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Abstract

With the advent of multi-core chips and simultaneous multithreading technologies, high degrees of
parallelism will soon become the norm for both small- and large-scale systems. Operating systems
for such highly parallel environments require efficient synchronization. Unfortunately, the ever-
increasing overhead of synchronization instructions on modern CPUs has made such efficiency
difficult to achieve.

This paper evaluates the performance of synchronization strategies on modern CPU archi-
tectures. We show that synchronization instructions can bea thousand times more expensive than
normal instructions and that formerly scalable synchronization strategies now perform very poorly.
We then evaluate several state-of-the-art solutions that combine copy-based update and deferred
reclamation to allow lock-free concurrent reading. These solutions exhibit different update man-
agement and reclamation strategies, each of which performswell, but offers a unique trade-off
between performance, memory consumption, and complexity.We present an experimental eval-
uation of these strategies, focusing primarily on the read-mostly scenarios common in operating-
system kernels, and discuss the impact of potential future changes in CPU architecture.

Keywords: process management, concurrency, multiprocessing, mutual exclusion, synchroniza-
tion.
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1 Introduction
The quest for ever-higher processing throughput has led to increasingly parallel architectures. Cur-
rent hardware trends include “simultaneous multi-threading” on a single processor, as well as mul-
tiple processors on a single “multi-core” chip. When combined with ongoing advances in shared
memory multiprocessor design, these trends will lead to architectures with very high degrees of
parallelism. While these architectures promise to meet theperformance demands of enterprise
applications and data centers, a substantial obstacle to realizing their performance potential is the
limited scalability of today’s operating systems. The current excitement about virtualization as a
means of running several operating system instances simultaneously on a single hardware platform
is, at least in part, a symptom of this problem [6]. Our ultimate interest is solving this problem
of scalability of synchronization for operating-system kernels, particularly for the read-mostly
scenarios that are quite common in kernels.

While some commercial operating systems, such as SGIR© IRIX R©, Sun Solaris, Sequent (now
IBM R©) DYNIX/ptx R©, and IBM AIX R©, have scaled to execute on many tens or even hundreds
of CPUs by using aggressive data partitioning, fine-grain locking, and function shipping, this
scalability has come at the cost of increased complexity anddecreased performance. Systems
based on virtualization face these same problems in the hypervisor and do not completely remove
them from the guest operating system, which must still scalewell if it must run on large scale
virtual machines.

Central to the scalability vs. performance vs. complexity trade-off are the synchronization
strategies used to maintain the consistency of operating system data structures. Synchronization
limits performance and scalability not only due to contention for critical sections, but also due to
the overhead it imposes on processor throughput in contention-free scenarios. This overhead takes
the form of synchronization instruction complexity, and pipeline stalls due to memory and inter-
processor communication latency. These overheads are architecture-dependent, and although they
used to be unimportant, developments in processor architecture have made them progressively
more problematic. The result is that synchronization strategies designed with these overheads in
mind perform and scale dramatically better than those that ignore them. Not surprisingly, synchro-
nization strategies in production operating systems have evolved significantly over recent years in
response to these pressures [7, 37].

Today’s production systems use a bewildering assortment ofsynchronization strategies that
make different trade-offs between performance, scalability, and complexity. Often these trade-
offs are highly dependent on assumptions about processor architecture characteristics, such as the
memory latency, memory consistency semantics, and the availability and relative cost of spe-
cific synchronization instructions. Performance also tends to depend critically on the relative
mix of reads and writes in the workload, with the read-mostlycase being especially important
in operating-system kernels. These read-mostly scenariosinclude: (1) routing tables, (2) the sys-
tem’s hardware configuration, for example, removable USB devices, (3) dynamically loaded ker-
nel modules, (4) security policies such as firewall configuration, access-control lists, and intrusion-
detection monitoring rules, (5) filesystem layout such as the directory hierarchy tracked by Linux’s
directory-entry cache, (6) disk-partition and software-RAID mappings, and (7) software resources
such as System V IPC, open-file tables, and active network ports. In many cases, the corresponding
read-mostly data structures are accessed quite frequently. For example, routing tables must be ac-
cessed on each network packet transmission, firewall configuration and intrustion-detection rules
on every packet reception, and disk-RAID mappings and open-file tables on each disk I/O. Perfor-
mance in these read-mostly scenarios is therefore critically important, and this paper consequently
focuses mainly on performance in read-mostly situations.

Two of the most scalable synchronization strategies adapted for read-mostly use are Hazard
Pointers [42] and Read Copy Update (RCU) [38]. Both of these strategies improve read-side
performance and scalability by forcing updaters to create and modify new versions of objects
instead of updating the old versions in place. The major advantage of this approach is that it
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leads to near-optimal performance in the read path since readers have no need to synchronize
with writers, nor other readers, and hence there is no need for atomic instructions or memory
barriers in the read path. There are two main disadvantages however. The first is that the memory
associated with old versions must be reclaimed. The second is that readers must tolerate the
possibility of reading stale data. Fortunately, there are several known strategies for deferring
memory reclamation and performing it efficiently in batches, and there are many situations in
which readers can tolerate stale data. For example, there are more than 400 uses of RCU-related
primitives in the LinuxR© 2.6.12 kernel. Hence, deferred-reclamation strategies have widespread
practical application.

RCU and Hazard Pointers differ in their strategies for memory reclamation and synchroniza-
tion among updaters. RCU typically uses a lock-based updatestrategy and quiescent-state-based
reclamation, whereas Hazard Pointers are typically used with non-blocking synchronization and
explicit (hazard pointer-based) reclamation. It is worth noting, however, that update strategy and
reclamation strategy are orthogonal choices. We will explore this orthogonality and the perfor-
mance implications of different choices later in this paper.

First, Section 2 presents an overview of synchronization strategies that have been used in
operating systems. Then Section 3 quantifies the instruction-level overhead of synchronization
primitives on modern CPUs, and evaluates the effect it has had on the performance of some of
these strategies. The best performing strategies, based oncopy-based update with concurrent
lock-free reading and deferred reclamation, are examined in more detail in Section 4. Section 5
discusses the impact of future architectural trends, and Section 6 concludes the paper.

2 Background
Early synchronization strategies, based on coarse grainedcode locking, limit scalability due to lock
contention. A variety of strategies have been proposed to reduce lock contention, including queued
locks [1, 57], fine-granularity locking, data locking [4, 12, 13, 27, 33, 51], partitioning [6, 14, 49,
54, 55], data ownership [34], asymmetric reader-writer locking [9, 39], and numerous flavors of
non-blocking synchronization [11, 19, 20, 21, 22, 23, 40, 41, 42, 52, 56]. Fine-granularity locking
reduces contention by splitting large critical sections into multiple small ones. However, as critical
section size reduces, the overhead of synchronization mechanisms becomes progressively more
important. Spinlocks are one way of protecting small critical sections, but they require careful
design to avoid introducing memory contention [34]. Queuedlocks reduce memory contention
by allowing each competing thread to spin on a separate lock location. Even with low-overhead
spinlocks, frequently executed critical sections limit scalability.

2.1 Data Locking
Data locking improves scalability by carefully partitioning data structures and associating distinct
locks with each partition. If data is partitioned such that each partition is accessed by a single CPU,
significant performance gains can be achieved by avoiding the need to shuttle locks among CPU
caches. However, in cases where partitioning is mediated bya virtual machine, care must be taken
to avoid preempting a given operating system while it is holding a lock [53]. Per-CPU reader-writer
locking [2, 26] is an asymmetric approach that achieves a similar effect by assigning a distinct lock
to each CPU and requiring reading code to acquire its own CPUslock, and writing code to acquire
all CPU’s locks. This strategy is particularly effective for read-mostly scenarios, which tend to be
common in operating systems, because it only incurs memory latency and contention for writers.
This technique is used in the Linux 2.4 kernel, under the name“brlock” (“big-reader lock”).

