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ABSTRACT
Dan Grossman recently wrote a thought-provoking paper
entitled “The Transactional Memory / Garbage Collection
Analogy” [5], which argues that transactional memory (TM) [11,
8, 20] will bring benefits to the lives of shared-memory par-
allel programmers that are broadly similar to the benefits
commonly attributed to garbage collectors (GCs). This pa-
per examines the TM/GC analogy in detail, paralleling his
organization, commenting on additional implications of this
analogy, providing an evaluation from the viewpoint of a
practitioner, and ending with a discussion of these addi-
tional implications.

1. INTRODUCTION
The paper first introduces the analogy between TM and

GC. It does take care not to assert that TM will make con-
current programming as easy as sequential programming
with GC, and also carefully points out that TM does not
relieve the developer of the responsibilty for marking the
beginnings and ends of the critical sections. It does how-
ever repeat the oft-stated claim that TM will makes it easy
to define critical sections. Although there is no attempt to
argue that defining critical sections is the key problem in
concurrent programming, this assumption in fact underlies
most of the reasoning in this paper.

2. BACKGROUND
This section sets the paper’s scope to be shared-memory

programs using modern object-oriented languages, choosing
Java for his example. We will instead focus on a C/C++
style of locking in order to gain a different point of view on
this analogy, in keeping with the dictum “Point of view is
worth 80 IQ points”.

2.1 Garbage Collection
This section provides background on GC, touching on op-

timization techniques used in GCs, conservative vs. pre-
cise collection, and real-time collection. It also touches on
problems exacerbated by preemptive scheduling, on mutual-
exclusion locks, and on transactional memory.

2.2 Transactional Memory
The next section provides background on TM. This sec-

tion notes that TM implementations typically exclude some
operations, listing I/O,1 foreign-function calls, and thread

1More recently, schemes have been advanced permitting spe-

creation,2 but does not provide any insight on how these
exclusions affect how easily TM might be applied to large
real-world concurrent programs. Of course, these exclusions
do ease implementation of TM’s abort-and-retry semantics,
but the effect on the developer using TM is given short shrift.
The section then calls out the difference between weak and
strong atomicity, in which weak atomicity allows the nor-
mal atomicity guarantees to be violated. It also notes the
variety of strategies used to detect and respond to memory
conflicts and discusses obstruction freedom. Finally, it calls
out several areas in which transactions have been used, and
several types of TM implementations.

2.3 Motivations for Transactional Memory
This section calls out four idioms motivating TM. Many of

the ideas in the section should be easily accepted even out-
side the TM community, given that large lock-based software
artifacts often use atomic operations of various types [23] in
situations where locks would be inconvenient or inefficient.
Unfortunately, there are some inauspicious choices of exam-
ples and categories, for example, the fourth idiom is not a
motivation to use TM, but rather an attempt to remove a
reason for avoiding TM.

The first idiom is to “evolve software to include new syn-
chronized operations”. This should not be controversial to
anyone who has worked on a large lock-based software arti-
fact. However, the example is poorly chosen, as composition
of bank-account transfers is easily accomplished using locks.

To see this, assume that funds are to be tranferred from
account A (protected by lock A) to account B (protected
by lock B). Then one may introduce a new lock X that is
acquired before each acquisition of A and B and released
after each release of A and B, as illustrated in the left half
of Figure 1. Then, to safely transfer from account A to ac-
count B, first acquire the new lock X, invoke the original
withdrawal function (which acquires and releases lock A),
invoke the original deposit function (which acquires and re-
leases lock B), and finally release lock X, as shown on the
right half of the figure. Assuming that lock A and lock B
are leaves of the locking hierarchy, then if the original pro-
gram was free of deadlock, then the new program will be as

cially designated “inevitable transactions” [21] to contain
non-idempotent operations such as I/O, but only one such
inevitable transaction may proceed at at time. Although
there is some possibility that concurrent inevitable transac-
tions might some day appear, for the moment they may be
thought of as global locks in transactional clothing.
2Sun’s implementation of hardware TM excludes many ad-
ditional operations [4, Table 1].
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well. In fact, this change is very similar to that advocated
by Grossman in his Figure 1.

Of course, introducing the new lock X could impact per-
formance, but then again, so could transaction nesting. If
there is a large number of accounts, the new lock X might
severely degrade performance and scalability. However, there
are well-known idioms that hash onto arrays of locks in order
to avoid these issues, and these sorts of idioms are in fact
used in some of the better-performing TM implementations.

