
© 2016 IBM Corporation

What Happens When 4096 Cores All Do
synchronize_rcu_expedited()?

Paul E. McKenney, IBM Distinguished Engineer, Linux Technology Center
Member, IBM Academy of Technology

linux.conf.au, Geelong, Australia, February 3, 2016

© 2016 IBM Corporation2

linux.conf.au, Geelong, Australia, February 3, 2015

Overview

What Should Happen When 4096 Cores All Do
synchronize_rcu_expedited()?

Overview of Algorithm for synchronize_rcu_expedited()

Expedited Grace Period Example

Benchmarking

Benchmarking on 4096 CPUs

Summary and Lessons (Re)learned

© 2016 IBM Corporation3

linux.conf.au, Geelong, Australia, February 3, 2015

What Should Happen When 4096 Cores All Do
synchronize_rcu_expedited()?

© 2016 IBM Corporation4

linux.conf.au, Geelong, Australia, February 3, 2015

What Should Not Happen When 4096 Cores All Do
synchronize_rcu_expedited()?

© 2016 IBM Corporation5

linux.conf.au, Geelong, Australia, February 3, 2015

What Should Not Happen When 4096 Cores All Do
synchronize_rcu_expedited()?

QS 0

CPU 0

QS 1

QS 2

QS N

. . .

QS 0

CPU 1

QS 1

QS 2

QS N

. . .

QS 0

CPU 2

QS 1

QS 2

QS N

. . .

QS 0

CPU N

QS 1

QS 2

QS N

. . .

. . .Time

© 2016 IBM Corporation6

linux.conf.au, Geelong, Australia, February 3, 2015

What Should Not Happen When 4096 Cores All Do
synchronize_rcu_expedited()? Then What Instead?

QS 0

CPU 0

QS 1

QS 2

QS N

. . .

QS 0

CPU 1

QS 1

QS 2

QS N

. . .

QS 0

CPU 2

QS 1

QS 2

QS N

. . .

QS 0

CPU N

QS 1

QS 2

QS N

. . .

. . .Time

© 2016 IBM Corporation7

linux.conf.au, Geelong, Australia, February 3, 2015

RCU Grace Period Properties

Grace Period: Time during which every CPU/task spends
some time outside of an RCU read-side critical section

–Any critical section in progress at the beginning of a grace period must
end before that grace period ends

• RCU read-side critical section spans rcu_read_lock() to rcu_read_unlock()
• RCU grace period wait: synchronize_rcu_expedited() and friends

Grace periods are independent of CPU/task requesting them

A single grace period can serve several requests

 In fact, single non-expedited grace periods often serve
thousands of requests in Linux kernels

© 2016 IBM Corporation8

linux.conf.au, Geelong, Australia, February 3, 2015

RCU Grace Period Properties Shown Graphically

Change Visible
to All Readers

Change Visible
to All Readers

Reader

Change
Grace Period

Reader

Reader

Reader

Reader

Reader

ReaderReader

A grace period can serve multiple updates, decreasing the per-update RCU overhead.

synchronize_rcu()
Change

synchronize_rcu()

© 2016 IBM Corporation9

linux.conf.au, Geelong, Australia, February 3, 2015

What Should Happen Instead When 4096 Cores All Do
synchronize_rcu_expedited()?

QS 0

CPU 0

QS 0

CPU 1

QS 0

CPU 2

QS 0

CPU N. . .Time

They all should share the same grace period!!!

© 2016 IBM Corporation10

linux.conf.au, Geelong, Australia, February 3, 2015

What Should Happen Instead When 4096 Cores All Do
synchronize_rcu_expedited()? (Or Maybe This)

QS 0

CPU 0

QS 0

CPU 1

QS 0

CPU 2

QS 0

CPU N. . .Time

QS 1 QS 1 QS 1 QS 1

Or share two grace periods, depending on timing.

© 2016 IBM Corporation11

linux.conf.au, Geelong, Australia, February 3, 2015

What Else Should Not Happen When 4096 Cores All
Do synchronize_rcu_expedited()?

© 2016 IBM Corporation12

linux.conf.au, Geelong, Australia, February 3, 2015

What Else Should Not Happen When 4096 Cores All
Do synchronize_rcu_expedited()?

CPU 0 CPU 1 CPU 2

. . .

CPU N. . .Time

No Single Global Locks, Please!!!

© 2016 IBM Corporation13

linux.conf.au, Geelong, Australia, February 3, 2015

What Should Happen Instead When 4096 Cores All Do
synchronize_rcu_expedited()?