2.2 Non-Blocking Synchronization
In parallel with the evolution of scalable locking strategies, there has been extensive work on
non-blocking synchronization (NBS). NBS strategies achieve synchronization by optimistically
computing new updates and using atomic instructions, such as compare-and-swap (CAS) and
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load-locked/store-conditional (LL/SC), to atomically replace old values with new, updated val-
ues. In the face of conflicts, updates must be retried, and helper mechanisms are required to ensure
progress and maintain adequate performance. These mechanisms usually take the form of com-
plex, application-specific algorithms, and may include strategies such as randomized exponential
back-off [20].

Herlihy et al. define various forms of NBS, including wait-free, lock-free and obstruction-free
synchronization [22]. A synchronization strategy is wait-free if it ensures that every thread will
continue to make progress in the face of arbitrary delays of other threads, lock-free if it ensures
that some thread always makes progress, and obstruction-free if it ensures the progress of any
thread that eventually executes in isolation. The prospectof being free from problems such as
deadlock, thread starvation, scheduling convoys, and priority inversion has lured researchers to
use NBS strategies in operating system kernels, such as Synthesis [46], the Cache Kernel [8],
Exokernel [10], and K42 [34].

The specialized stack and queue implementations of the Synthesis kernel were an early use of
NBS strategies in operating systems [31, 32]. Some of the Synthesis implementations used only
load and store instructions, but depended on sequentially consistent memory, while others required
an atomic CAS or double compare-and-swap (DCAS) instruction. Later, Bershad showed how
CAS could be simulated on architectures that did not supportit directly [5], but with significant
performance penalties due to its reliance on locking.

Greenwald and Cheriton proposed a more systematic strategyfor implementing non-blocking
data structures based on the use of an atomic DCAS instruction [15]. By associating version
numbers with each data structure and using DCAS to atomically compare and update the data
structure and its version number, they were able to detect and roll back from concurrent updates to
complex data structures. Unfortunately, a DCAS instruction is rarely available in the instruction
sets of modern CPUs. Software implementations of multiple compare-and-swap (MCAS) have
been proposed, but are still a topic for research [11], as current implementations are expensive and
perform poorly under high contention.

Herlihy proposed a methodology for creating lock-free and wait-free implementations of con-
current objects using LL/SC [20]. He also proposed a similarapproach based on CAS, but it
resulted in increased complexity and worse performance [20]. While many NBS algorithms have
been developed, experience has shown that building practical NBS algorithms directly from avail-
able primitives is a complex task. For this reason, there is currently much interest in higher-level
abstractions for simplifying the task.

Transactional memory, implemented either in software [10,23, 50], or hardware [16, 24, 30,
48], allows operations to be grouped into transactions which atomically succeed or fail. Fraser [11]
and Herlihy et. al. [23] showed that transactional memory makes non-blocking algorithm design
relatively simple. However, software transactional memory has very high overhead [11], partially
due to the use of deep copies in current designs. Hardware transactions are currently limited in size
by the size of the cache and the write buffer, and require modifications which hardware designers
are reluctant to make on untested features. Whether or not hardware transactional memory will be
ubiquitous in future processors in still unknown.

NBS updates to complex data structures typically involve creating new versions of elements,
updating the new version in place, and then atomically replacing pointers to the old version with
pointers to the new one. Therefore, the problem of how, or more specifically, when, to reclaim
the memory of the old versions must be addressed. The problemis that updates may occur con-
currently with readers traversing the same data structure.In this case, readers can be left holding
references to old versions. If the memory associated with these versions is reclaimed while the
references are still in use, traversing the data structure may direct readers into the free pool, or
elsewhere if the memory has already been reused. To avoid exposing readers to this “hijacking”
danger, additional mechanisms are required.

One approach is to place the burden of checking for updates entirely upon the reader. The
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problem with this approach is the performance impact on the read path. At a minimum, readers
would either have to execute a LL/SC sequence on the pointer to the data, or two memory barriers
to check a version number associated with the data. In the absence of performing these operations
on every read of the data, additional memory management mechanisms are required.

2.3 Type-Stable Memory Management
An alternative approach is to never free memory. However, this is unacceptable for many produc-
tion systems, whose uptime requirements force reuse of memory. A more efficient approach is to
use type-stable memory management (TSM) [15]. TSM ensures that readers can not be hijacked
out of the data structure they are traversing by maintainingseparate memory pools per data struc-
ture type. However, this too has proven to be unacceptable for production systems [42]. A better
approach is to distinguish between removal of an element from a data structure and reclamation
(for example, freeing) of that element, and to delay the reclamation until it is guaranteed that no
reader continues to hold a reference to it. We use the term “deferred reclamation” to describe this
class of memory management strategies, which are discussedin the following section.

2.4 Deferred Reclamation
An obvious technique for detecting whether any readers holdreferences to previously removed
data is to associate reference counts with the data. However, the manipulation of these reference
counts requires synchronization operations in the read path, which has a substantial impact on
performance [42].

Fraser proposed an approach to deferred reclamation in which NBS operations are associated
with epochs [11]. The idea is to delay the reclamation of dataremoved in epochx until all threads
in the system with access to that data are in an epoch later thanx. This behavior is accomplished by
having each thread maintain its own local epoch, and participate in the maintainance of a system-
wide global epoch. On every NBS operation a thread observes the global epoch. If it is not equal
to the thread’s local epoch, the local epoch is advanced to the same value as the global epoch
and the NBS operation proceeds. On the other hand, if the global and local epochsare equal, the
thread increments a local counter; when this counter reaches a predetermined threshold, the thread
attempts to update the global epoch. Each thread maintains a“limbo list” of removed elements
associated with the thread’s local epoch. These elements can be reclaimed once the thread has
observed a global epoch greater than its own local epoch. Threads maintain a local counter of
NBS operations associated with the current epoch and use it to determine when to attempt to
advance the global epoch, which can only be advanced once every thread has observed its current
value.

Epoch-based reclamation is safe, in the sense that it never reclaims memory prematurely, but
it incurs overhead for maintaining a per-thread count of NBSoperations per local epoch and a
global count of the threads that have observed the global epoch. More importantly, on weakly
ordered CPUs,1 readers must incur memory-barrier overhead in order to ensure that the memory
operations in a given critical region are seen by other CPUs as being within that critical region. As
can be seen in Table 2, memory-barrier instructions are quite expensive.

To ensure that the global epoch can be advanced and memory reclaimed, both readers and
writers incur these overheads, since readers must inform writers when they enter and exit a critical
section, and writers must reference this information in order to determine when any removed
elements may be safely reclaimed.

Michael proposed an approach to safe memory reclamation using hazard pointers [42], which
we term “hazard-pointer based reclamation” (HPBR). Whenever a thread obtains a reference to a
shared data object it sets one of its hazard pointers to pointto the object. When the reference is
discarded, the hazard pointer is removed from the list. In order to reclaim an object, the hazard

1All CPUs commonly used in SMP systems, including Intel x86, IBM POWER, Intel IA64, and Sun SPARC, are
weakly ordered.
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pointer lists of all threads in the system must be searched toensure that there are no hazard pointers
for that object. The overhead of this search can be amortizedby reclaiming objects in batches.
In this case, the batch size represents a trade-off between overhead and memory usage, and by
keeping track of the number of removed objects it is possibleto impose a tight bound on memory
usage. Hazard pointers are also a safe memory reclamation strategy, but they too incur overhead in
the read-path, since readers must insert and delete hazard pointers using an algorithm that requires
both atomic instructions and memory barriers on most modernCPUs. There is some ongoing work
that may eliminate at least some of the memory barriers, but this work is in very early stages at
this writing.

2.5 Read-Copy Update
Hazard pointers and epochs can be viewed as explicit mechanisms, manipulated by readers, to in-
dicate when it is safe to reclaim objects. An alternative approach, called read-copy update (RCU),
is used in the VM/XA [18], DYNIX/ptx [38], K42 [12], and Linux[35] operating systems. RCU
inferssafe reclamation times by observing global system state.