There are situations that would better make the intended
point, as any one who has worked with a large concurrent
software artifact with a complex lock hierarchy can attest.
One such situation would be if the original program had
one function acquiring lock A, another acquiring lock B then
lock C, and a third acquiring lock C then lock A, as depicted
in Figure 2. Introducing a lock X around locks A and B
introduces a deadlock cycle. To break this cycle, lock X
must be acquired before lock C in the right-most portion
of the figure. This is trivial to say, but a large complex
program might have a very long and ornate code path from
the acquisition of lock C to the acquisition of lock A, so that
this solution might not be at all apparent.

So lock-based critical sections can be composed, but such
composition can be decidedly non-trivial, though there is a
long tradition of static and dynamic lock-order analysis that
has proven extremely useful in practice.

Interestingly enough, TM has a similar limitation to com-
position due to the typical exclusion of I/O, foreign-function
calls, and thread creation. We therefore cannot compose a
pair of transactions if the second of the pair is preceded by
an I/O, foreign-function call3, or thread creation. Just as
with locking, a large complex program might have very long
and ornate code paths leading to the transactions making it
difficult to determine if such an impediment to composition
exists. Worse yet, an I/O might be very infrequently exe-
cuted, for example, the second transaction might normally

3This class often includes system calls as well.

use data cached in main memory, but very rarely need to ob-
tain some data from secondary storage or even from across
Internet. Finding such impediments might well be as diffi-
cult as locating deadlock cycles, especially in those modern
object-oriented languages where a given method might be
compiled on the fly from an arbitrary string whose contents
might be unknowable at compile time, let alone at design
time. Furthermore, the advent of high-performance non-
volatile phase-change memory may make I/O much more
commonplace than it currently is. Since such memory can
be directly mapped into the address space, detection of I/O
operations may ultimately prove far more difficult than de-
tection of potential deadlocks.

The second idiom is stated to be the mixing of fine-grained
and coarse-grained operations, but the example is a resiz-
able hash table. Now resizable hash tables are difficult
to implement using pure locking, but generalizing this to
mixing fine-grained and coarse-grained operations in general
seems a bridge too far. And in fact there are a number of
real-world counter-examples where fine-grained and coarse-

grained locking are mixed, one example being the Linux
TM

kernel [22]. The fact is that the problem with lock-based re-
sizable hash tables is not the differing granularity, but rather
the overlap in scope between the locks guarding the contents
of the hash table and the lock guarding the hash table it-
self. As such, this example is an example of the first idiom,
encountered when evolving a lock-protected fixed-sized hash
table to a resizable hash table.

The third idiom covers code where the scopes of different
locks are normally disjoint, but can occasionally overlap,
as exemplified by a double-ended queue, in which elements
can be both added and removed from either end4 that nor-
mally contains a large number of elements. This paragraph
claims that a lock-based implementation of this data struc-
ture is difficult due to contention when nearly empty, but
oddly cites a paper that discusses queues rather than de-
queues [16].5 Although the paper is correct in saying that
TM offers a simple solution to this problem, it is accept-
able only in cases where it is acceptable to suffer poor per-
formance when the queue is nearly empty, as the resulting
memory conflicts can severely degrade TM performance. If
performance is important, some other solution will will re-
quired, preferably one that avoids relying so heavily on a
single non-replicated data structure—especially given that
any contention at the ends of the queue results in non-
deterministic ordering in any case. Given this inherent non-
determinism, one has to ask whether a more scalable and
less tightly ordered data structure might be preferable.6

4In the more frequently encountered queue where elements
are added to one end and removed from the other, the well-
known and simple lock-based solution uses dummy elements
to ensure that the queue always contains enough elements
to prevent the lock scopes from overlapping.
5This may explain why this section states that contention is
a problem only when there are fewer than two elements. As
will be seen in Appendix A, the solution that was apparently
considered does have this issue with up to three elements (or
up to two in some variations).
6Of course, if there was only a single thread working on
each end of the double-ended queue, the opportunity for
non-determinism would be reduced to situations where both
threads were attempting to remove the last element, or
where one thread would enqueuing an element to an empty
queue whilst the other thread was attempting to dequeue.



The fourth and final idiom is an “orelse” construct. How-
ever, the major use proposed for “orelse” in the cited paper
is to allow transactions to deal with operations that some-
times block, allowing the transaction to fall back on some
other algorithm or to return a failure indication. Given that
one could simply hold a lock across the blocking operation,
this idiom cannot be said to be a motivation for TM, but
is rather a way to solve a problem inflicted on the hapless
developer by TM, namely the fact that typical TM imple-
mentations do not gracefully handle I/O operations.