CPU 0 CPU 1 CPU 2 CPU N. . .Time

Instead, use lots of different locks!!!

© 2016 IBM Corporation14

linux.conf.au, Geelong, Australia, February 3, 2015

Tree RCU's rcu_node Combining Tree to the Rescue!

struct rcu_state

struct
rcu_node

struct
rcu_node

struct
rcu_node

struct
rcu_data

CPU 15

struct
rcu_data

CPU 0

struct
rcu_data
CPU 4095

struct
rcu_data
CPU 4080

Level 0: 1 rcu_node

Level 1: 4 rcu_nodes

Level 2: 256 rcu_nodes

Total: 261 rcu_nodes

Separate locks
for each instance!!!

© 2016 IBM Corporation15

linux.conf.au, Geelong, Australia, February 3, 2015

What Else Should Not Happen When 4096 Cores All
Do synchronize_rcu_expedited()?

© 2016 IBM Corporation16

linux.conf.au, Geelong, Australia, February 3, 2015

What Else Should Not Happen When 4096 Cores All
Do synchronize_rcu_expedited()?

CPU 0 CPU 1 CPU 2 CPU N. . .Time

No Frequently Updated Shared Variables, Please!!!

© 2016 IBM Corporation17

linux.conf.au, Geelong, Australia, February 3, 2015

What Should Happen Instead When 4096 Cores All Do
synchronize_rcu_expedited()?

CPU 0 CPU 1 CPU 2 CPU N. . .Time

Instead, Use Lots of Shared Variables!!!

© 2016 IBM Corporation18

linux.conf.au, Geelong, Australia, February 3, 2015

Again, Tree RCU's Combining Tree to the Rescue!

struct rcu_state

struct
rcu_node

struct
rcu_node

struct
rcu_node

struct
rcu_data

CPU 15

struct
rcu_data

CPU 0

struct
rcu_data
CPU 4095

struct
rcu_data
CPU 4080

Level 0: 1 rcu_node

Level 1: 4 rcu_nodes

Level 2: 256 rcu_nodes

Total: 261 rcu_nodes

Separate variables
for each instance!!!

© 2016 IBM Corporation19

linux.conf.au, Geelong, Australia, February 3, 2015

Non-Requirements

Real-time response for synchronize_rcu_expedited()
–Must wait for readers in any case
–RCU priority boosting carried out, but more diagnostic than realtime
–So some variation in timings is to be expected

Constant synchronize_rcu_expedited() latency
–After all, synchronize_rcu() latency increases with number of CPUs

Big-system performance of synchronize_rcu_expedited() to
the exclusion of all else

–Heavy update workloads better served by synchronize_rcu()

© 2016 IBM Corporation20

linux.conf.au, Geelong, Australia, February 3, 2015

Overall synchronize_rcu_expedited() Algorithm

© 2016 IBM Corporation21

linux.conf.au, Geelong, Australia, February 3, 2015

High-Level synchronize_rcu_expedited() Algorithm

For each non-idle online CPU:
–Send IPI
–Handler determines if CPU is in quiescent state (context switch, user-

mode execution, idle, cond_resched_rcu_qs()...)
–If so, report quiescent state
–If not, set CPU-local state so that next quiescent-state entry is reported

When all non-idle online CPUs has reported a quiescent
state, grace period is complete

© 2016 IBM Corporation22

linux.conf.au, Geelong, Australia, February 3, 2015

High-Level synchronize_rcu_expedited() Algorithm

For each non-idle online CPU:
–Send IPI
–Handler determines if CPU is in quiescent state (context switch, user-

mode execution, idle, cond_resched_rcu_qs()...)
–If so, report quiescent state
–If not, set CPU-local state so that next quiescent-state entry is reported

When all non-idle online CPUs has reported a quiescent
state, grace period is complete

The trick is doing this without bottlenecks...

© 2016 IBM Corporation23

linux.conf.au, Geelong, Australia, February 3, 2015

Overall Approach to Concurrent-Code Optimization

Work
Partitioning

Resource
Partitioning and

Replication

Interacting
With Hardware

Parallel Access
Control

Batch

Partition

Weaken

© 2016 IBM Corporation24

linux.conf.au, Geelong, Australia, February 3, 2015

Optimize Expedited Grace Periods

Partition
–Use the rcu_node combining tree!

© 2016 IBM Corporation25

linux.conf.au, Geelong, Australia, February 3, 2015

Optimize Expedited Grace Periods

Partition
–Use the rcu_node combining tree!

