the results of a linux.cat file that
replaces:
let grace = (sync;com+)+;(sandwich;com+)+

with:
let grace = (sandwich;com+);(sync;com+)+

As you can see from the table, this change corrects
all errors in the initial cat file, but at the expense of
introducing a similar set of alternative errors. This
data supports the hypothesis that the RCU grace-
period relationship cannot be directly represented
by the cat-file language. The next section therefore
evaluates an approach that introduces auxiliary vari-
ables, in effect, providing an implementation of RCU
in the LISA language.

3.7.2 First Version Auxiliary Translation

Table 2 summarizes the results of running a number
of RCU-related litmus tests. The “LISA” column
shows the results of linux.cat analysis of the lit-
mus tests, the “Hand” column shows the results
for hand-coded auxiliary-variable analysis, and fi-
nally “Aux” shows the results of automatically trans-
lated auxiliary-variable analysis. The advantage of
linux.cat analysis is blazing speed: None of the
scenarios took more than 40 milliseconds. The cor-
responding penalty is mis-analysis for several of the

Litmus Test LISA Luc1 Luc2
1R1Gdeadlock ! 0.00
1R1G Ø 0.00 0.00 0.00
1R1n1G Ø 0.00 0.00 0.01
2qR1G Ø 0.00 0.01 0.01
2R1G 0.00 0.90 0.00
2R2G Ø 0.01 0.01 0.02
2R2Gt Ø 0.00 0.01 0.01
2Re1G Ø 0.00 0.00 0.00
2Rei1G 0.00 0.00 0.01
2Rf1G Ø 0.01 0.01 0.00
2Rfi1G 0.00 0.01 0.00
2Rt1G Ø 0.00 0.00 0.00
2Rt2G Ø 0.02 0.02 0.02
3G o 0.00
3qRq1G 0.03 0.05 0.04
3R1Gq 0.01 0.01 0.02
3R1G 0.01 0.01 0.01
3R2G 0.01 0.02 0.02
3Rq1G Ø 0.02 0.01 0.01
3Rqq1G Ø 0.04 0.02 0.04
4R2t 0.00 0.00 0.00
LISADL1 ! 0.00
LISAnoDL0 ! 0.00
LISAnoDL1 ! 0.00
LISAnoDL2 ! 0.00
q3R1G Ø 0.02 0.01 0.02

Ø: Cycle prohibited
o: Cycle required
!: Deadlock
*.**: Test crashed
Red cell: Incorrect analysis or crash

Table 1: Modified Cat Grace Definition

16

3.7 Solver Effectiveness

Litmus Test LISA Hand Aux
1R1G Ø 0.00 0.03 0.03
1R1n1G Ø 0.00 0.04
2qR1G Ø 0.00 1.04
2R1G 0.00 0.91 1.02
2R2G Ø 0.01 173.59 205.90
2R2Gt Ø 0.00 98.48
2Re1G Ø 0.00 0.99 1.11
2Rei1G 0.00 0.98 1.06
2Rf1G Ø 0.01 0.96 1.11
2Rfi1G 0.00 0.97 1.09
2Rt1G Ø 0.00 0.16
2Rt2G Ø 0.02 *.**
3qRq1G 0.03 66.82
3R1G 0.01 29.04
3R1Gq 0.01 28.98
3Rq1G Ø 0.02 29.62
3Rqq1G Ø 0.04 64.73
3R2G 0.01 *.**
4R2t 0.00 0.00
q3R1G Ø 0.02 29.09

Ø: Cycle prohibited
*.**: Test crashed
Red cell: Incorrect analysis or crash

Table 2: Modeling Results Summary

scenarios, though it can be argued that these mis-
analyzed scenarios are rather unlikely to turn up in
practice. The two auxiliary-variable columns boast
much better accuracy of analysis, at least for those
scenarios that successfully completed.6 The corre-
sponding penalty is a performance degradation rang-
ing upwards of five orders of magnitude.

In addition, the initial version of the auxiliary-
variable cannot handle backwards branches that
cause a given RCU grace period or RCU read-side
critical section to be executed twice.7 It is likely
that the native linux.cat analysis would not have
a problem with this sort of backwards branch.