RCU imposes the coding convention that threads are prohibited from holding references to
shared data while in “quiescent states”. A simple example ofa quiescent state in a non-preemptive
kernel is “voluntary context switch”. Hence, threads in a non-preemptive kernel observe the con-
vention of not relinquishing the CPU while holding references to RCU-protected data.2 Because
of this convention, if a thread has been observed in a quiescent state after a given object has been
removed from any linked data structures of which it was a member, then this thread can no longer
hold a reference to that object. This same line of reasoning can be applied system-wide, leading
to the following procedure for removing and reclaiming objects:

1. remove the object
2. wait until each thread in the system has subsequently passed through a quiescent state. In the

above example this would amount to waiting for every CPU in the system to pass through a
context switch.

3. reclaim the object

This approach to reclamation is referred to as quiescent-state-based reclamation (QSBR).
As noted above, objects can not be reclaimed until all threads have been observed in a quiescent

state. A time period during which all threads have been observed in a quiescent state is termed a
“grace period”. Hence, quiescent states are thread-local events, whereas grace periods are global
in nature. The relationship between quiescent states and grace periods is shown in Figure 1. Grace
periods may overlap, as do grace periods GP1 and GP2, and any period of time containing a grace
period is itself a grace period, as is GP4.

Thread 0

Thread 1

GP 4

GP 1

GP 2 GP 3

Figure 1: RCU Quiescent States and Grace Periods

Implementations of RCU contain mechanisms for detecting thread-local quiescent states and
for determining when a grace period has elapsed. Grace period detection mechanisms are typically
a barrier computation that takes thread-local quiescent state detection as input. Since reclamation

2Note that this convention is quite similar to the prohibition against blocking while holding a spinlock.
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can be deferred for any time period containing a grace period, objects can be reclaimed in arbitrar-
ily large batches to amortize the overhead of reclamation.

The above example presented voluntary context switch as a quiescent state. RCU implemen-
tations also use other events as quiescent states, including involuntary context switch, idle-loop
execution, return to user mode and thread termination [34],as well as explicit calls to indicate
quiescent states [3].

The discussion of RCU thus far has focused solely on synchronization between readers and
reclaimers. Any algorithm that uses RCU must also use some form of synchronization to coordi-
nate updaters. This mechanism could be locking or NBS or someother form of synchronization,
and in fact is an orthogonal choice to that of how to synchronize readers and reclaimers. The
RCU strategies used in the VM/XA, DYNIX/ptx, K42 and Linux operating systems use locking to
synchronize updaters. The K42 operating system also uses RCU with NBS-based updaters [34].

The performance of the synchronization strategies discussed in this section depends critically
on the costs of synchronization operations. The next section therefore discusses the overhead of
some of these synchronization operations on modern CPU architectures, and the effect of this
overhead on selected synchronization strategies.

3 Synchronization on Modern CPUs
This section discusses the memory consistency semantics and atomic instruction overhead of mod-
ern CPU architectures and evaluates their impact on well-known synchronization strategies. We
show that most synchronization strategies require memory barriers and atomic instructions that
can be over a thousand times more expensive than normal instructions. A simple benchmark
then shows that most well-known synchronization strategies have extremely poor performance
and scalability on today’s CPUs.

3.1 Memory Consistency Semantics
When designing a synchronization strategy, it is tempting to assume an execution environment
with sequential consistency. Unfortunately, few modern CPUs implement sequential consistency.
Instead, each CPU architecture defines its own weaker form ofconsistency, making it necessary
to use special memory barrier, or fence, instructions to impose specific ordering constraints on
memory operations. A memory barrier instruction forces allmemory operations preceding it to be
committed before any following it. Hence, such instructions disrupt the CPU’s pipeline.

Table 1 summarizes the memory ordering characteristics of arange of modern CPU archi-
tectures. It shows that there are significant differences across architectures, and that most allow
extensive reordering of instructions. The CPU names in parentheses correspond to less-favored
modes of operation, for example, some x86 CPUs may be configured to reorder stores, but since
most x86 software does not expect such reordering, these CPUs are rarely so configured. A “Y”
in a given cell indicates that the answer to the column’s question is “yes” for the row’s CPU. For
example, x86 CPUs permit loads to be reordered after subsequent loads and stores, and stores to
be reordered after subsequent loads. However, x86 CPUs never reorder stores, dependent loads,
or atomic instructions.

These weak consistency models impact synchronization strategies in two ways: complexity
and performance. They increase complexity because the correctness of synchronization algo-
rithms, particularly those used in NBS strategies, dependscritically on the correct placement of
memory barrier instructions. This task is difficult and error prone. Their impact on performance
depends on the cost of memory barriers and the number required. The cost of memory barriers
and other atomic instructions is addressed in the next section.

3.2 Instruction-Level Overhead
Table 2 quantifies the instruction-level overhead of a rangeof synchronization instructions on
two widely-used modern CPU architectures, the IntelR© Xeon

TM
and the IBM POWER4. The
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Alpha Y Y Y Y Y Y Y
AMD64 Y Y
IA64 Y Y Y Y Y Y
(PA-RISC) Y Y Y Y
PA-RISC CPUs
POWER Y Y Y Y Y Y
SPARC RMO Y Y Y Y Y Y
(SPARC PSO) Y Y Y
SPARC TSO Y
x86 Y Y Y
(x86 OOStore) Y Y Y Y
zSeries Y

Table 1: Memory-Consistency Models

performance figures for each instruction are normalized to the cost of a regular instruction that hits
in the top-level cache, on each architecture.

Measuring overheads of single instructions on modern super-scalar microprocessors requires
extreme care.3 The approach used to generate the results in Table 2 was to measure a long series
of instructions, but to execute them in a loop. For the first six rows of the table, the loop overhead
was removed by subtracting the overhead of a loop containinga single local non-atomic increment.
Compiler optimizations were disabled to ensure that the code controlling the loop was the same in
both cases.

The measurements shown in the last two rows of the table required a pair of CPUs alternately
writing to a cache line in a loop. In this case, the loop was coded so that the instructions controlling
the loop executed concurrently with the movement of the cache line between the CPUs. In all
cases, the cache-line-movement latency exceeds the overhead of the instructions controlling the
loop by orders of magnitude, so this approach yields accurate results.

The first row measures the overhead of a no-operation instruction, providing the best-case
instruction execution overhead. The overhead figures presented in all of the other rows are nor-
malized with respect to this value. The second row measures an atomic increment instruction.
This is simulated by an LL/SC sequence on POWER, which has no atomic increment. Atomic

3For example, sampling a high-precision time source before and after the instruction will give wildly inaccurate results
due to instruction reordering by the CPU, in fact, negative values may be produced by such methods. Use of serializing
instructions that disable such reordering have overheads exceeding, by orders of magnitude, that of the instruction being
measured. It is possible to repeat the instruction to be measured so that the error sources are amortized down to accept-
able levels, but this approach introduces cache-miss, TLB-miss, and page-fault overheads which again exceed that of the
instruction by orders of magnitude.
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Cost (Instructions)
1.45GHz 3.06GHz

Operation POWER Xeon

Instruction 1.0 1.0
Atomic Increment 183.1 402.3

SMP Write Memory Barrier 328.6 0.0
Read Memory Barrier 328.9 402.3
Write Memory Barrier 400.9 0.0

Local Lock Round Trip 1057.5 1138.8

CAS Cache Transfer and In-
validate

* 247.1 847.1

CAS Blind Cache Transfer * 257.1 993.9

* Varies with system topology, small-system value shown

Table 2: Synchronization Instruction Overhead

increment is used to implement concurrent counters and, in the Linux kernel, locking primitives.
The third row measures an SMP write memory barrier, which acts as a write barrier, but only on
SMP systems. It is implemented as aneieio instruction on POWER, and compiles to nothing
(not even a no-op) on x86.4 SMP write memory barriers are used in RCU algorithms to ensure
that data structures are perceived to have been initializedbefore they are linked into globally visi-
ble data structures. The fourth row measures a read memory barrier, implemented as anlwsync
instruction on POWER and an atomic increment on x86. The fifthrow measures a write memory
barrier, which is async instruction on POWER and again compiles to nothing on x86. Both the
read and write barriers are used in the implementation of locking primitives, and when running
NBS algorithms on machines not featuring sequential consistency.5 A write memory barrier is
distinguished from an SMP write memory barrier in that the former must order writes to memory-
mapped I/O registers as well as to normal memory. This additional constraint means that the
strongersync POWER memory barrier must be used in place of the weakereieio instruction
that is used for the SMP write memory barrier. The sixth row measures the cost of a local lock
using a pair of LL/SC sequences on POWER, along with anisync barrier for acquisition and an
eieio for release. On x86, the local lock uses CAS instructions. Since these instructions act as
memory barriers on x86, no additional memory barriers are required.