Batch
–Need a mechanism to piggyback off others' expedited grace periods

© 2016 IBM Corporation26

linux.conf.au, Geelong, Australia, February 3, 2015

Optimize Expedited Grace Periods

Partition
–Use the rcu_node combining tree!

Batch
–Need a mechanism to piggyback off others' expedited grace periods

Weaken
–My normal advice would be to use RCU, but this is RCU...

© 2016 IBM Corporation27

linux.conf.au, Geelong, Australia, February 3, 2015

Optimize Expedited Grace Periods

Partition
–Use the rcu_node combining tree!

Batch
–Need a mechanism to piggyback off others' expedited grace periods

Weaken
–My normal advice would be to use RCU, but this is RCU...

Hardware
–Need to be portable, so no FPGAs or GPGPUs for the time being...

© 2016 IBM Corporation28

linux.conf.au, Geelong, Australia, February 3, 2015

Optimize Expedited Grace Periods

Partition
–Use the rcu_node combining tree!

Batch
–Need a mechanism to piggyback off others' expedited grace periods

Weaken
–My normal advice would be to use RCU, but this is RCU...

Hardware
–Need to be portable, so no FPGAs or GPGPUs for the time being...

We therefore stick with partitioning and batching

© 2016 IBM Corporation29

linux.conf.au, Geelong, Australia, February 3, 2015

Partitioning Expedited Grace Periods

© 2016 IBM Corporation30

linux.conf.au, Geelong, Australia, February 3, 2015

Partitioning Expedited Grace Periods

struct rcu_state

struct
rcu_node

struct
rcu_node

struct
rcu_node

struct
rcu_data

CPU 15

struct
rcu_data

CPU 0

struct
rcu_data
CPU 4095

struct
rcu_data
CPU 4080

->exp_funnel_mutex

->exp_funnel_mutex

© 2016 IBM Corporation31

linux.conf.au, Geelong, Australia, February 3, 2015

Partitioning Expedited Grace Periods

struct rcu_state

struct
rcu_node

struct
rcu_node

struct
rcu_node

struct
rcu_data

CPU 15

struct
rcu_data

CPU 0

struct
rcu_data
CPU 4095

struct
rcu_data
CPU 4080

->exp_funnel_mutex

->exp_funnel_mutex

But we still have lock-contention bottleneck at root rcu_node structure!!!

© 2016 IBM Corporation32

linux.conf.au, Geelong, Australia, February 3, 2015

Batching Expedited Grace Periods

© 2016 IBM Corporation33

linux.conf.au, Geelong, Australia, February 3, 2015

Batching Expedited Grace Periods

Time

E
xp

ed
ite

d
G

ra
ce

 P
er

io
d

A

E
xp

ed
ite

d
G

ra
ce

 P
er

io
d

B

E
xp

ed
ite

d
G

ra
ce

 P
er

io
d

C

E
xp

ed
ite

d
G

ra
ce

 P
er

io
d

D

© 2016 IBM Corporation34

linux.conf.au, Geelong, Australia, February 3, 2015

Batching Expedited Grace Periods: Numbering

Time

E
xp

ed
ite

d
G

ra
ce

 P
er

io
d

A

E
xp

ed
ite

d
G

ra
ce

 P
er

io
d

B

E
xp

ed
ite

d
G

ra
ce

 P
er

io
d

C

1 3 5 76420

E
xp

ed
ite

d
G

ra
ce

 P
er

io
d

D

© 2016 IBM Corporation35

linux.conf.au, Geelong, Australia, February 3, 2015

Batching Expedited Grace Periods: Using Numbering

Start at zero, wait until two

Start at one, wait until four

Start at two, wait until four

Start at three, wait until six

Start at four, wait until six

Start at five, wait until eight

Start at six, wait until eight

General rule: wait = (start + 3) & ~0x1

© 2016 IBM Corporation36

linux.conf.au, Geelong, Australia, February 3, 2015

Batching Expedited Grace Periods: Using Numbering

Snapshot expedited grace-period sequence number (egpsn)
–Add three and clear low-order bit

Acquire locks to start grace period
–If egpsn has reached snapshot, done!
–Release locks and exit