Again, anyone who has worked with large lock-based soft-
ware artifacts can attest to the advantages of TM in some
situations. However, many of the examples called out have
well-known lock-based idioms as well. In addition, it is com-
mon practice to combine locking with other synchronization
mechanisms in order to gain the benefits of both types of
mechanisms, a practice that is completely ignored.7

3. THE CORE ANALOGY
In this section, Grossman very skillfully constructs paral-

lel problem statements, solutions, and defect reports. Unfor-
tunately, in some cases this results in “leading the witness”.
To see this, let us interchange the roles of TM and locking
in the TM problem statement:

Concurrent programming is difficult because one
must use synchronization to balance correctness,
i.e., avoiding race conditions, and performance,
i.e., avoiding the loss of parallelism due to conflict-
prone variables or even the ability to continue
due to TM-hostile operations such as I/O, foreign-
function calls,8 or thread creation. In programs
that manually manage transactions, the program-
mer uses subtle whole-program protocols to avoid
errors.9 One of the simpler approaches aggre-
gates related operations into transactions, and
takes care to also enclose other operations on this
same data into transactions. To avoid transac-
tion failure due to TM-hostile operations, it is
sufficient to exclude such TM-hostile operations
from the scope of each of the transactions, refac-
toring the code as necessary to achieve this re-
sult, but in practice this requirement is too bur-
densome. Moving TM-hostile operations outside
of transactions can alleviate this problem, but
may complicate the program and thwart com-
mon debugging techniques.

That said, a lock-based parallel double-ended queue is not
really all that difficult, as is shown in Appendix A.
7Some seem to believe that all parallel programs should
be written using one and only one type of synchronization
mechanism. Perhaps this will one day be true, but given the
current state of the art, designing a large concurrent soft-
ware artifact using but a single synchronization mechanism
seems as foolhardy as designing a large physical artifact us-
ing but a single type of fastener. Nails are wonderful, but
sometimes you should instead use bolts, screws, velcro, clips,
glue, spot-welds, or tie-wraps.
8Perhaps the complication of foreign function calls are what
lead Ni et al. [17] to propose a number of function annota-
tions to their TM API for C++.
9This is especially the case when the program must be refac-
tored to move TM-hostile operations out of transactions.

Unfortunately, concurrency protocols are not mod-
ular: Callers and callees must know what data
the other may access to avoid ending transactions
still needed or beginning transactions that could
involve TM-hostile operations. A small change,
for example, a new subclass of an object that
must acquire data from a web site—may require
wide-scale changes or introduce bugs. In essence,
concurrent programming involves nonlocal prop-
erties: Correctness requires knowing what TM-
hostile operations concurrently executing com-
putations will perform. One must reason about
how TM-hostile operations is performed across
threads to determine when to begin a transac-
tion. If a program change affects when TM-
hostile operations are performed, the programs
synchronization protocol may become wrong or
inefficient.

The form of this problem statement can be applied quite
widely, and so the fact that explicit storage management,
locking, and TM have similar problem statements for their
respective disadvantages should carry little weight, if any at
all.

The problem statement is followed by skillfully constructed
parallel solution statements for GC and TM, but the follow-
ing drastically overstates the case for TM:

TM takes the subtle whole-program protocols suf-
ficient to avoid races and deadlock and moves
them into the language implementation.

While one can reasonably argue that TM is less deadlock-
prone than is locking, TM is just as subject to races as is
locking. Failing to place an operation within a transaction
is just as damaging as failing to hold a lock while performing
an operation. In fact, TM can be argued to be more prone
to races than is locking, given that the typical TM imple-
mentation is incapable of handling TM-hostile operations
within transactions.

Interestingly enough, there do exist language implemen-
tations that successfully handle race conditions and dead-
locks so that the typical programmer need not worry about
them. One of them has been in heavy production use for
more than 20 years, allowing developers to keep large par-
allel machines usefully busy. Its name is “Structured Query
Language” [10], and it has been quite successful in breaking
up developer-specified transactions and executing the pieces
of a given transaction in parallel.10 However, despite the
fact that, like SQL, TM uses transactions, TM does not yet
succeed in moving handling of races into the language imple-
mentation, nor does it succeed in completely moving han-
dling of deadlocks into the language implementations [2].11

The fact that TM does not succeed in moving race/deadlock
handling into the language implementation casts doubt on
his later statement that “the difficulty of implementation
does not increase with the size of the source program”.