3.7.3 Second Version Auxiliary Translation

The second version of the auxiliary-variable transla-
tion script moves the prophesy-variable checks from
LISA code to the exists clause, with results shown
in Table 3. The results are decidedly mixed, however,
it appears that the change benefits litmus tests with
larger numbers of threads containing RCU read-side
critical sections and hurts litmus tests with larger
numbers of grace periods.

Interestingly enough, the hand-coded 2R2G lit-
mus test does much better than the scripted version,
which indicates that further optimization is eminently
possible.

However, the 2Rt2G test with two read-side crit-
ical sections in one process and two grace periods
each in their own process, which encountered a stack
overflow on version one, completes successfully, al-
beit consuming more than two hours of CPU time
and almost 3GB of memory. Furthermore, the 3R2G
test with three RCU read-side critical sections and
two grace periods, which also encountered a stack
overflow on version one, also completes successfully,
albeit consuming more than ten hours of CPU time
and 2GB of memory. This gives some reason to be-
lieve that version two is overall better than is version

6 2Rt2G failed with a stack overflow after running for more
than an hour and consuming well in excess of 4.5GB of memory.
Given that its P0 contains 97 lines of non-comment code, this
failure might not be all that surprising. 3R2G also failed with
a stack overflow.

7 This shortcoming is problematic for more general analysis
tools such as cbmc.

17

3.7 Solver Effectiveness

Litmus Test LISA Hand Aux Chg
1R1G Ø 0.00 0.04 0.04 -33.3%
1R1n1G Ø 0.00 0.03 +25.0%
2qR1G Ø 0.00 0.81 +22.1%
2R1G 0.00 0.91 0.80 +21.6%
2R2G Ø 0.01 171.00 336.67 -63.5%
2R2Gt Ø 0.00 155.04 -57.4%
2Re1G Ø 0.00 1.00 0.87 +21.6%
2Rei1G 0.00 0.98 0.85 +19.8%
2Rf1G Ø 0.01 0.99 0.85 +23.4%
2Rfi1G 0.00 0.98 0.86 +21.1%
2Rt1G Ø 0.00 0.26 -62.3%
2Rt2G Ø 0.01 8879.71 +∞%
3qRq1G 0.03 49.12 +26.5%
3R1G 0.01 20.64 +28.9%
3R1Gq 0.01 20.22 +30.2%
3Rq1G Ø 0.02 21.27 +28.2%
3Rqq1G Ø 0.03 47.98 +25.9%
3R2G 0.01 42686.62 +∞%
4R2t 0.00 0.00 0.0%
q3R1G Ø 0.02 20.62 +29.1%

Ø: Cycle prohibited
*.**: Test crashed
Red cell: Incorrect analysis or crash

Table 3: Modeling Results Summary, Version Two

one. It also militates in favor of carefully splitting
the work between not only the litmus-test code and
the exists clause, but also between the linux.cat

file, as was in fact suggested by Jade Alglave. This
raises the question of exactly how to go about taking
this apparently good advice, a topic that is taken up
by the next section.

3.7.4 Third Version Auxiliary Translation

Slow though it was, the second version failed to
handle litmus tests where a given thread might have
more than one RCU read-side critical section, or,
indeed, even one RCU read-side critical section with
additional code outside of that critical section. Fixing
this requires two writes to each ghost variable, which
results in further slowdowns.

Fortunately, herd7 provides a “-speedcheck true”
option that provides abbreviated checks. This abbre-
viated checking either (more) quickly determines if
there are no executions, or (more) quickly locates a
single execution that violates the exists clause.

Table 4 compares the two ways of running herd7.

3.7.5 Fourth Version Auxiliary Translation

It only makes sense to do two writes to the prophesy
variables if there is at least one process that has
two or more RCU read-side critical sections, or if
there is at least one process that has one RCU read-
side critical section with some code outside of that
RCU read-side critical section. Therefore, for most
litmus tests, only one write to the prophesy variable
is required. Because decreasing the number of writes
greatly decreases execution time, it makes sense to
optimize for this common case. The results are shown
in Table 5.

3.7.6 Solver Effectiveness Summary

An accurate analysis method with adequate perfor-
mance is clearly much to be desired. However, one
of the lessons of this section is that any accurate
analysis method must take into account fine details
of the litmus tests.