The final two rows measure the cost of moving a cache line from one CPU to another. The
first of these two rows reads the value, then uses that value ina subsequent CAS, while the last
row blindly6 uses constant values for the CAS. On some systems there is a significant difference
between these, due to interactions with the cache-coherence protocol [34].

The blind CAS (last row) is sometimes used for simple spinlocks, where the lock variable
should be atomically changed to a constant “held” value (typically 1), but only if this variable
previously contained a constant “not held” value (typically 0). The non-blind CAS (second-to-
last row) is used for almost all NBS operations, where a pointer is updated, but only if it has not
changed from its previous value.

The results show that synchronization instructions are very expensive on modern CPUs. Most
synchronization instructions cost between two and three orders of magnitude more than normal

4However, the SMP write barrier disables any compiler optimizations that would otherwise reorder code across the
barrier. That said, since we disabled optimization, this effect was not visible in our testing.

5Locking primitives and NBS algorithms would normally be able to use the SMP variants of the memory barriers. The
non-SMP variants of the memory barriers tend to be used in device drivers, in which device accesses must remain ordered
even on uniprocessor systems.

6That is, without first reading the variable’s earlier value.
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instructions. The factors that account for these costs include instruction complexity, pipeline stalls,
memory latency, and CPU-to-CPU communication latency. With pipelines becoming deeper and
memory hierarchies taller, these costs have become significantly larger over recent years.

When the cost of entering and leaving a critical section exceeds the cost of executing the
code within the critical section, strategies such as reader-writer locking will not scale even in
extreme read-mostly scenarios, because lock acquisition costs will prevent more than one reader
from executing concurrently. One way to understand the significance of these costs is in terms of
critical section efficiency, or the number of normal instructions required within a critical section
to amortize the cost of entering and leaving the critical section. If critical section efficiency is low,
then performance will be poor even in the absence of lock contention.

3.3 Impact on Synchronization Strategies
This section explores the impact of synchronization instruction overhead on the performance and
scalability of various well-known synchronization strategies. Our ultimate interest is the scalabil-
ity of synchronization strategies for operating system kernels. Therefore, we have constructed a
benchmark typical of that environment. This benchmark consists of a mixed workload of hash-
table searches and updates, with the hash table stored as a dense array of pointers, each of which
references the hash-chain list for the corresponding bucket. The fraction of updates in the work-
load can be varied from zero (read-only) to one (update-only), and the size of the hash-table can
be varied to explore the impact of caching effects on the results.

Figures 2 and 3 show the performance of various synchronization strategies, evaluated using
the hash-table benchmark, on an 8-CPU 1.45 GHz POWER machine. The overhead of synchro-
nization instructions on this CPU architecture is fairly typical of today’s CPUs (see Section 3.2).
We evaluated five of the synchronization strategies described in Section 2: “globalrw” is global
reader-writer locking; “brlock” is per-CPU reader-writerlocking; “spinbkt” is per-bucket lock-
ing; “HPBR” (hazard-pointer based memory reclamation) is non-blocking synchronization with
hazard pointers; and “RCU” is read-copy-update. “Ideal” represents the hypothetical optimal per-
formance in which hash-table accesses are performed without synchronization.
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Figure 2: Scalability of Synchronization Strategies

Figure 2 shows the scalability of the strategies using a large hash-table and an update fraction
of zero. The hash-table size was chosen to significantly exceed the cache size of the machine.
Hence searches incur memory latency. We obtained similar, although more pronounced, results
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Figure 3: Performance of Synchronization Strategies at Different Update Fractions (8 CPUs)

with hash-tables sized to fit entirely within first-level cache. The update fraction of zero was
chosen to model extreme read-mostly scenarios, which are common in operating system kernels.
The relative performance of the strategies across the full range of update fractions is shown in
Figure 3.

Figure 2 shows, as expected, that globalrw scales negatively. This is because the overhead
of lock acquisition exceeds the work in the critical section, and hence prevents readers from ever
executing concurrently. Although brlock fares better, it still only achieves around a third of the
ideal performance. Again, this is due to the overhead of lockacquisition in the read path. A per-
bucket spinlock fares slightly better than does brlock, dueto the poorer spatial cache locality of
brlock.7 The strategies based on concurrent reading and deferred reclamation (RCU and HPBR)
fare much better, with RCU achieving close to the ideal performance. This result is not particularly
surprising given that both strategies optimize the read path and these results were gathered on a
read-only workload.

Figure 3 shows the effect of varying the update fraction in the workload. This experiment was
run on 8 CPUs using a large hash table, running at most one thread per CPU. The figure shows
that the synchronization strategies based on concurrent reading and deferred reclamation (RCU
and HPBR) perform competitively with the others even when the workload is update-dominated.
In light of these results, we focus our attention in the remainder of this paper on these strategies.

4 Evaluation of Deferred-Reclamation-Based Synchronization Strategies
The RCU and HPBR strategies evaluated in the previous section were based on implementations
already described in the literature. The RCU strategy used lock-based update and quiescent-state-
based memory reclamation. This approach is used extensively in the Linux kernel [34]. The HPBR
strategy used NBS update and hazard-pointer-based memory reclamation, following the imple-
mentation presented by Michael [42]. As noted earlier, however, update strategy and reclamation
strategy are orthogonal choices. Hence, in this section we introduce two additional synchroniza-
tion strategies. One uses an NBS update strategy and quiescent-state-based reclamation. We refer
to this strategy as RCU-NBS, in contrast to the lock-based RCU strategy, which we refer to as
RCU-L. RCU-NBS is similar to the use of RCU for lock-free hashtables in the K42 kernel [34].
The other new strategy uses hazard-pointer-based reclamation with a lock-based update strategy.

7Note that the performance of brlock increases sharply compared to that of per-bucket spinlock in cases where the hash
tables are sized to fit entirely in first-level cache.
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We refer to this strategy as HPBR-L, in contrast to the NBS-based HPBR strategy which we refer
to as HPBR-NBS. These four strategies allow us to explore theperformance implications of update
strategy and reclamation strategy independently.

However, it is important to note that our benchmarks used a static hazard-pointer allocation
strategy. It is not clear that a static number of hazard pointers will suffice in the presence of inter-
rupts (or signal handlers), recursively defined data structures, nested data structures, and callback-
based programming techniques. Each of these considerations might necessitate an arbitrarily large
number of hazard pointers, forcing dynamic allocation of hazard pointers and attendant increases
in code complexity and degradation of read-side performance.

The following subsections compare the performance, scalability, and memory usage of these
strategies under various workloads. All experiments use the hash-table benchmark described in
Section 3.3 and were run on an 8-CPU 1.45GHz POWER4 system. Since an obvious cost of
deferred reclamation-based strategies is memory overhead, we configured all of the experiments
in Sections 4.1 and 4.2 to incur the same worst-case memory consumption. This was achieved in
the HPBR-based approaches by limiting the per-thread reclamation list size, and in the RCU-based
approaches by limiting the number of operations per quiescent state for each CPU. The impact of
different memory constraints and the memory usage characteristics of each strategy in extreme
cases are then discussed in Section 4.3. Next, Section 4.4 presents system-level performance
results. Finally, Section 4.5 presents a qualitative comparison of HPBR and RCU.