10It is quite possible that tools such as Matlab*p, Rapid-
Mind, CodeSourcery, and GEDAE will do the same for ma-
trix algebra and signal processing, while environments such
as Map-Reduce and BOINC might provide similar benefits
for their areas of application.

11Interestingly enough, the possibility of deadlocking trans-
actions is duly noted in Figure 4 of Grossman’s paper.



Next comes skillfully constructed parallel statements of
the remaining problems for GC and TM. Nevertheless, given
that any human artifact will have limitations and flaws, the
fact that GC and TM both have limitations and flaws adds
nothing to the attempt to construct a meaningful analogy
between GC and TM.

This is followed by an attempt to create an analogy be-
tween the number of approaches for GC and TM, claiming
two for each. It is unclear why the number of approaches
would be relevant. However, a third TM approach has re-
cently surfaced in the form of inevitable transactions [21].
This third TM approach updates neither on commit nor on
abort, but instead acquires a global lock and updates as the
transaction executes. Although it is unclear what bearing
the number of approaches would have on this high-level anal-
ogy, if it somehow does matter, the number of approaches
does differ.

After this, there is an attempted apology for the typical
TM implementation’s difficulty with I/O, noting that out-
put and input of pointers can be hazardous in the presence
of a (presumably compacting) GC. Of course, output and
input of pointers can be hazardous even without a GC, as
the object might have been explicitly freed in the meantime.
Furthermore, non-pointer I/O is handled quite well by lan-
guage implementations having a GC, while the typical TM
implementation’s difficulties with I/O are quite independent
of the type of data.12 This portion of the analogy therefore
fails completely.

This is followed by a parallel description of object-granularity
choices made by GC and TM implementations. However,
this description can just as easily be adapted to locking:

For reasons of performance and simplicity, some
uses of locking associate locks with entire ob-
jects, rather than providing separate locks for to
distinct parts of objects. That is, synchroniza-
tion management is done with object-level gran-
ularity. As a result, extra contention can occur,
but parallelism-conscious programmers aware of
object-level granularity can restructure the lock-
ing design to circumvent this approximation be-
cause locking is under programmer control.

However, with locking granularity coarser than
objects (e.g., at cache lines via hashed-locking
schemes), programmers can no longer fully con-
trol how many false conflicts occur. Because the
memory address at which an object is allocated
is uncontrollable, adjacent placement of indepen-
dent objects could lead to lost parallelism.

The constructed parallel description of progress guaran-
tees also applies to locking:

Some implementations of locking do not make
FIFO-ordering guarantees. Providing such guar-
antees can incur substantial extra cost in the ex-
pected case, so FIFO ordering should perhaps

12The typical TM implementation’s difficulty with I/O is per-
haps best illustrated by Rossbach [19]. The initial attempt
to transactionalize the Linux kernel failed, so the project
instead used a construct that attempted to execute a trans-
action, but fell back on locking in case of I/O operations. Of
course, this strategy had the side-effect of reintroducing all
the deadlock concerns that the project was ostensibly trying
to avoid in the first place.

Mechanism Acquire Release

Explicit Memory Allocation allocate free

Garbage Collection allocate

Locking lock unlock

Transactional Memory begin_txn end_txn

Table 1: Memory-Allocation and Concurrency

Analogies

be eschewed unless an application needs it. The
key complication is efficiently tracking the order
of arrival of lock-acquisition requests and delays
incurred when granting the lock to a thread that
cannot immediately run, for example, due to its
instructions having been paged out.

And, finally, the equally skillfully constructed parallel de-
scription of static-analysis improvements also applies to lock-
ing:

Compile-time information can improve the per-
formance of locking. The most common approach
is determining that the data referenced in a given
critical section is not reachable from multiple
threads. This information allows the language
implementation to elide the lock. Other analyses
can also prove useful. For example, static analy-
sis can determine that all of the critical sections
for a given lock may be implemented in terms of
atomic instructions provided by the underlying
hardware.

Therefore, to the extent that these portions of the analogy
carry any weight, it also includes locking. This should not
be a surprise, as the relationship between TM and locking
is in many ways closer than that of either TM or locking to
GC.