18

3.7 Solver Effectiveness

Litmus Test Slow Fast Speedup
LISA1R1G 0.10 0.01 10.00
LISA1R1Gdeadlock 0 0 0.00
LISA1R1n1G 0.10 0.01 10.00
LISA1Rib1G 28.88 3.19 9.05
LISA1Rr1G 3.07 0.39 7.87
LISA1Rx1GM 5.59 0.63 8.87
LISA1xR1GM 1.26 0.14 9.00
LISA2qR1G 4.32 0.28 15.43
LISA2R1G 4.11 0.27 15.22
LISA2Re1G 4.69 0.28 16.75
LISA2Rec1G 10.90 0.90 12.11
LISA2Rei1G 4.58 0.29 15.79
LISA2Rf1G 4.57 0.28 16.32
LISA2Rfi1G 4.61 0.28 16.46
LISA2Rftx1GM 162.37 20.85 7.79
LISA2Rt1G 1.15 0.15 7.67
LISA2Rtx1GM 63.65 8.20 7.76
LISA2Rtx1GM-C 61.68 8.11 7.61
LISA2Rtxf1GM 331.88 47.40 7.00
LISA3G 0.00 0.00 0.00
LISA3qRq1G 374.01 19.70 18.99
LISA3R1G 152.57 8.91 17.12
LISA3R1Gq 150.20 8.91 16.86
LISA3Rq1G 156.00 9.08 17.18
LISA3Rqq1G 345.37 19.70 17.53
LISA4R2t 0.00 0.00 0.00
LISADL1 0.00 0.00 0.00
LISADL2ND 0.00 0.00 0.00
LISAnoDL0 0.00 0.00 0.00
LISAnoDL1 0.00 0.00 0.00
LISAnoDL2 0.00 0.00 0.00
LISAnoDL3-B 0.00 0.00 0.00
LISAq3R1G 154.58 8.97 17.23

Table 4: Modeling Results Summary, Version Three

Litmus Test 3 Fast 4 Fast Speedup
LISA1R1G 0.01 0.01 1.00
LISA1R1Gdeadlock 0 0 0.00
LISA1R1n1G 0.01 0.01 1.00
LISA1Rib1G 3.19 3.13 1.02
LISA1Rr1G 0.39 0.36 1.08
LISA1Rx1GM 0.63 0.60 1.05
LISA1xR1GM 0.14 0.13 1.08
LISA2qR1G 0.28 0.11 2.55
LISA2R1G 0.27 0.11 2.45
LISA2Re1G 0.28 0.12 2.33
LISA2Rec1G 0.90 0.40 2.25
LISA2Rei1G 0.29 0.12 2.42
LISA2Rf1G 0.28 0.12 2.33
LISA2Rfi1G 0.28 0.12 2.33
LISA2Rftx1GM 20.85 19.38 1.08
LISA2Rt1G 0.15 0.14 1.07
LISA2Rtx1GM 8.20 7.73 1.06
LISA2Rtx1GM-C 8.11 7.72 1.05
LISA2Rtxf1GM 47.40 44.54 1.06
LISA3G 0.00 0.00 0.00
LISA3qRq1G 19.70 8.25 2.39
LISA3R1G 8.91 2.57 3.47
LISA3R1Gq 8.91 2.64 3.38
LISA3Rq1G 9.08 2.63 3.45
LISA3Rqq1G 19.70 5.79 3.40
LISA4R2t 0.00 0.00 0.00
LISADL1 0.00 0.00 0.00
LISADL2ND 0.00 0.00 0.00
LISAnoDL0 0.00 0.00 0.00
LISAnoDL1 0.00 0.00 0.00
LISAnoDL2 0.00 0.00 0.00
LISAnoDL3-B 0.00 0.00 0.00
LISAq3R1G 8.97 2.62 3.42

Table 5: Modeling Results Summary, Version Four

19

4.1 RCU Grace-Period Relationship is Solved by Counting

4 Bogus Optimizations

This section looks at a couple of attractive but ulti-
mately bogus approaches to optimization.