 Increment egpsn

Start expedited grace period

Wait for expedited grace period to complete

 Increment egpsn

© 2016 IBM Corporation37

linux.conf.au, Geelong, Australia, February 3, 2015

Batching Expedited Grace Periods: Using Numbering

struct rcu_state

struct
rcu_node

struct
rcu_node

struct
rcu_node

struct
rcu_data

CPU 15

struct
rcu_data

CPU 0

struct
rcu_data
CPU 4095

struct
rcu_data
CPU 4080

Acquire lock,
check egpsn

Acquire lock,
release prior lock,

check egpsn

Acquire lock,
release prior lock,

check egpsn

Snapshot egpsn

© 2016 IBM Corporation38

linux.conf.au, Geelong, Australia, February 3, 2015

Batching Expedited Grace Periods: Using Numbering

struct rcu_state

struct
rcu_node

struct
rcu_node

struct
rcu_node

struct
rcu_data

CPU 15

struct
rcu_data

CPU 0

struct
rcu_data
CPU 4095

struct
rcu_data
CPU 4080

Acquire lock,
release prior lock,

check egpsn

Acquire lock,
release prior lock,

check egpsn

Optimization: Try acquiring root-level lock first, fall back if unavailable

Acquire lock,
check egpsn

Snapshot egpsn

© 2016 IBM Corporation39

linux.conf.au, Geelong, Australia, February 3, 2015

Expedited Grace Period Example

© 2016 IBM Corporation40

linux.conf.au, Geelong, Australia, February 3, 2015

Expedited Grace Period Example

EGPSN: 0

A: 2 B: 2 C: 2 D: 2 Snapshot

Not Done

Done but
unknown

Knows it
is done

Lock rcu_data

Lock rcu_node

Lock rcu_node

© 2016 IBM Corporation41

linux.conf.au, Geelong, Australia, February 3, 2015

Expedited Grace Period Example

E: 2 F: 2 G: 2 H: 2 Snapshot

A: 2 B: 2 C: 2 D: 2 Lock rcu_data

Lock rcu_node

Lock rcu_node

EGPSN: 0

© 2016 IBM Corporation42

linux.conf.au, Geelong, Australia, February 3, 2015

Expedited Grace Period Example

I: 2 F: 2 J: 2 H: 2 Snapshot

E: 2 B: 2 G: 2 D: 2 Lock rcu_data

A: 2 C: 2 Lock rcu_node

Lock rcu_node

EGPSN: 0

© 2016 IBM Corporation43

linux.conf.au, Geelong, Australia, February 3, 2015

Expedited Grace Period Example

I: 2 K: 4 J: 2 H: 2 Snapshot

E: 2 F: 2 G: 2 D: 2 Lock rcu_data

B: 2 C: 2 Lock rcu_node

A: 2 Lock rcu_node

EGPSN: 1

© 2016 IBM Corporation44

linux.conf.au, Geelong, Australia, February 3, 2015

Expedited Grace Period Example

I: 2 K: 4 J: 2 H: 2 Snapshot

E: 2 F: 2 G: 2 D: 2 Lock rcu_data

B: 2 C: 2 Lock rcu_node

A: 2 Lock rcu_node

One expedited grace period serves ten requests!!!

EGPSN: 2

© 2016 IBM Corporation45

linux.conf.au, Geelong, Australia, February 3, 2015

Expedited Grace Period Example

I: 2 K: 4 J: 2 L: 4 Snapshot

E: 2 F: 2 G: 2 H: 2 Lock rcu_data

B: 2 D: 2 Lock rcu_node

C: 2 Lock rcu_node

EGPSN: 2

© 2016 IBM Corporation46

linux.conf.au, Geelong, Australia, February 3, 2015

Expedited Grace Period Example

M: 4 K: 4 N: 4 O: 4 Snapshot

I: 2 F: 2 J: 2 L: 4 Lock rcu_data

E: 2 G: 2 Lock rcu_node

B: 2 Lock rcu_node

EGPSN: 2

© 2016 IBM Corporation47

linux.conf.au, Geelong, Australia, February 3, 2015

Expedited Grace Period Example

P: 4 Q: 4 R: 4 S: 4 Snapshot

M: 4 K: 4 N: 4 O: 4 Lock rcu_data

F: 2 L: 4 Lock rcu_node

Lock rcu_node

Fully parallel recognition of batching!

EGPSN: 2

© 2016 IBM Corporation48

linux.conf.au, Geelong, Australia, February 3, 2015

Expedited Grace Period Example

P: 4 T: 6 R: 4 U: 6 Snapshot

M: 4 Q: 4 N: 4 S: 4 Lock rcu_data

K: 4 O: 4 Lock rcu_node

Lock rcu_nodeL: 4

EGPSN: 3

© 2016 IBM Corporation49

linux.conf.au, Geelong, Australia, February 3, 2015

Expedited Grace Period Example

P: 4 T: 6 R: 4 U: 6 Snapshot

M: 4 Q: 4 N: 4 S: 4 Lock rcu_data

K: 4 O: 4 Lock rcu_node

Lock rcu_nodeL: 4

This time, one expedited grace period serves nine requests

EGPSN: 4

© 2016 IBM Corporation50

linux.conf.au, Geelong, Australia, February 3, 2015

Great Performance and Scalability!!!