To see this, consider Table 1. GC makes an important
change in the way memory is managed, as it relieves the
developer of the need to decide when to free the memory.
Although TM does greatly ease (but not eliminate [2]) dead-
lock concerns, it does not appear to provide the degree of
simplification provided by GC. Of course, this is not to say
that TM is wrong or even useless. As has been stated be-
fore, anyone who has worked on a large lock-based software
artifact can attest to the desirability of alleviating deadlock
concerns. However, much experience with TM will be re-
quired before it will be possible to determine whether or not
TM’s restrictions (for example, on I/O) are a reasonable
price to pay for this alleviation.13

Despite being unconvinced by the analogy, we cannot help
but admire Grossman’s command of the English language.

4. THE ESSENCE OF CONCURRENCY
Much of this section of the paper assumes that the reader

was convinced by his analogy. However, even those who are
unconvinced should look carefully at the justification for the
oft-repeated claim tha TM is more “declarative”14 than is
locking:

13And it would be unwise to assume that other synchroniza-
tion mechanisms will be standing still in the meantime.

14Quotation marks in original.



The essence of shared-memory concurrent pro-
gramming is deciding where critical sections should
begin and end. With atomic blocks, program-
mers do precisely that rather than encode critical
sections via other synchronization mechanisms.
That is, they declare where interleaved compu-
tation from other threads is and is not allowed.

It is quite illuminating to interchange the roles of atomic
blocks and locking in this quote:

The essence of shared-memory concurrent pro-
gramming is deciding where critical sections should
begin and end. With locks, programmers do pre-
cisely that rather than encode critical sections
via other synchronization mechanisms. That is,
they declare where interleaved computation from
other threads is and is not allowed.

And in fact, as illustrated in Table 1, both TM and lock-
ing do require programmers to make exactly that decision.
Locking further allows the programmer to provide additional
information as to which pairs of critical sections may safely
be permitted to proceed concurrently, which has an inter-
esting connection to the digression for types in Section 5.

Of course, it is also possible that that “declarative” was
intended to mean “alleviates most deadlock issues visible to
the programmer”, thereby excluding locking from consid-
eration. However, that choice of definition would include
non-blocking synchronization algorithms, which are by any
reasonable measure far less declarative than locking.

Regardless of the precise intent, it is certainly true that
TM does relieve the programmer of the responsibility for
associating critical sections with specific locks. However,
there are at least two distinct aspects to the manual work
that locking requires of the developer:

1. ensuring that all relevant accesses to shared data occur
under the protection of a lock, in other words, that
all critical-section code occurs between a prior lock
acquisition and a subsequent lock release, and

2. ensuring that the correct lock is acquired and released.

Violations of either or both of these rules can and do re-
sult in bugs in concurrent lock-based programs. If TM is to
be viewed as a declarative solution, it only declarative with
respect to the second of these two rules. TM does nothing
to address the first rule, given that the insertion of transac-
tion begin and end primitives is a manual task of complexity
equivalent to that of inserting lock acquisition and release
primitives. Furthermore, the declarative nature of TM with
respect to the second rule comes at a price, namely TM’s
difficulty with I/O, foreign-function calls, and thread cre-
ation.

5. A BRIEF DIGRESSION FOR TYPES
In this extremely thought-provoking section, Grossman

employs a type system to construct locking from atomic
sections by labelling each atomic section with the name of a
lock. Data protected by a given lock is so labeled, allowing
the type system to detect data races due to data being ac-
cessed outside of the protection of the corresponding lock.
This approach does allow locks to be created at runtime,

which permits use of the powerful data-locking design pat-
tern [1, 9, 12].

Unfortunately, this formulation does not support the com-
mon idiom in which lock acquisition and release are encapsu-
lated in primitives. This ability to build abstractions on each
of lock acquisition and release is extremely valuable and is
heavily used in production-quality systems. That said, this
shortcoming is shared by the atomic-block syntax, but could
be trivially overcome by providing explicit begin_txn and
end_txn statements, though perhaps this might be thought
to be less declarative.

6. UNSUBSTANTIATED CONJECTURES
In this section, Grossman makes three claims:

1. GC did not need hardware support to succeed.

2. GC took decades longer to reach mainstream than its
initial developers expected.

3. Mandatory GC is usually sufficient despite its approx-
imations.

For arguments sake, let’s take these claims as given. The
interesting discussion surrounds the analogous claims im-
plicitly made for TM.

First, will TM require hardware support to succeed? This
is an interesting question, as all mainstream commodity
CPUs have (extremely) limited support for transactions in
the form of atomic compare-and-swap instructions or load-
linked/store-conditional sequences, either of which can carry
out arbitrary transactions, as long as the transactions are
confined to a single word of memory. However, the most
efficient hardware TM implementations typically come with
limitations in the number of variables that may be manip-
ulated in a given transaction. These limitations are usually
defined by hardware constraints such as cache geometry and
victim-buffer size. The TM community seems to be unwill-
ing to live within these restrictions (as doing so would re-
strict TM composability even further than foreign function
calls, I/O, and thread creation currently restrict it), despite
the fact that extremely useful algorithms would be enabled
even in TM systems having very tight constraints [4].