4.1 RCU Grace-Period Relationship
is Solved by Counting

Figure 1 is the base member of a class of litmus
tests that compare the numbers of RCU read-side
critical sections and RCU grace periods. The next
member is shown in Figure 24. The cycle in this
litmus test is allowed: Although Thread 0’s read
from a follows Thread 2’s grace period and Thread 1’s
write to c precedes that same grace period, the two
RCU read-side critical sections can overlap, allowing
Thread 1’s read from b to see Thread 1’s write. This
is illustrated by the figure beneath the litmus test,
which shows how the statements in the RCU read-side
critical sections may be reordered and how delays
may be inserted to allow the cycle to occur. Of
course, chaining additional RCU read-side critical
sections would also allow the cycle.

However, if Thread 2 executes not one but two
consecutive grace periods as shown in Figure 25, the
cycle is prohibited. This may seem quite strange, as
repeating most memory-barrier instructions in this
manner would have no effect. However, due to the
peculiar relationship between RCU read-side critical
sections and RCU grace periods, repetition really
does make a difference for RCU. This can be seen by
applying the grace-period relationships:

1. Because 2:r1==1, a portion of Thread 1’s read-
side critical section precedes Thread 2’s first
grace period. Therefore, all of Thread 1’s critical
section must precede the end of Thread 2’s first
grace period.

2. Similarly, because 0:r1==1, a portion of
Thread 0’s read-side critical section follows
Thread 2’s second grace period. Therefore, all
of Thread 0’s critical section must follow the
beginning of Thread 2’s second grace period.

3. Combining these two ordering constraints, we
see that all of Thread 1’s RCU read-side crit-

ical section must precede that of Thread 0.
Therefore, Thread 1’s read from b cannot follow
Thread 0’s write, which means that we cannot
have 1:r1==1.

In short, adding the second synchronize rcu()

to Thread 2 prohibits the cycle. This situation under-
scores a major difference between RCU grace periods
and memory-barrier instructions.

Similarly, if an additional grace period is chained
in a separate thread while keeping a single reader,
the cycle is prohibited, as shown in Figure 26. The
diagram again illustrates the fact that the cycle can-
not happen. Chaining additional grace periods would
continue to prohibit the cycle.

As shown in Figure 27 having at least as many
grace periods as readers prohibits the cycle. The
graphic illustrates this, again inserting carefully
chosen but entirely legal delays and reordering.
Thread 1’s RCU read-side critical section must end
before Thread 2’s grace period, which, combined
with RCU’s memory-barrier properties, means that
Thread 0’s RCU read-side critical section must begin
before Thread 3’s grace period. This in turn implies
that Thread 0’s critical section must end before the
end of Thread 3’s grace period, which ensures that
Thread 0’s read cannot return the value written by
Thread 3’s write, which prohibits the cycle. As be-
fore, chaining on more grace periods continues to
prohibit the cycle. Generalizing, if there are at least
as many grace periods as read-side critical sections
in the cycle, the cycle will be prohibited.

However, this general rule assumes that the chain
consists of a single run of RCU read-side critical
sections followed by a single run of grace periods,
where each pair of consecutive grace periods are
partitioned by happens-before relationships, as has
been the case in all the examples up to this point. In
contrast, if we insert an RCU read-side critical section
between the two grace periods in Figure 27, resulting
in the situation shown in Figure 28, then the resulting
cycle is allowed. The reason for this is that the
interposed RCU read-side critical section in Thread 3
allows the two grace periods overlap, which in turn
allows Thread 0’s and Thread 1’s RCU read-side
critical sections to overlap, in turn allowing the cycle.

20

This can also be seen in the graphic representation.
Adding a second pair of grace periods split by an

RCU read-side critical section, as shown in Figure 29,
again prohibits the cycle, as can be seen in the illegi-
ble diagram. Adding another RCU read-side critical
section between Thread 6 and Thread 7 would allow
the cycle, which would again be prohibited by adding
another grace period.

Thus, the relationship between RCU read-side crit-
ical sections and grace periods act like nested paren-
theses, in other words, the grammar of combinations
is context free. My conjecture is that using the model
shown in Figure 3 will allow a simple constraint sys-
tem to nevertheless handle these litmus tests, at the
cost of adding O(N ∗M) variables and constraints,
where N is the number of RCU read-side critical
sections and M is the number of grace periods.

Alternatively, given a cycle of N RCU read-side
critical sections and M grace periods, the cycle is
allowed whenever N ≤M .

Unfortunately, there is no law against RCU read-
side critical sections containing memory barriers or
release-acquire relationships. Either case will defeat
the simple counting rule.