© 2016 IBM Corporation51

linux.conf.au, Geelong, Australia, February 3, 2015

Great Performance and Scalability!!!
In Theory, Anyway...

© 2016 IBM Corporation52

linux.conf.au, Geelong, Australia, February 3, 2015

Let's Do Some Benchmarking!!!

© 2016 IBM Corporation53

linux.conf.au, Geelong, Australia, February 3, 2015

Let's Do Some Benchmarking!!!
How Hard Can It Be???

© 2016 IBM Corporation54

linux.conf.au, Geelong, Australia, February 3, 2015

Let's Do Some Benchmarking!!!
How Hard Can It Be???

Tight loops doing synchronize_sched_expedited() with other
tight loops doing rcu_read_lock(): rcu_read_unlock()

© 2016 IBM Corporation55

linux.conf.au, Geelong, Australia, February 3, 2015

Let's Do Some Benchmarking!!!
How Hard It Can Be...

Tight loops doing synchronize_sched_expedited() with other
tight loops doing rcu_read_lock(): rcu_read_unlock()

–Which resulted in horrid grace-period latencies: hundreds of ms!!!

Small update:
–rcu_read_lock(): cond_resched_rcu_qs(); rcu_read_unlock()

© 2016 IBM Corporation56

linux.conf.au, Geelong, Australia, February 3, 2015

Let's Do Some Benchmarking!!!
How Hard It Can Be...

Tight loops doing synchronize_sched_expedited() with other
tight loops doing rcu_read_lock(): rcu_read_unlock()

–Which resulted in horrid grace-period latencies: hundreds of ms!!!

Small update:
–rcu_read_lock(): cond_resched_rcu_qs(); rcu_read_unlock()
–Some improvement, but still not good

Make expedited grace periods note interrupt from idle

© 2016 IBM Corporation57

linux.conf.au, Geelong, Australia, February 3, 2015

Let's Do Some Benchmarking!!!
How Hard It Can Be...

Tight loops doing synchronize_sched_expedited() with other
tight loops doing rcu_read_lock(): rcu_read_unlock()

–Which resulted in horrid grace-period latencies: hundreds of ms!!!

Small update:
–rcu_read_lock(): cond_resched_rcu_qs(); rcu_read_unlock()
–Some improvement, but still not good

Make expedited grace periods note interrupt from idle
–Still painful

Pin the looping kthreads to their own CPUs

© 2016 IBM Corporation58

linux.conf.au, Geelong, Australia, February 3, 2015

Let's Do Some Benchmarking!!!
How Hard It Can Be...

Tight loops doing synchronize_sched_expedited() with other
tight loops doing rcu_read_lock(): rcu_read_unlock()

–Which resulted in horrid grace-period latencies: hundreds of ms!!!

Small update:
–rcu_read_lock(): cond_resched_rcu_qs(); rcu_read_unlock()
–Some improvement, but still not good

Make expedited grace periods note interrupt from idle
–Still painful

Pin the looping kthreads to their own CPUs
–Better, but still not great – and essentially no batching!!!

© 2016 IBM Corporation59

linux.conf.au, Geelong, Australia, February 3, 2015

Let's Do Some Benchmarking!!!
How Hard It Can Be...

Set kthreads doing grace periods to real-time priority
–Tens of ms instead of hundreds of ms, better, but...

Get the readers out of the way
–Not much difference...

Make cond_resched_rcu_qs() respond to expedited grace period
requests

–Not much difference

Get IRC from Sasha Levin saying that KASAN complains about
address-out-of-range errors

–What exactly does C do with double subscripts? The wrong thing...
–So ditch the double subscripts in favor of explicit pointer traversals

© 2016 IBM Corporation60

linux.conf.au, Geelong, Australia, February 3, 2015

Let's Do Some Benchmarking!!!
How Hard It Can Be...

Collect data via ftrace rather than printk
–Gets rid of some preemptions...
–Still greater than 10 milliseconds worst case, so look at ftrace!

New arrivals jumping the queue!!!