Second, will TM take longer to reach mainstream than its
initial developers expected? This seems quite likely, espe-
cially should TM require hardware support to succeed. If
such hardware support proves unnecessary, then quick adop-
tion of TM might be a device to allow object-oriented envi-
ronments to avoid the pain of refactoring their entire infras-
tructure to allow for parallelism. However, such refactoring
has been taking place over the past several years, so TM will
need to move quickly if it is to grasp this opportunity.

Finally, can limited subsets of the TM vision be success-
ful? This claim may be answered trivially, given that the
atomic instructions provided by mainstream CPU architec-
tures implement an extremely small subset of the TM vi-
sion, but are univerally used—and have been for well over a
decade. Perhaps the major obstacles to timely TM adoption
in mainstream software are in fact the unchecked ambitions
of its most vocal proponents.

7. DISCUSSION



Having carried out a critical analysis of Grossman’s at-
tempted analogy between GC and TM, what do we make of
it?

In the time that I have been worked in parallel processing,
the price of an entry-level parallel processor has decreased
from many multiples of the price of my house to the price of
a low-end household appliance. Parallel programming has
thus gone mainstream, which, though personally extremely
gratifying, has posed some serious problems:

1. Almost all programming environments were designed
with little or no thought to parallel-programming re-
quirements. The advent of low-cost parallel hardware
is now exposing some of the less-fortunate design de-
cisions.

2. Until quite recently, very few of the field’s researchers
or practitioners had significant exposure to parallel
programming, and almost none had the opportunity to
invest the 10,000 hours required to attain mastery.15

3. Up until the late 1990s, almost all large-scale high-
performance production-quality shared parallel pro-
grams were proprietary, and thus not available to those
outside the corresponding corporations.

4. Newcomers to the field of parallel processing have al-
most always asked for the “one true synchronization
primitive”. In reality, parallel programmers require
more than one tool in their toolbox. Thankfully, Gross-
man appears to understand the need for an appropri-
ately provisioned toolbox, although his heart might
well be set on TM.

Against this backdrop, TM can be seen as an attempt
to make all these problems simply go away. As the paper
correctly notes, TM has little or no chance of doing so. It is
an extremely interesting technology that has the potential to
be quite useful, but it is not magic. Nevertheless, TM might
go a long way towards alleviating some of these problems,
particularly in controlled environments such as Java.

The fact remains that current large-scale high-performance
production quality shared-memory parallel software artifacts
use a variety of mechanisms to handle concurrency, rang-
ing from locking to queuing to shared-nothing techniques
to atomic operations to lockless techniques. Again, as the
paper correctly points out, TM is unlikely to displace all
of these mechanisms. This means that it will be necessary
for both researchers and practitioners to study these pre-
existing techniques and their use, if for no other reason than
to fit TM into the mix.

Interestingly enough, many software projects separate con-
currency and data-structure concerns. For example, within
the Linux kernel, the underlying radix-tree data structure
does not handle concurrency [3]. This allows different uses of
radix trees to choose different synchronization mechanisms,
ranging from locking to reader-writer locking to read-copy
update (RCU) [6, 7],16 as demonstrated by Nick Piggin’s
lockless page cache for the Linux Kernel [18]. It is therefore

15This figure is not specific to parallel programming. See
Chapter 2 of the excellent book “Outliers” by Malcolm Glad-
well for discussion of this and much else besides.

16Introductory descriptions of RCU are often a better place
to start [15, 14, 13].

quite possible that some concurrency issues are due to a fail-
ure to separate concurrency and object-orientation concerns
rather than a software-engineering failure of the underlying
concurrency-control mechanisms. That said, such separa-
tion currently appears to be anathema to many of the people
dipping their toes into the field of parallel programming.

Fortunately, the advent of open-source projects such as
the Linux kernel, the MySQL and PostgreSQL databases, as
well as numerous others makes it possible to study concur-
rency “in the wild” in a manner that simply was not feasible
until quite recently. The results of such study will lead to
discoveries that are quite literally beyond our imaginations.
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APPENDIX

A. A PARALLEL LOCK-BASED DOUBLE-
ENDED QUEUE

This section presents a simple lock-based double-ended
queue that permits concurrent left-hand and right-hand op-
erations.