Furthermore, a normal constraint solver need only
find the first cycle, then stop. A counting constraint
solver must check each cycle it finds, and must ignore
irrelevant cycles. This in turn means that further
processing must avoid finding old irrelevant cycles.
In theory, this is just a simple matter of software, but
in practice this greatly increases the computational
complexity.

It is quite possible that further thought will un-
cover a way to nevertheless make use of this counting
rule, but this is not currently at all obvious. In
the meantime, it is a handy way to manually check
whether or not a model is doing the right thing for a
large RCU litmus test.

4.2 Ignoring Irrelevant Interaction

It is tempting to assert that a given RCU read-side
critical section need only interact with threads con-
taining grace periods that access variables that are
also accessed by that RCU read-side critical section.
This would be very convenient, as it would greatly

reduce the number of prophesy variables and memory-
barrier checks. Unfortunately, this simply does not
work in all cases. To see this, consider Figure 29.
Here Thread 6’s RCU read-side critical section must
interact with Thread 4’s grace period, despite there
being no accesses in common.

5 Opportunities for Optimiza-
tion

The current auxiliary-variable translation generates
branches over branches due to the fact that there
is only an equality comparison. An inequality com-
parison would eliminate these extra instructions. Al-
though it would be possible to reverse the sense of
the prophesy variables, that would simply move the
branch-over-branch from the prophesy check to the
memory-barrier check. Another possibility would be
to move the prophesy check to the event condition,
but this would require an additional pair of regis-
ter for each prophesy check in each thread, which
is not likely to be an improvement. A not-equals
comparison would therefore be helpful.

There are cases where the code knows that the
current execution is useless, but there appear to be
no way to inform the constraint solver of this fact.
If there was a way to inform the constraint solver of
doomed executions, this could be used to check the
prophesy and potentially to check for violations of
the grace-period property.8

All the members of a given set of grace-period
checks could use the same memory-barrier instruc-
tion, as is done in the hand-generated tests. If this
is thought to produce significant savings, a future
version of the translation tool will take this approach.

It might be possible to economize on the check code.
One possibility is to place it only at the beginning and
end of each RCU read-side critical section. In cases
where there is code preceding the first or following
the last RCU read-side critical section, it might also
be necessary to place checks at the beginning or end
of the process. That said, this won’t help litmus

8 No RCU read-side critical section is permitted to span a
grace period.

21

REFERENCES

tests in which each RCU read-side critical section
completely fills its process.

Another approach would be to generate multiple
auxiliary-variable litmus tests, each with a different
relationship of grace periods and threads, then run
each of them separately. If any showed that a cycle
was allowed, then the overall test would need to be
considered to allow that cycle. Instead of one heavy-
weight test, large litmus tests would generate a very
large number of much smaller tests.

References

[1] Jade Alglave, Luc Maranget, and Michael
Tautschnig. Herding cats: Modelling, simula-
tion, testing, and data-mining for weak memory.
In Proceedings of the 35th ACM SIGPLAN Con-
ference on Programming Language Design and
Implementation, PLDI ’14, pages 40–40, New
York, NY, USA, 2014. ACM.

[2] Andrea Arcangeli, Mingming Cao, Paul E.
McKenney, and Dipankar Sarma. Using read-copy
update techniques for System V IPC in the Linux
2.5 kernel. In Proceedings of the 2003 USENIX
Annual Technical Conference (FREENIX Track),
pages 297–310. USENIX Association, June 2003.

[3] Mathieu Desnoyers, Paul E. McKenney, Alan
Stern, Michel R. Dagenais, and Jonathan Walpole.
User-level implementations of read-copy update.
IEEE Transactions on Parallel and Distributed
Systems, 23:375–382, 2012.

[4] Paul E. McKenney. Structured deferral: synchro-
nization via procrastination. Commun. ACM,
56(7):40–49, July 2013.