4.1 Impact of Memory Latency
Given the high overhead of synchronization instructions onmodern CPUs, and the fact that this
overhead comes in part from the large disparity between cache and memory latency, it is natural to
expect the performance characteristics of synchronization strategies to differ between workloads
that always hit in first-level cache and those that go to memory. For example, one would expect
synchronization instruction overhead to have more impact on workloads that always hit in cache.
This section explores the impact of memory latency on the performance and scalability of the four
strategies, by using two different workloads: one with a small hash-table, sized to fit entirely in
first-level cache, and another with a hash-table that is muchlarger than the cache. The results for
the small and large hash-tables are presented in Figures 4 and 5, respectively. For both experi-
ments, an update fraction of zero was used to model extreme read-mostly scenarios. The impact
of update fraction on the relative performance of the strategies is discussed in the next section.
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Figure 4: RCU and HPBR Scalability When Working Set Fits in Cache
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Figure 5: RCU and HPBR Scalability When Working Set Does Not Fit in Cache

The two graphs have been normalized to better show scalability; however, the absolute ideal
performance for searching a small hash table is a factor of 2.3 times better than that for the large
hash table. This difference in performance is due to the increased cache-miss rate for the large
hash table over that of the small hash table. Note that this increased cache-miss rate affects the
ideal performance as well as that of each synchronization mechanism, so that differences between
these mechanisms are muted in the large-hash-table case.

In the small-table case, RCU-L has the best performance, followed by HPBR-NBS, RCU-NBS,
and HPBR-L, in that order. In the large-table case, RCU-L again has the best performance, fol-
lowed by HPBR-NBS, with RCU-NBS and HPBR-L having very nearly the same performance. In
both cases, HPBR-L and HPBR-NBS are slowed by the memory barriers needed to manage read-
side hazard-pointer manipulations on this weak-memory-consistency machine, while RCU-NBS
and HPBR-NBS are slowed by the read-side checks needed to “help” updates. As with many NBS
algorithms, such read-side helping is required to handle races between concurrent updates that can
leave elements partially removed from the list. The improved relative performance of HPBR-NBS
in the large-table case is due to the CPU’s ability to overlapthe hazard-pointer-induced memory-
barrier overhead with cache-miss latencies. However, the performance differences between the
RCU-NBS, HPBR-L, and HPBR-NBS approaches is small enough tobe sensitive to minor varia-
tions in both the system hardware and the compiler.

4.2 Impact of Update Fraction
Since the four strategies differ in the way they distribute overhead between the read and update
path, it is interesting to evaluate their relative performance at different update fractions and to
identify the break-even points. Figure 6 presents the performance of the four strategies over the
full range of update fractions from zero (read-only) to one (update-only). The experiment was run
on an 8 CPU machine using the large hash table. Figure 7 presents the same experiment run on a
2 CPU machine to determine the impact of varying the number ofCPUs.

Figure 6 shows that HPBR-NBS performs better than the other strategies at all update fractions
above 0.1, and that RCU-NBS is the best-performing strategyat all update fractions below this (at
least those that are visible on this graph). Note however, that in the read-only cases shown in
Figures 4 and 5, RCU-L was the best performer. This result begs the question of what happens
at the read-mostly end of the spectrum, and where the break-even point is among the various
strategies. In order to answer this question, Figure 8 presents a zoomed in view of the relative
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Figure 6: Performance of Deferred-Reclamation-Based Strategies at Different Update Fractions
on 8 CPUs

performance of the four strategies between update fractions of 0 and 0.02. Note that while RCU-
L has the worst performance at all update fractions above 0.001, it gains a significant advantage
as the update fraction decreases to zero.8 This is partially due to the fact that RCU-L’s memory
reclamation has nothing to do given a read-only workload, and partially due to the fact that we
have chosen a simple memory-reclamation algorithm that wastuned on a two-CPU system. We do
not fully understand the slight increase in performance of the RCU-NBS, HPBR-NBS, and HPBR-
L algorithms with increasing values of update fraction in the extreme read-mostly regime. This
effect is most pronounced for RCU-NBS, and quite small for HPBR-L. We believe that this effect
is due to the ability of the super-scalar CPUs to overlap the update-side cache misses with read-
side operations. This overlapping would be expected to be most pronounced for RCU-NBS, since
there are no read-side memory barriers and only one update-side memory barrier. RCU-L and
HPBR-L would be expected to show the least effect, since the update-side locking and memory
barriers incur the greatest increases in overhead with increasing update fraction, and since the pair
of update-side memory barriers greatly limit the attainable overlap. Needless to say, this sort of
effect is quite machine- and compiler-dependent.

For update-intensive workloads, the relative performancedepends on the number of CPUs,
with the RCU techniques enjoying a 2%-to-13% advantage overthe corresponding HPBR tech-
nique at two CPUs, but with the HPBR techniques enjoying a 25%advantage over the correspond-
ing RCU technique at eight CPUs. It is not yet clear whether RCU’s scaling can be improved to
match that of HPBR in update-intensive workloads, or whether HPBR has an inherent advantage
in this regime. The use of alternative implementations in Linux for 512-CPU SMP systems gives
reason to believe that RCU’s scalability can be improved over that of this implementation.

4.3 Impact of Memory Constraints
Figure 9 shows the impact of varying the amount of extra memory provided to RCU-L and HPBR-
NBS.9 Note that the y-axis is linear and the x-axis is logscale. Thepairs of traces, from bottom to
top, correspond to 1, 2, 3, 4, 6, and 8 CPU configurations, respectively. Each run was conducted

8However, there are numerous data structures in production operating systems with update fractions below10
−10 , for

example, data structures that track software and hardware configuration, including routing tables [38]. In routing tables,
every packet transmission does a search, whereas updates are carried out only by rare routing-table changes.

9The memory consumed by RCU-NBS and HPBR-L is quite similar tothat of RCU-L and HPBR-NBS, respectively.
For clarity, these additional traces were omitted.
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Figure 7: Performance of Deferred-Reclamation-Based Strategies at Different Update Fractions
on 2 CPUs

at an update fraction of 0.2, so that there was on average two updates every per ten operations. Of
each pair, the shorter curve corresponds to HPBR-NBS and thelonger to RCU-L. Both algorithms
are quite insensitive to memory constraints over a range of from one to three orders of magnitude.
Even outside of this “flat range”, the sensitivity of the algorithms is small compared to the effect
of cache misses or memory barriers.

One benefit that hazard-pointer-based designs derive from explicitly tracking readers’ refer-
ences is that data items can be actively reclaimed, for example, under low-memory conditions. In
contrast, RCU-based designs are less able to actively reclaim memory, since the only way to do so
is to cause each active thread to execute a quiescent state, which may not be possible.

4.4 System-Level Impact
Measuring the system-level performance impact of deferredreclamation-based synchronization
strategies requires very extensive kernel modifications. Furthermore, the complexity of the ker-
nel environment makes it extremely difficult to construct meaningful side-by-side comparisons,
at this level, of the various approaches presented earlier.In view of these obstacles, this section
focusses on one specific strategy, RCU-L, to illustrate the system-level performance impact of
deferred reclamation-based synchronization. Specifically, we analyse the use of RCU-L in the
implementation of the System-V IPC subsystem in the Linux kernel, and we also report on Mor-
ris’s and Kohei’s work applying RCU to the Security-Enhanced Linux (SELinux) access vector
cache (AVC). In both cases we show system- and application-level performance implications of
the approach. Further system-level examples are discussedin detail in [36].