A quick review of the latency properties of computer sys-
tems should quickly convince everyone of the value of parti-
tioning and replication and basic design directions.17

The most straightforward approach would be to have a
left-hand lock for left-hand-end enqueue and dequeue oper-
ations along with a right-hand lock for right-hand-end op-
erations, as shown in Figure 3. The problem with this ap-
proach is of course that the two locks’ domains must overlap
when there are fewer than four elements on the list. This
overlap is due to the fact that removing any given element
affects not only that element, but also its left- and right-
hand neighbors. These domains are indicated by color in
the figure, with blue indicating the domain of the left-hand
lock, red indicating the domain of the right-hand lock, and
purple indicating overlapping domains. Although it is pos-
sible to create an algorithm that works this way, the fact
that it has no fewer than five special cases should raise a
big red flag, especially given that concurrent activity at the
other end of the list can shift the queue from one special
case to another at any time. It is far better to consider
other designs.

17Yes, there are many who claim that any focus on hardware
latencies is outmoded. However, actual measurements on
real hardware show that those of us who wish to use systems
running at more than a few megahertz would do well to
continue focusing on hardware latencies. After all, the value
of the US dollar has been steadily decreasing as well, but
this does not seem to deter many people from maintaining
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One way of forcing non-overlapping lock domains is shown
in Figure 4. Two separate double-ended queues are run
in tandem, each protected by its own lock. This means
that elements much occasionally be shuttled from one of
the double-ended queues to the other, in which case both
locks must be held. A simple lock hierarchy may be used to
avoid deadlock, for example, always acquiring the left-hand
lock before acquiring the right-hand lock. This will be much
simpler than applying two locks to the same double-ended
queue, as we can unconditionally left-enqueue elements to
the left-hand queue and right-enqueue elements to the right-
hand queue. The main complication arises when dequeuing
from an empty queue, in which case it is necessary to:

1. If holding the right-hand lock, release it and acquire
the left-hand lock.

2. Acquire the right-hand lock.

3. Rebalance the elements across the two queues.

4. Remove the required element.

5. Release both locks.

The rebalancing operation might well shuttle a given ele-
ment back and forth between the two queues, wasting time
and possibly requiring workload-dependent heuristics to ob-
tain optimal performance. Although this might well be the

a strong focus on accumulating dollars.
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Figure 5: Hashed Double-Ended Queue

best approach in many cases, we can easily generate a more
deterministic design.

One of the simplest and most effective ways to partition
a data structure is to hash it. It is possible to trivially hash
a double-ended queue by assigning each element a sequence
number based on its position in the list, so that the first el-
ement left-enqueued into an empty queue is numbered zero
and the first element right-enqueued into an empty queue
is numbered one. A series of elements left-enqueued into an
otherwise-idle queue would be assigned decreasing numbers
(-1, -2, -3, ...), while a series of elements right-enqueued into
an otherwise-idle queue would be assigned increasing num-
bers (2, 3, 4, ...). A key point is that it is not necessary to
actually represent a given element’s number, as this number
will be implied by its position in the queue.

Given this approach, we assign one lock to guard the left-
hand index, one to guard the right-hand index, and one
lock for each hash chain. Figure 5 shows the resulting data
structure given four hash chains. Note that the lock domains
do not overlap, and that deadlock is avoided by acquiring the
index locks before the chain locks, and by never acquiring
more than one lock of each type (index or chain) at a time.

Each hash chain is itself a double-ended queue, and in
this example, each holds every fourth element. The upper-
most portion of Figure 6 shows the state after a single ele-
ment (“R1”) has been right-enqueued, with the right-hand
index having been incremented to reference hash chain 2.
The middle portion of this same figure shows the state af-
ter three more elements have been right-enqueued. As you
can see, the indexes are back to their initial states, how-
ever, each hash chain is now non-empty. The lower portion
of this figure shows the state after three additional elements
have been left-enqueued and an additional element has been
right-enqueued.

From the last state shown in Figure 6, a left-dequeue op-
eration would return element “L-2” and left the left-hand
index referencing hash chain 2, which would then contain
only a single element (“R2”). In this state, a left-enqueue
running concurrently with a right-enqueue would result in
lock contention, but the probability of such contention can
be arbitrarily reduced by using a larger hash table.