22

REFERENCES

Thread 0 Thread 1 Thread 2
rcu read lock(); rcu read lock(); r1 = READ ONCE(c);

r1 = READ ONCE(a); r1 = READ ONCE(b); synchronize rcu();

WRITE ONCE(b, 1); WRITE ONCE(c, 1); WRITE ONCE(a, 1);

rcu read unlock(); rcu read unlock();

BUG ON(0:r1 == 1 && 1:r1 == 1 && 2:r1 == 1);

(Cycle allowed)

rcu_read_lock();
WRITE_ONCE(c, 1);

r1 = READ_ONCE(b);
rcu_read_unlock();

r1 = READ_ONCE(c);

synchronize_rcu();

WRITE_ONCE(a, 1);

rcu_read_lock();
WRITE_ONCE(b, 1);

r1 = READ_ONCE(a);
rcu_read_unlock();

Figure 24: Two Readers, One Grace Period

23

REFERENCES

Thread 0 Thread 1 Thread 2
rcu read lock(); rcu read lock(); r1 = READ ONCE(c);

r1 = READ ONCE(a); r1 = READ ONCE(b); synchronize rcu();

WRITE ONCE(b, 1); WRITE ONCE(c, 1); synchronize rcu();

rcu read unlock(); rcu read unlock(); WRITE ONCE(a, 1);

BUG ON(0:r1 == 1 && 1:r1 == 1 && 2:r1 == 1);

(Cycle prohibited)

rcu_read_lock();
WRITE_ONCE(c, 1);

r1 = READ_ONCE(b);
rcu_read_unlock();

r1 = READ_ONCE(c);

synchronize_rcu();

synchronize_rcu();

WRITE_ONCE(a, 1);

rcu_read_lock();
WRITE_ONCE(b, 1);

r1 = READ_ONCE(a);
rcu_read_unlock();

Figure 25: Two Readers, Two Consecutive Grace Periods

24

REFERENCES

Thread 0 Thread 1 Thread 2
rcu read lock(); r1 = READ ONCE(b); r1 = READ ONCE(c);

r1 = READ ONCE(a); synchronize rcu(); synchronize rcu();

WRITE ONCE(b, 1); WRITE ONCE(c, 1); WRITE ONCE(a, 1);

rcu read unlock();

BUG ON(0:r1 == 1 && 1:r1 == 1 && 2:r1 == 1);

(Cycle prohibited)

rcu_read_lock();
r1 = READ_ONCE(a);
WRITE_ONCE(b, 1);
rcu_read_unlock(); r1 = READ_ONCE(b);

synchronize_rcu();

WRITE_ONCE(c, 1);

r1 = READ_ONCE(c);

synchronize_rcu();

WRITE_ONCE(a, 1);

Figure 26: One Reader, Two Grace Periods

25

REFERENCES

Thread 0 Thread 1 Thread 2 Thread 3
rcu read lock(); rcu read lock(); r1 = READ ONCE(c); r1 = READ ONCE(d);

r1 = READ ONCE(a); r1 = READ ONCE(b); synchronize rcu(); synchronize rcu();

WRITE ONCE(b, 1); WRITE ONCE(c, 1); WRITE ONCE(d, 1); WRITE ONCE(a, 1);

rcu read unlock(); rcu read unlock();

BUG ON(0:r1 == 1 && 1:r1 == 1 && 2:r1 == 1 && 3:r1 == 1);

(Cycle prohibited)

rcu_read_lock();
WRITE_ONCE(c, 1);

r1 = READ_ONCE(b);
rcu_read_unlock();

r1 = READ_ONCE(c);

synchronize_rcu();

WRITE_ONCE(d, 1);

rcu_read_lock();
WRITE_ONCE(b, 1);

r1 = READ_ONCE(a);
rcu_read_unlock();

r1 = READ_ONCE(d);

synchronize_rcu();

WRITE_ONCE(a, 1);

Figure 27: Two Readers, Two Grace Periods

26

REFERENCES

Thread 0 Thread 1 Thread 2 Thread 3
rcu read lock(); rcu read lock(); r1 = READ ONCE(c); rcu read lock();

r1 = READ ONCE(a); r1 = READ ONCE(b); synchronize rcu(); r1 = READ ONCE(d);

WRITE ONCE(b, 1); WRITE ONCE(c, 1); WRITE ONCE(d, 1); WRITE ONCE(e, 1);

rcu read unlock(); rcu read unlock(); rcu read unlock();

Thread 4
r1 = READ ONCE(e);

synchronize rcu();

WRITE ONCE(f, 1);

BUG ON(0:r1 == 1 && 1:r1 == 1 && 2:r1 == 1 && 3:r1 == 1 && 4:r1 == 1);