4.4.1 System-V IPC
The System-V IPC subsystem implements System V semaphores,message queues and shared
memory. Applications access these resources using an integer ID, and the Linux kernel uses an
array to map from this ID to in-kernel data structures that represent the corresponding resource.
The array is expandable, and prior to the conversion to use RCU-L, was protected by a spinlock.
The array is frequently accessed read-only when System-V IPC objects are used, and infrequently
accessed for writing when objects are created or deleted or the array is resized. Because each
element of the array is a single aligned pointer, object creation and deletion events may be done in
place, hence the array need only be copied for expansions.
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Figure 8: Relative Performance of Deferred-Reclamation-Based Strategies in Read-Mostly Sce-
narios (8 CPUs)

Kernel Run 1 Run 2 Avg
2.5.42-mm2 515.1 515.4 515.3
2.5.42-mm2+ipc-rcu 46.7 46.7 46.7

Table 3: semopbench Application-Level Results (seconds)

Two experiments were used to compare the performance of the Linux 2.5.42-mm2 kernel,
with and without RCU-L. The first experiment used a System-V semaphore user-level benchmark
on an 8-CPU 700MHz Intel PIII system. In this benchmark, multiple user-level processes each
repeatedly acquire and release different semaphores in parallel, with the benchmark metric being
the length of time for each process to complete a fixed number of such operations. The second
experiment used the DBT1 [45] database-webserver benchmark on an Intel dual-CPU 900MHz
PIII with 256MB of memory. The results of the first experimentare shown in Table 3, and illustrate
an order-of-magnitude increase in performance for this user-level benchmark. The raw results for
the second experiment are presented in Figure 10, with a summary presented in Table 4. The results
show that the RCU-based kernel performs over 5% better than the stock kernel for this workload.
The erratic results for the stock kernel are not unusual for workloads with lock contention.

4.4.2 SELinux AVC
The SELinux AVC caches complex permissions checks, so that frequently checked security poli-
cies need not be interpreted on a per-access basis.10 Because security policies are changed quite
infrequently, the AVC is an intensely read-only data structure that is accessed very frequently.

10See Morris’s writeup [43] for more details on AVC and its performance.

Kernel Average Standard
Deviation

2.5.42-mm2 85.0 7.5
2.5.42-mm2+ipc-rcu 89.8 1.0

Table 4: DBT1 Database Benchmark Results (TPS)
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Bandwidth (MB/s)
Kernel SELINUX=0 SELINUX=1
2.6.9-1.648EL 6159.987 5872.529
2.6.9-1.689avcrcu.root 8829.647 8817.117

Table 5: STREAM Benchmark Results (MB/s)

The initial AVC implementation was protected by a single global lock, which resulted in severe
performance degradation and poor scalability.

When attempts to improve AVC performance and scalability using standard techniques such as
reader-writer locks or per-CPU partitioning proved to be unsatisfactory, Morris and Kohei turned
to RCU. AVC accesses are protected by RCU, while AVC updates are still protected by a global
lock.

Kohei used the STREAM and dbench benchmarks to compare RCU performance to that of
the original code. The STREAM benchmark was run on a 4-node 16-CPU NUMA system, and
use of RCU improved overall performance as well as greatly reducing the performance penalty
incurred by SELinux access validation, as shown in Table 5. In this table, the first row shows the
performance of an SELinux kernel that implements AVC with a global lock, first with SELinux
functionality disabled, and second with it enabled. The second row shows the corresponding
data for an SELinux kernel that uses RCU to protect AVC. In allcases, use of RCU increases
performance and decreases the performance penalty incurred by use of AVC.

The dbench benchmark was run on a 32-CPU IA64 system with a 2.6.9 Linux kernel, the
results of which are shown in Table 6. Each row shows the performance for a given number of
CPUs for a kernel with SELinux disabled (“Disabled”), with globally locked SELinux enabled
(“Enabled”), and with RCU-based SELinux enabled (“Enabled+RCU”). There is a significant
penalty for access validation, as can be seen by comparing the “Disabled” and the “Enabled+RCU”
columns, but the use of RCU results in linear scaling, in contrast to the globally locked results in
the “Enabled” column.

The overhead of access validation is more noticeable in dbench than in STREAM due to the
greater I/O intensity of dbench, however, on larger numbersof CPUs, RCU provides multiple
orders of magnitude increase in performance over global locking.
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Figure 10: DBT1 Database Benchmark Raw Results

Bandwidth (MB/s)
CPUs Disabled Enabled Enabled+RCU

1 773.6 535.8 542.5
2 1611.4 655.8 1042.9
4 3160.5 241.8 2301.6
8 6301.0 127.7 4518.0

16 12605.0 62.9 8963.5
32 24296.4 30.2 18033.6

Table 6: Linux 2.6.9 Kernel dbench Benchmark Results (MB/s)
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4.4.3 System-Level Impact Summary
In both cases, the results show that deferred destruction-based synchronization strategies can have
a significant impact on performance at the system-call and application level. In the System-V
IPC example, introduction of RCU resulted in an order-of-magnitude performance increase at the
system-call level and more than a 5% increase in throughput on a transaction-processing database
benchmark. In the SELinux AVC example, introduction of RCU resulted in almost three orders of
magnitude increase in performance on the dbench benchmark on a 32-CPU system.

4.5 Qualitative Evaluation
This section discusses the less easily quantifiable characteristics of the update strategy, the recla-
mation strategy, and the consequent synchronization overhead in read-side critical sections.

4.5.1 Update Strategy
A number of well-known problems are commonly associated with locking, including deadlock,
lock contention, convoys, blocking due to page faults, blocking due to preemption, lockup due
to thread failure, and the high overhead of synchronizationinstructions. While these problems
have not been entirely solved, many have partial solutions that are heavily used in production
systems. For example, good engineering practices and toolshave significantly reduced the likeli-
hood of deadlock [4, 12, 25, 33]. The synchronization strategies described earlier, in Section 2,
reduce lock contention. Convoys and blocking due to preemption can be avoided through tighter
integration of scheduling and locking [28], and blocking due to page faults can be addressed by
over-provisioning memory, which is particularly attractive given the ever-increasing size and de-
clining cost of memory. In production systems, thread failure typically results in system or applica-
tion failure, largely because most failure mechanisms willinduce secondary failures, for example,
due to memory corruption induced during the failure. Threaddelays are typically addressed us-
ing mechanisms similar to scheduler-conscious synchronization [28] to address preemption and
by overprovisioning memory to reduce the incidence of page faults. The high overhead of syn-
chronization instructions remains a problem, but only for update-intensive scenarios, since the
synchronization strategies discussed in this paper removesuch instructions from the read path.

NBS can reduce the cost of synchronization instructions in update-intensive scenarios. In fact,
the results presented earlier showed that NBS performs up to30% better than locking for update-
intensive workloads. However, these results should be applied with caution, since they were gath-
ered using a benchmark for which an efficient NBS implementation exists. NBS also solves the
problems of deadlock, contention, blocking due to page faults, blocking due to preemption, and
lockup due to thread failures, but it does so at the expense ofincreased code complexity, more diffi-
cult integration with legacy code, and increased memory contention. Recent work on obstruction-
free synchronization sidesteps livelock and memory contention issues in the same manner that
locking practitioners have done, namely by requiring that the engineering design maintain low
contention. There has also been recent work aimed at reducing NBS complexity [11, 21], but it
remains to be seen how effective these approaches are. Integration with legacy code is still an
open issue. NBS algorithms have been successfully integrated with legacy code, but there has
been little work on incrementally migrating a large body of code from locking to NBS. In contrast,
lock-based RCU strategies have been incrementally integrated into at least four major operating
systems, three of which have seen extensive production use.

4.5.2 Reclamation Strategy
Reclamation schemes based on hazard pointers explicitly flag the specific data items that are being
referenced by readers. Therefore, they can actively reclaim all memory that is not so referenced.
In contrast, reclamation strategies based on quiescent states do not maintain explicit lists of ref-
erenced data items, and hence must make more conservative assumptions about which data items
might be referenced. These conservative assumptions can delay the reclamation of large amounts
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of memory. Therefore, hazard-pointer-based approaches have smaller memory footprints than
quiescent-state-based approaches.