Figure 7 shows the corresponding C-language data struc-
ture, assuming an existing struct deq that provides a triv-
ially locked double-ended-queue implementation. This data
structure contains the left-land lock on line 2, the left-hand
index on line 3, the right-hand lock on line 4, the right-hand
index on line 5, and, finally, the hashed array of simple lock-
based double-ended queues on line 6. A high-performance
implementation would of course use padding or special align-
ment directives to avoid false sharing.



DEQ 0 DEQ 1 DEQ 2 DEQ 3

Index RIndex L

Enq 3R

DEQ 0 DEQ 1 DEQ 2 DEQ 3

Index RIndex L

Enq 3L1R

L0 L−1

DEQ 0 DEQ 1 DEQ 2 DEQ 3

Index RIndex L

R1

R1 R2 R3R4

R1

R2 R3R4 R5

L−2

Figure 6: Hashed Double-Ended Queue After Inser-

tions

Figure 8 shows the implementation of the enqueue and
dequeue functions.18 Discussion will focus on the left-hand
operations, as the right-hand operations are trivially derived
from them.

Lines 1-13 show pdeq_dequeue_l(), which left-dequeues
and returns an element if possible, returning NULL otherwise.
Line 6 acquires the left-hand spinlock, and line 7 computes

18One could easily create a polymorphic implementation in
any number of languages, but doing so is left as an exercise
for the reader.

1 struct pdeq {
2 spinlock_t llock;
3 int lidx;
4 spinlock_t rlock;
5 int ridx;
6 struct deq bkt[DEQ_N_BKTS];
7 };

Figure 7: Lock-Based Parallel Double-Ended Queue

Data Structure

1 struct element *pdeq_dequeue_l(struct pdeq *d)
2 {
3 struct element *e;
4 int i;
5
6 spin_lock(&d->llock);
7 i = moveright(d->lidx);
8 e = deq_dequeue_l(&d->bkt[i]);
9 if (e != NULL)

10 d->lidx = i;
11 spin_unlock(&d->llock);
12 return e;
13 }
14
15 void pdeq_enqueue_l(struct element *e, struct pdeq *d)
16 {
17 int i;
18
19 spin_lock(&d->llock);
20 i = d->lidx;
21 deq_enqueue_l(e, &d->bkt[i]);
22 d->lidx = moveleft(d->lidx);
23 spin_unlock(&d->llock);
24 }
25
26 struct element *pdeq_dequeue_r(struct pdeq *d)
27 {
28 struct element *e;
29 int i;
30
31 spin_lock(&d->rlock);
32 i = moveleft(d->ridx);
33 e = deq_dequeue_r(&d->bkt[i]);
34 if (e != NULL)
35 d->ridx = i;
36 spin_unlock(&d->rlock);
37 return e;
38 }
39
40 void pdeq_enqueue_r(struct element *e, struct pdeq *d)
41 {
42 int i;
43
44 spin_lock(&d->rlock);
45 i = d->ridx;
46 deq_enqueue_r(e, &d->bkt[i]);
47 d->ridx = moveright(d->lidx);
48 spin_unlock(&d->rlock);
49 }

Figure 8: Lock-Based Parallel Double-Ended Queue

Implementation



the index to be dequeued from. Line 8 dequeues the element,
and, if line 9 finds the result to be non-NULL, line 10 records
the new left-hand index. Either way, line 11 releases the
lock, and, finally, line 12 returns the element if there was
one, or NULL otherwise.

Lines 15-24 shows pdeq_enqueue_l(), which left-enqueues
the specified element. Line 19 acquires the left-hand lock,
and line 20 picks up the left-hand index. Line 21 left-
enqueues the specified element onto the double-ended queue
indexed by the left-hand index. Line 22 updates the left-
hand index, and finally line 23 releases the lock.

As noted earlier, the right-hand operations are completely
analogous to their left-handed counterparts.

Although one can argue that the TM solution is more ele-
gant than this simple lock-based solution, particularly given
that this example plays to TM’s strengths, it is hard to argue
that there is a huge difference in complexity. The moral of
this story is that parallelism must be provided at the design
level, using appropriate partitioning and/or replication.

We follow Grossman’s lead in declining to provide perfor-
mance results, as these would depend heavily on the amount
of processing performed on each element before being en-
queued and after being dequeued. On most systems, the
amount of such processing would need to be quite large
in order to provide good speedups over a sequential algo-
rithm, given the cost of CPU-to-CPU communication, even
on modern multicore systems. Design of successful parallel
systems requires detailed knowledge of system characteris-
tics, just as successful bridge design requires detailed knowl-
edge of the properties of the materials used to construct the
bridge.