(Cycle allowed)

rcu_read_lock();
WRITE_ONCE(c, 1);

r1 = READ_ONCE(b);
rcu_read_unlock();

r1 = READ_ONCE(c);

synchronize_rcu();

WRITE_ONCE(d, 1);

rcu_read_lock();
WRITE_ONCE(b, 1);

r1 = READ_ONCE(a);
rcu_read_unlock();

r1 = READ_ONCE(e);

synchronize_rcu();

WRITE_ONCE(a, 1);

rcu_read_lock();
WRITE_ONCE(e, 1);

r1 = READ_ONCE(d);
rcu_read_unlock();

Figure 28: Two Readers, One Composite Grace Period

27

REFERENCES

Thread 0 Thread 1 Thread 2 Thread 3
rcu read lock(); rcu read lock(); r1 = READ ONCE(c); rcu read lock();

r1 = READ ONCE(a); r1 = READ ONCE(b); synchronize rcu(); r1 = READ ONCE(d);

WRITE ONCE(b, 1); WRITE ONCE(c, 1); WRITE ONCE(d, 1); WRITE ONCE(e, 1);

rcu read unlock(); rcu read unlock(); rcu read unlock();

Thread 4 Thread 5 Thread 6 Thread 7
r1 = READ ONCE(e); r1 = READ ONCE(f); rcu read lock(); r1 = READ ONCE(h);

synchronize rcu(); synchronize rcu(); r1 = READ ONCE(g); synchronize rcu();

WRITE ONCE(f, 1); WRITE ONCE(g, 1); WRITE ONCE(h, 1); WRITE ONCE(a, 1);

rcu read unlock();

BUG ON(0:r1 == 1 && 1:r1 == 1 && 2:r1 == 1 && 3:r1 == 1 &&

4:r1 == 1 && 5:r1 == 1 && 6:r1 == 1 && 7:r1 == 1);

(Cycle prohibited)

rcu_read_lock();
WRITE_ONCE(c, 1);

r1 = READ_ONCE(b);
rcu_read_unlock();

r1 = READ_ONCE(c);

synchronize_rcu();

WRITE_ONCE(d, 1);

rcu_read_lock();
WRITE_ONCE(b, 1);

r1 = READ_ONCE(a);
rcu_read_unlock();

r1 = READ_ONCE(e);

synchronize_rcu();

WRITE_ONCE(f, 1);

rcu_read_lock();
WRITE_ONCE(e, 1);

r1 = READ_ONCE(d);
rcu_read_unlock();

r1 = READ_ONCE(f);

synchronize_rcu();

WRITE_ONCE(g, 1);

r1 = READ_ONCE(h);

synchronize_rcu();

WRITE_ONCE(a, 1);

rcu_read_lock();
WRITE_ONCE(h, 1);

r1 = READ_ONCE(g);
rcu_read_unlock();

Figure 29: Two Readers, Two Composite Grace Periods

28

	1 Introduction
	2 Modeling RCU
	2.1 Consequences of Fundamental RCU Guarantee
	2.2 Counter-Temporal Models???
	2.3 Counter-Temporal Model Description
	2.4 Handling Multiple Grace Periods
	2.5 Handling Multiple Read-Side Critical Sections
	2.6 Handling Nested RCU Read-Side Critical Sections
	2.7 Omitting Checks
	2.8 Generating Prophesies

	3 Litmus Tests and Lessons Learned
	3.1 Litmus Tests With One Reader and One Grace Period
	3.2 Litmus Test With No Grace Period
	3.3 Litmus Tests With Two Readers and One Grace Period
	3.4 Litmus Tests With Three Readers and One Grace Period
	3.5 Litmus Tests With Two Readers and Two Grace Periods
	3.6 Litmus Tests With Three Readers and Two Grace Periods
	3.7 Solver Effectiveness
	3.7.1 Modified Cat Grace Definition
	3.7.2 First Version Auxiliary Translation
	3.7.3 Second Version Auxiliary Translation
	3.7.4 Third Version Auxiliary Translation
	3.7.5 Fourth Version Auxiliary Translation
	3.7.6 Solver Effectiveness Summary

	4 Bogus Optimizations
	4.1 RCU Grace-Period Relationship is Solved by Counting
	4.2 Ignoring Irrelevant Interaction

	5 Opportunities for Optimization