The reclamation strategies differ not only in their abilityto eagerly and accurately reclaim
memory, but also in their internal use of memory. For example, in hazard-pointer-based ap-
proaches, memory must be allocated for the hazard pointers themselves. The hash-table bench-
mark used in the experiments presented earlier requires only two hazard pointers per thread, and
these can be allocated statically. However, static allocation of hazard pointers is not practical for
more complex applications, which may feature nested data structures (e.g., lists of lists, trees, or
graphs) and recursive searches, either of which can requirearbitrarily large numbers of hazard
pointers. The API proposed by Herlihy [21] permits dynamic allocation of hazard pointers, but
such dynamic allocation requires a mechanism for freeing, which imposes an additional burden
on programmers in environments that lack a garbage collector.11 In addition, dynamic allocation
raises the question of how to handle allocation failure. Onecould simply block until memory be-
comes available, which limits performance and robustness,or one could return a failure indication.
Failure indications place yet another burden on the programmer, who must either preallocate all
the hazard pointers that might be needed for a given operation, or must carefully code unwind
paths that recover from allocation failure. In contrast, since quiescent-state-based approaches do
not explicitly track referenced memory blocks, they do not need to do any read-side memory allo-
cation.

Another complication with hazard-pointer-based reclamation schemes is their handling of data
structures with variable length aggregates of other data structures. These cases present a problem
because they allow different references to different portions of the same data item. Simple com-
parisons of hazard pointers do not detect these conflicts andcan result in premature reclamation.
To solve these problems, hazard-pointer-based schemes need a way to map from a reference to a
portion of a data item to a canonical reference for that data item. This requirement places con-
straints on the implementation of the environment’s memoryallocators, and can be expected to
increase cost and complexity. Such reference mapping is notnecessary in quiescent-state-based
approaches that do not explicitly track referenced memory blocks.

The main price paid by quiescent-state-based schemes for these advantages, apart from the
memory overhead, is the need for environmental support for maintaining quiescent state infor-
mation. The degree to which these approaches can be successful depends on the availability of
quiescent states in the environment, their type, and the frequency with which they occur. These
factors are environment-specific.

In principle, hazard-pointer-based approaches should offer tighter control over latency in real-
time systems, since the use of hazard pointers enables preemption of read-side critical sections
without affecting reclamation of data items that are not specifically referenced by the preempted
thread. In contrast, most quiescent-state-based approaches disable preemption across read-side
critical sections, with the notable exception of the K42 operating system and recent realtime-
friendly RCU implementations for the Linux kernel [36]. K42permits preemption by exclud-
ing involuntary context switch from its set of quiescent states. Since the choice of quiescent
states affects both overhead and memory footprint, there are a range of potential design points for
quiescent-state-based approaches that trade real-time performance, memory overhead, and scala-
bility in different ways. Again, the available design choices are environment-specific.

4.5.3 Read-Side Machine Operations
Table 7 gives a qualitative comparison of the read-side overhead of locking, “classic NBS” (NBS
prior to HPBR), HPBR, and RCU. RCU has two rows, the first for preemptive environments,
in which RCU read-side critical sections must suppress preemption, and the second for non-
preemptive environments, where such suppression is unnecessary. Cells marked “Y” indicate

11Note that environmentswith garbage collectors already have built-in reclamation, andtherefore have no need for either
RCU or HPBR.
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that the corresponding operation is required, while cells marked with “(y)” require a lightweight
version of the corresponding operation.

Read-Side Operations

L
oc

ks

C
ac

he
M

is
se

s

A
to

m
ic

In
st

ru
ct

io
ns

M
em

or
y

B
ar

ri
er

s

S
im

pl
e

In
st

ru
ct

io
ns

Locking Y Y Y Y Y
Classic NBS Y Y Y Y
HPBR (y) Y Y Y
RCU (preemptive) Y
RCU (non-preemptive)

Table 7: Read-Side Operation

HPBR represents a substantial advance over classic NBS because the cache misses are due
to hazard-pointer writes that are accessed primarily by thehazard pointer’s owner. RCU takes
this further, since in a preemptive environment, it manipulates a strictly local counter to suppress
preemption, while the a non-preemptive environment found in some operating-system kernels,
readers need execute no read-side instructions at all.

We term synchronization algorithms that incur no overhead from locks, communications cache
misses, atomic instructions, and memory barriers asstreamlined. From the table, RCU’s read-side
primitives are streamlined.

5 Impact of Future Trends
The synchronization developments discussed in this paper occurred in response to developments
in CPU architecture. The evolution of CPU architecture is ongoing, and unpredictable. In this
section we speculate on six possible future trends in CPU architecture and consider the impact
they would have on the synchronization techniques discussed earlier.

In considering these trends, it is important to keep system architecture in mind, as depicted in
Figure 11. Each hardware thread has its own set of registers,but may share most other hardware
resources with the other thread(s) in the core. Each core is an electrically separate CPU, usually
having its own cache hierarchy, though it may share a larger cache with the other cores on its die.
Each die is a single piece of silicon, perhaps attached directly to a motherboard, or perhaps instead
attached to a multi-chip module (MCM) along with other dies.MCMs can often be interconnected
to form a larger system.

The figure shows two threads per core, two cores per die, and soon, however, the numbers of
units at each level of the hierarchy can vary, and in smaller systems, some levels of the hierarchy
may be omitted. For example, desktop-class systems will notnormally feature MCMs, but will
rather attach each die directly to the motherboard. However, recent trends have been increasing
the numbers of units throughout the hierarchy, witness the advent of multithreaded (AKA “hyper-
threaded” or “simultaneous multithreaded”) CPUs, as well as multi-core dies.

The key point to keep in mind is that the greater the electrical distance, the greater the latency.
For example, a pair of hardware threads in the same core couldexchange cache lines with much
lower latency than could threads in different MCMs.

Trend 1: Single-threaded uniprocessors
If the combination of Moore’s-Law increases in CPU clock rate and continued progress in
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Figure 11: Threads, Cores, Dies, MCMs, and Systems

horizontally scaled computing render shared-memory multiprocessor systems irrelevant, synchro-
nization instructions on the resulting uniprocessor systems will not suffer the cache-thrashing,
contention, and memory barrier overheads of today’s systems. In this scenario, synchronization
techniques that use deferred reclamation to avoid these overheads in the read-path will become
less relevant, and their use may only continue for niche applications such as interacting with non-
maskable interrupts. However, recent trends indicate thatthis scenario is quite unlikely.

Trend 2: Multi-threaded uniprocessors
Current hardware multithreading12 trends may lead to a predominance of uniprocessor systems

that are aggressively multithreaded with hardware-supported threads sharing all levels of the cache
hierarchy. In this scenario, CPU-to-CPU communication latency is eliminated and the perfor-
mance penalty for synchronization instructions is reduced. However, multithreaded CPUs would
still incur overhead due to contention and pipeline stalls caused by memory barriers. Furthermore,
if all hardware threads share all levels of cache, the cache interference among threads may de-
grade performance. On the other hand, partitioning some levels of cache on a per-hardware-thread
basis re-introduces memory latency for cachelines that arepassed from one thread to another. In
both cases, synchronization approaches that use deferred reclamation to avoid both contention and
pipeline stalls are likely to be useful. It remains to be seenwhat performance impact shared or
partitioned caches will have on the grace-period management algorithms used by such approaches.

Trend 3: Single-chip multiprocessors
The performance advantages of single-chip multiprocessors (more recently called dual- or

multi-core dies) over super-scalar single CPUs with the same chip area were demonstrated in the
mid-1990s [44], and have recently appeared in commercial CPU offerings and announcements.
These performance advantages are due to the limited amount of instruction-level parallelism in
typical software.