© 2016 IBM Corporation61

linux.conf.au, Geelong, Australia, February 3, 2015

Queue-Jumping Problem

P: 4 T: 6 R: 4 U: 6 Snapshot

M: 4 Q: 4 N: 4 S: 4 Lock rcu_data

K: 4 O: 4 Lock rcu_node

Lock rcu_nodeL: 4

EGPSN: 4

© 2016 IBM Corporation62

linux.conf.au, Geelong, Australia, February 3, 2015

Queue-Jumping Problem

P: 4 T: 6 R: 4 U: 6 Snapshot

M: 4 Q: 4 N: 4 S: 4 Lock rcu_data

K: 4 O: 4 Lock rcu_node

Lock rcu_nodeV: 6

EGPSN: 4

© 2016 IBM Corporation63

linux.conf.au, Geelong, Australia, February 3, 2015

Let's Do Some Benchmarking!!!
How Hard It Can Be...

Collect data via ftrace rather than printk
–Gets rid of some preemptions...
–Still greater than 10 milliseconds worst case, so look at ftrace!

New arrivals jumping the queue!!!
–So eliminate the queue-jumping optimization
–But only minor improvements in worst case and in batching

New arrivals still jumping the queue due to wakeup latency

© 2016 IBM Corporation64

linux.conf.au, Geelong, Australia, February 3, 2015

Queue-Jumping Problem Redux

P: 4 T: 6 R: 4 U: 6 Snapshot

M: 4 Q: 4 N: 4 S: 4 Lock rcu_data

K: 4 O: 4 Lock rcu_node

Lock rcu_nodeV: 6

EGPSN: 5

© 2016 IBM Corporation65

linux.conf.au, Geelong, Australia, February 3, 2015

Queue-Jumping Problem Redux

P: 4 T: 6 R: 4 U: 6 Snapshot

M: 4 Q: 4 N: 4 S: 4 Lock rcu_data

K: 4 O: 4 Lock rcu_node

Lock rcu_nodeV: 6

EGPSN: 6

© 2016 IBM Corporation66

linux.conf.au, Geelong, Australia, February 3, 2015

Queue-Jumping Problem Redux

P: 4 T: 6 R: 4 Snapshot

M: 4 Q: 4 N: 4 Lock rcu_data

K: 4 Lock rcu_node

Lock rcu_nodeO: 4

U: 6

S: 4

EGPSN: 6

© 2016 IBM Corporation67

linux.conf.au, Geelong, Australia, February 3, 2015

Queue-Jumping Problem Redux

P: 4 T: 6 R: 4 Snapshot

M: 4 Q: 4 N: 4 Lock rcu_data

K: 4 Lock rcu_node

Lock rcu_node

Wakeup delay can be significant, and in the meantime...

EGPSN: 6

© 2016 IBM Corporation68

linux.conf.au, Geelong, Australia, February 3, 2015

Queue-Jumping Problem Redux

P: 4 T: 6 R: 4 Snapshot

M: 4 Q: 4 N: 4 Lock rcu_data

K: 4 Lock rcu_node

Lock rcu_node

V: 8

EGPSN: 6

© 2016 IBM Corporation69

linux.conf.au, Geelong, Australia, February 3, 2015

Queue-Jumping Problem Redux

P: 4 T: 6 R: 4 Snapshot

M: 4 Q: 4 N: 4 Lock rcu_data

K: 4 Lock rcu_node

Lock rcu_node

V: 8

Task V: 8

EGPSN: 6

© 2016 IBM Corporation70

linux.conf.au, Geelong, Australia, February 3, 2015

Queue-Jumping Problem Redux

P: 4 T: 6 R: 4 Snapshot

M: 4 Q: 4 N: 4 Lock rcu_data

K: 4 Lock rcu_node

Lock rcu_node

V: 8

Task V: 8

Task V: 8

EGPSN: 6

© 2016 IBM Corporation71

linux.conf.au, Geelong, Australia, February 3, 2015

Queue-Jumping Problem Redux

P: 4 T: 6 R: 4 Snapshot

M: 4 Q: 4 N: 4 Lock rcu_data

K: 4 Lock rcu_node

Lock rcu_nodeV: 8

Tasks K, M, P, Q, and T stuck waiting on Task V!!!

Task V: 8

Task V: 8

EGPSN: 6

© 2016 IBM Corporation72

linux.conf.au, Geelong, Australia, February 3, 2015

Let's Do Some Benchmarking!!!
How Hard It Can Be...

Collect data via ftrace rather than printk
–Gets rid of some preemptions...
–Still greater than 10 milliseconds worst case, so look at ftrace!

New arrivals jumping the queue!!!
–So eliminate the queue-jumping optimization
–But only minor improvements in worst case and in batching

New arrivals still jumping the queue due to wakeup latency
–So switch from mutex to rt_mutex (worry about mainlining later...)
–Much better!!! 6x batching on four CPUs, sub-10-ms latencies
–But 4.7 milliseconds is not exactly expedited...

© 2016 IBM Corporation73

linux.conf.au, Geelong, Australia, February 3, 2015

Let's Do Some Benchmarking!!!
How Hard It Can Be...

Automation causes entire benchmark to run at boot time
–Not the best time for low OS jitter!
–Delay the test until after boot completes (after a few false starts)
–Maximum grace-period latency below 1ms, good batching
–But getting RCU CPU stall warnings and RT throttling

So put thread to SCHED_OTHER before ftrace_dump(), get
rid of readers, and delay before ftrace_dump()

–99th percentile at 10 microseconds, max at about 500 microseconds
–More like it!

© 2016 IBM Corporation74

linux.conf.au, Geelong, Australia, February 3, 2015

Let's Do Some Benchmarking!!!
How Hard It Can Be...

Automation causes entire benchmark to run at boot time
–Not the best time for low OS jitter!
–Delay the test until after boot completes (after a few false starts)
–Maximum grace-period latency below 1ms, good batching
–But getting RCU CPU stall warnings and RT throttling

So put thread to SCHED_OTHER before ftrace_dump(), get
rid of readers, and delay before ftrace_dump()

–99th percentile at 10 microseconds, max at about 500 microseconds
–More like it!

But six CPUs is a small fraction of 4096 CPUs!!!

© 2016 IBM Corporation75

linux.conf.au, Geelong, Australia, February 3, 2015

Benchmarking on 4096 CPUs

© 2016 IBM Corporation76

linux.conf.au, Geelong, Australia, February 3, 2015

Benchmarking on 4096 CPUs

 I don't actually have access to a 4096-CPU system
–Just to the bug reports filed by people who do have such systems

But, as noted in the past, I have relevant experience:

© 2016 IBM Corporation77

linux.conf.au, Geelong, Australia, February 3, 2015

Benchmarking on 4096 CPUs

 I don't actually have access to a 4096-CPU system
–Just to the bug reports filed by people who do have such systems

But, as noted in the past, I have relevant experience:

© 2016 IBM Corporation78

linux.conf.au, Geelong, Australia, February 3, 2015

Benchmarking on 4096 CPUs

Dirty trick #1: Note that synchronize_rcu_expedited() blocks
–Can therefore run large numbers of tasks on smaller number of CPUs

© 2016 IBM Corporation79

linux.conf.au, Geelong, Australia, February 3, 2015

Benchmarking on 4096 CPUs

Dirty trick #1: Note that synchronize_rcu_expedited() blocks
–Can therefore run large numbers of tasks on smaller number of CPUs

But extremely long runtimes for 256 tasks on 32 CPUs...

© 2016 IBM Corporation80

linux.conf.au, Geelong, Australia, February 3, 2015

Benchmarking on 4096 CPUs

Dirty trick #1: Note that synchronize_rcu_expedited() blocks
–Can therefore run large numbers of tasks on smaller number of CPUs

But extremely long runtimes for 256 tasks on 32 CPUs...
–Problem: Tasks with enough measurements compete for CPU time

with those that are not yet done
• But we need them to be running in order to provide needed load
• Just not at realtime priority

–Solution: Once a given tasks has enough measurements, drop it to
non-realtime priority

• Allows scheduler to determine which tasks are important
• Decreases runtime by more than a factor of three
• So that I might be able to collect enough data in time for this talk!!!

© 2016 IBM Corporation81

linux.conf.au, Geelong, Australia, February 3, 2015

Dirty Trick #1 Results (32 CPUs, 256 Tasks)

Min Mean 99th Percentile Maximum Batching

1 us 35.6 us 276 us 806 us 68.9

3 us 40.7 us 284 us 512 us 81.6

1 us 59.3 us 257 us 1146 us 149.6

© 2016 IBM Corporation82

linux.conf.au, Geelong, Australia, February 3, 2015

Benchmarking on 4096 CPUs

Dirty trick #1: Note that synchronize_rcu_expedited() blocks
–Can therefore run large numbers of tasks on smaller number of CPUs

Dirty trick #2: Decrease fanouts to obtain a full-height RCU
combining tree with smaller numbers of CPUs

–54 CPUs, RCU_FANOUT=3, RCU_FANOUT_LEAF=2: Four levels

© 2016 IBM Corporation83

linux.conf.au, Geelong, Australia, February 3, 2015

Dirty Trick #2 Results (54 CPUs, 256 Tasks, 4 Levels)

Min Mean 99th Percentile Maximum Batching

12 us 591.5 us 3492 us 5562 us 96.8

9 us 597.8 us 3777 us 5859 us 97.8

108 us 6739.5 us 34021 us 38133 us 126.2

59 us 12610.5 us 86876 us 140910 us 130.7

11 us 797.8 us 5127 us 11827 us 105.0

6 us 568.0 us 2254 us 5042 us 80.1

Horrible results, probably due to new interactions in the taller tree.
And greater interference from other users on this shared machine.