However, use of multiple cores is not a panacea, since great care must be taken to provide
sufficient cache as well as memory and I/O bandwidth, otherwise, the multiple CPUs will simply

12Hardware multithreading is often called “”hyperthreading” or “simultaneous multithreading” (SMT) in commercial
products.
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stall waiting for data to flow on- and off-chip. Nevertheless, latencies among CPUs on the same
chip are quite good compared to inter-chip latencies. It remains to be seen what performance
characteristics are offered by future single-chip multiprocessors, and what the consequent effect
on the performance of memory-reclamation algorithms will be.

In this scenario, synchronization instructions remain expensive due to pipeline stalls. Although
the memory-latency cost of CPU-to-CPU communication will be relatively small among CPUs on
the same chip, it will still be quite expensive compared to normal instruction execution overhead.

Trend 4: Growing memory latency
If memory latency continues to grow relative to instructionexecution overhead, this will in-

crease the benefit of avoiding synchronization instructions, but will also increase the cost of man-
aging deferred-reclamation-based synchronization mechanisms. On the other hand, the deferred-
reclamation benefit of avoiding synchronization instructions will exceed the increased costs of
memory latency, provided that the deferred-reclamation mechanisms amortize their cost over a
sufficiently large number of accesses.

However, it is not clear that this decades-long trend will continue. To see this, consider that
1GHz CPUs first appeared in about 2000. If CPU clock frequencies had continued the earlier trend
of doubling every 18 months, they would have approached 10GHz in 2005. Instead, as of 2005,
they have yet to exceed 5GHz in absence of heroic measures, such as liquid-nitrogen cooling.
Furthermore, a number of technology trends, such as increased leakage current and decreased tol-
erance for excessive power dissipation, seem likely to limit future clock-frequency increases. This
slowing rate of clock-frequency increase seems likely to end the historic trend of ever-increasing
memory latencies, leading to Trend 5.

Trend 5: More of the same
Finally, if increases in interconnect performance match Moore’s-Law-driven increases in core

CPU performance, memory latencies may remain roughly wherethey are today. In this scenario,
overhead due to pipeline stalls, memory latency, and contention remains significant, hence syn-
chronization approaches that use deferred reclamation will retain the high level of applicability
they enjoy today. This scenario seems quite probable, giventhat CPU-clock frequencies seem to
have levelled off in the early 2000s.

Trend 6: Transactional memory
Transactional memory has received much attention by ongoing research in hardware support

for speculative execution and transactional memory [29, 30, 47, 48]. This research leverages the
speculative-execution facilities present in many CPUs to execute transactions that either commit
or abort atomically. Committing is handled like successfulspeculation, with results being com-
mitted to memory or registers, whereas aborting is treated like failed speculative execution, with
the results being discarded. Essentially, such hardware transactions act like an atomic N-way
compare-and-swap instruction, with the complexity of the transaction limited by the amount of
speculative state that can be stored. Speculative state is stored in the CPU’s cache, but specially
marked so that it will not be committed to memory unless the transaction commits. Since CPU
caches can be large, this approach suggests that extremely large transactions could be supported.
Unfortunately, the associativity limits of hardware caches severely limit the maximum guaranteed-
to-commit transaction size, and the tension between accesslatency and associativity discourages
large increases in associativity.

To see the reason for this limit, consider a hardware transaction involving three variables in a
two-way set-associative cache. If all three variables conflict, i.e., collide in the cache, this trans-
action will always fail, since this two-way set-associative cache will be able to accommodate only
two of the three variables. Similarly, a pair of concurrent transactions might conflict with each
other, so that they can never complete when running concurrently.

It is possible to increase the associativity of the cache, orto add a small high-associativity
“victim cache” [17], but doing either increases the cost of the cache (or, for constant cost, decreases
its size) and degrades its performance. Hardware transactions hold much promise, but, given
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associativity limits, they are no panacea.
Trend summary
In our opinion, it appears that the future lies with trends 2,3, and 5, in other words, with multi-

core, multi-threaded CPUs that have roughly the same relative cost of synchronization that is seen
today. These trends will become especially prominent if CPU-clock-frequency growth remains
low, since in that case, the only way to increase performanceis to increase parallelism, either
through addition of general-purpose processors or throughaddition of hardware accelerators or
vector units. As is the case today, smaller systems will enjoy lower costs of synchronization, all
else being equal.

6 Conclusions and Future Work
This paper has shown that synchronization instructions on modern CPUs are very expensive, in
some cases costing over a thousand times more than normal instructions. To make matters worse,
weak memory consistency models require additional instructions, in the form of memory barriers,
to be added to synchronization algorithms on most CPUs. These too can be expensive, costing sev-
eral hundred times more than normal instructions. This instruction-level overhead has dramatically
decreased critical section efficiency, causing some formerly scalable synchronization strategies to
perform very poorly on today’s CPUs.

Synchronization solutions that use a copy-based update approach, with deferred reclamation
and synchronization-free concurrent reading, scale much better than other strategies on modern
CPUs given the read-mostly workloads common in operating-system kernels. They also offer a
range of design decisions relating to the specific update management and reclamation strategy to
use. The choice of locking vs. non-blocking synchronization for managing updates is orthogonal
to the choice of reclamation strategy, and we examined the performance characteristics of four dif-
ferent combinations of update and reclamation strategy. The results showed that in extreme read-
mostly scenarios, of which there are many in production kernels, a combination of lock-based
update strategy and quiescent-state-based reclamation strategy performs the best. Reclamation
strategies based on hazard pointers suffer degraded performance in read-mostly conditions due to
the need for expensive memory barriers in the read-path. These performance differences become
more pronounced as the working set size decreases and the cache-hit-rate increases. As the per-
centage of updates in the workload increases, NBS-based update strategies became more efficient
than lock-based strategies, due in part to decreased lock contention and to the existence of efficient
NBS algorithms for the simple data structures studied in this paper.

At smaller numbers of CPUs, reclamation strategies based onquiescent states performed well,
but as the number of CPUs increases, so does the cost of managing quiescent states, pointing to
the need for scalable algorithms for quiescent state management. None of the strategies exhib-
ited any performance sensitivity to variations in available memory. However, for extremely tight
memory constraints, such as in embedded systems, reclamation strategies based on hazard point-
ers offer tighter control over memory consumption than those based on quiescent states. Finally,
we argued that the relative performance of these synchronization strategies is dependent on future
architectural trends.

6.1 Future Work
All four algorithms studied in this paper expose readers to the possibility of observing stale data
items. A data item is stale if it has been removed but not yet reclaimed. A surprisingly large
number of operating system algorithms tolerate stale data,as exemplified by the more than 400
uses of the RCU API in the Linux kernel. However, there are many algorithms that cannot tol-
erate stale data. One strategy for dealing with such algorithms is to transform them into a form
that can tolerate stale data before applying this class of synchronization solutions. Several exam-
ples of such transformational design patterns are presented in [34]. However, a number of open
questions remain. For example, (1) are there algorithms that cannot be so transformed, (2) which
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algorithms, when so transformed, remain efficient, (3) is there a “best” set of transformations, or
are different transformations appropriate for different situations, and (4) do the currently identified
transformations form a complete set, or are there others?

Deferred-reclamation-basedsynchronization algorithmsare sufficiently different in nature from
traditional locking and NBS algorithms that new formalismswill be required to validate and an-
alyze them. Ideally, these formalisms will form the basis for a set of software tools that aid in
the analysis and verification of deferred-reclamation-based algorithms, as well as the analysis and
verification of the deferred-reclamation-based infrastructure itself. Similarly, tools are needed to
aid in the adaptation of legacy code to these scalable synchronization approaches.

Another challenge for deferred-reclamation-based approaches, particularly those based on
quiescent-state-based reclamation, is the need to deal with real-time workloads. In embedded sys-
tems this challenge often goes hand in hand with the need to run under tight memory constraints.
Together, these two requirements point to the need for efficient active reclamation strategies.
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