© 2016 IBM Corporation84

linux.conf.au, Geelong, Australia, February 3, 2015

Dirty Trick #2 Results (54 CPUs, 256 Tasks, 2 Levels)

Min Mean 99th Percentile Maximum Batching

11 us 220.2 us 553 us 690 us 182.2

6 us 169.4 us 1034 us 1558 us 178.1

5 us 166.9 us 1177 us 3025 us 111.7

Increased confidence of likely new interactions in the taller tree.
And greater interference from other users on this shared machine.

© 2016 IBM Corporation85

linux.conf.au, Geelong, Australia, February 3, 2015

Benchmarking on 4096 CPUs

Dirty trick #1: Note that synchronize_rcu_expedited() blocks
–Can therefore run large numbers of tasks on smaller number of CPUs

Dirty trick #2: Decrease fanouts to obtain a full-height RCU
combining tree with smaller numbers of CPUs

–54 CPUs, RCU_FANOUT=3, RCU_FANOUT_LEAF=2: Four levels
–But lab machine uses rotating rust, and it therefore takes a good long

time to dump out the ftrace data
–Longer-term fix: Do the data reduction in the kernel

© 2016 IBM Corporation86

linux.conf.au, Geelong, Australia, February 3, 2015

Benchmarking on 4096 CPUs

Dirty trick #1: Note that synchronize_rcu_expedited() blocks
–Can therefore run large numbers of tasks on smaller number of CPUs

Dirty trick #2: Decrease fanouts to obtain a full-height RCU
combining tree with smaller numbers of CPUs

–54 CPUs, RCU_FANOUT=3, RCU_FANOUT_LEAF=2: Four levels
–But lab machine uses rotating rust, and it therefore takes a good long

time to dump out the ftrace data
–Longer-term fix: Do the data reduction in the kernel
–Even longer-term fix: Use a system with 4096 real CPUs

© 2016 IBM Corporation87

linux.conf.au, Geelong, Australia, February 3, 2015

Benchmarking on 4096 CPUs

Dirty trick #1: Note that synchronize_rcu_expedited() blocks
–Can therefore run large numbers of tasks on smaller number of CPUs

Dirty trick #2: Decrease fanouts to obtain a full-height RCU
combining tree with smaller numbers of CPUs

–54 CPUs, RCU_FANOUT=3, RCU_FANOUT_LEAF=2: Four levels
–But lab machine uses rotating rust, and it therefore takes a good long

time to dump out the ftrace data
–Longer-term fix: Do the data reduction in the kernel
–Even longer-term fix: Use a system with 4096 real CPUs

More dirty tricks will likely be required!

© 2016 IBM Corporation88

linux.conf.au, Geelong, Australia, February 3, 2015

Summary and Lessons (Re)learned

© 2016 IBM Corporation89

linux.conf.au, Geelong, Australia, February 3, 2015

Summary and Lessons (Re)learned

Benchmarking is not as easy as it looks ;-)

Obvious optimizations often aren't
–Uncontended-case fastpath to root node problematic

Maintaining request order is important in this case
–Which is unfortunate, as this can be complex and expensive

Fixed a couple of performance bugs:
–Make expedited grace period IPI handlers check for idle
–Make cond_resched_rcu_qs() satisfy expedited grace periods
–And I have at least one more to fix!

At the end of the day, real full-scale testing is needed
–There are likely to be other performance bugs

• IPIs sent serially, wakeups likely to be a bottleneck, ...
–But it is good to get a couple of them out of the way!!!

© 2016 IBM Corporation90

linux.conf.au, Geelong, Australia, February 3, 2015

Legal Statement

This work represents the view of the author and does not
necessarily represent the view of IBM.

 IBM and IBM (logo) are trademarks or registered trademarks
of International Business Machines Corporation in the United
States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.

© 2016 IBM Corporation91

linux.conf.au, Geelong, Australia, February 3, 2015

Questions?

	IBM Presentation Template Full Version
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91

