
 

Recent Linux-Kernel RCU Changes

© 2022 Meta Platforms

Paul E. McKenney, Meta Platforms Kernel Team

LSF/MM/BPF Summit (FS & MM), May 2 2022



2

RCU Changes

Yes, RCU is still under active development!



3

RCU Review



4

RCU Review (At Speed)

● Purpose
● Core API
● Semantics and Restrictions
● Spatio-Temporal Synchronization

https://linuxfoundation.org/webinars/unraveling-rcu-usage-mysteries/ 
https://linuxfoundation.org/webinars/unraveling-rcu-usage-mysteries-additional-use-cases/



5

RCU Review: Purpose

● Global agreement is expensive
– Finite speed of light and non-zero-sized atoms...

● So use both spatial & temporal synchronization
● RCU is one way to do this

– Hazard pointers provide another way



6

RCU Review: Core API (Space/Time)

● rcu_read_lock(): Begin reader

● rcu_read_unlock(): End reader

● synchronize_rcu(): Wait for pre-existing readers

● call_rcu(): Invoke function after pre-existing readers complete

● rcu_dereference(): Load RCU-protected pointer

● rcu_dereference_protected(): Ditto, but update-side locked

● rcu_assign_pointer(): Update RCU-protected pointer



7

RCU Review: Semantics (Graphical)

Free Old Memory

Remove

rcu_read_lock()

rcu_read_unlock()
synchronize_rcu()

[return]

rcu_read_lock()

rcu_read_unlock()

synchronize_rcu()
[return]

rcu_read_lock()

rcu_read_unlock()

synchronize_rcu()

rcu_read_lock()

rcu_read_unlock()

synchronize_rcu()
:::
:::
:::

[return]

Remove

Free Old Memory

Remove

Remove

Free Old Memory

Free Old Memory

Time (really ordering)



8

RCU Review: Restrictions

1. RCU provides ABA protection for update-friendly mechanisms (light-weight garbage collector)
2. RCU provides bounded wait-free read-side primitives for real-time use

Need fully fresh and consistent data

Stale and inconsistent data OK
10

0%
 U

pd
at

es

10
0%

 R
ea

ds

U
p

da
te

-M
o

st
ly

, 
N

ee
d

F
re

sh
 C

on
si

st
en

t D
at

a
(R

C
U

 N
ot

 S
o

 G
oo

d
)1

,2

Read-Write,
Need Consistent Data
(RCU Might Be OK)

Read-Mostly,
Need Consistent Data

(RCU Works OK) R
ea

d-
M

os
tly

, S
ta

le
&

 In
co

n
si

st
e

nt
 D

a
ta

 O
K

(R
C

U
 W

o
rk

s 
G

re
a

t!!
!)

And RCU is most frequently used for linked data structures.



9

RCU Review: Global Agreement Cost
Reader

Time

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

A
gr

ee
m

en
t L

at
en

cy

Updater

A
gr

ee
m

en
t L

at
en

cy

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

     Reader

Reader

ReaderR
ea

de
r-

W
rit

er
Lo

ck
in

g



10

RCU Review: Code Animation

rcu_read_lock();
mcp = ...;
*cur_a = mcp->a; (37)
*cur_b = mcp->b; (46)
rcu_read_unlock();

Time

re
ad

er
s

G
P

*

rcu_read_lock();
mcp = ...;
*cur_a = mcp->a; (39)
*cur_b = mcp->b; (44)
rcu_read_unlock();

39,4437,46

Address Space

curconfig

mcp = kmalloc(...)
mcp = xchg(&curconfig, mcp);
synchronize_rcu();
...
...
kfree(mcp);

re
ad

er
s

* “Grace Period”

First space/time articulation for RCU (to the best of my knowledge): Jonathan Walpole and his students Josh Triplett and Phil Howard



11

RCU Review: Code Animation

rcu_read_lock();
mcp = ...;
*cur_a = mcp->a; (37)
*cur_b = mcp->b; (46)
rcu_read_unlock();

Time

re
ad

er
s

G
P

*

rcu_read_lock();
mcp = ...;
*cur_a = mcp->a; (39)
*cur_b = mcp->b; (44)
rcu_read_unlock();

39,4437,46

Address Space

curconfig

mcp = kmalloc(...)
mcp = xchg(&curconfig, mcp);
synchronize_rcu();
...
...
kfree(mcp);

re
ad

er
s

* “Grace Period”

First space/time articulation for RCU (to the best of my knowledge): Jonathan Walpole and his students Josh Triplett and Phil Howard

A
ct

ua
l c

ha
ng

e



12

RCU Review: Code Animation
Reader

Time

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

A
gr

ee
m

en
t L

at
en

cy

Updater

A
gr

ee
m

en
t L

at
en

cy

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

     Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Updater 1

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

           Reader

Reader

Reader

Updater 2

Grace Period

Reader Reader

Reader      Reader

Reader

Reader      Reader

R
C

U
R

ea
de

r-
W

rit
er

Lo
ck

in
g

Old NewEither



13

RCU Review: Scalability (Empty)

Intel(R) Xeon(R) Platinum 8176 CPU @ 2.10GHz perfbook CodeSamples/defer/data/rcuscale.hps.2020.05.28a/rwlockperf.eps



14

RCU Review: Scalability (Non-Empty)

Intel(R) Xeon(R) Platinum 8176 CPU @ 2.10GHz perfbook CodeSamples/defer/data/rcuscale.hps.2020.05.28a/rwlockperf.eps



15

RCU Review: Use Cases

Quasi Reader-Writer Lock Quasi Reference Count

Quasi Multi-Version Consistency Control

Light-Weight Garbage Collector Delete-Only List

Add-Only List Type-Safe Memory

Linked Publish/Subscribe

Existence Guarantee

Phased State Change

Wait To Finish

https://linuxfoundation.org/webinars/unraveling-rcu-usage-mysteries/ 
https://linuxfoundation.org/webinars/unraveling-rcu-usage-mysteries-additional-use-cases/



16

RCU Changes



17

RCU Changes

● Flavor consolidation
● Optional lockdep expression for list_for_each_entry_rcu()
● Single-argument kfree_rcu() and kvfree_rcu()
● Tasks Trace RCU and Tasks Rude RCU
● Polled grace-period APIs
● Runtime RCU callback (de-)offloading
● SRCU memory-footprint diet
● Real-time expedited grace periods



18

RCU Flavor Consolidation



19

RCU Flavor Consolidation: Impetus
Date: Sat, 3 Mar 2018 17:50:44 -0800
From: Linus Torvalds <torvalds@linux-foundation.org>
To: Jann Horn <jannh@google.com>, Tejun Heo <tj@kernel.org>, Paul McKenney
        <paulmck@linux.vnet.ibm.com>
Cc: Benjamin LaHaise <bcrl@kvack.org>, security@kernel.org, Al Viro
        <viro@zeniv.linux.org.uk>
Subject: Re: AIO locking bug in lookup_ioctx()
From linus971@gmail.com  Sat Mar  3 17:54:39 2018

[ Adding Al, Paul and Tejun and to the cc too for various reasons ]

On Fri, Mar 2, 2018 at 3:14 PM, Jann Horn <jannh@google.com> wrote:

[ . . . ]

> I'm not sending a patch because I'm not sure whether the intent here is to
> use RCU, and if so, whether it should be RCU-sched or normal RCU.

It's meant to use regular RCU.

But then in commit a4244454df12 ("percpu-refcount: use RCU-sched
insted of normal RCU") the percpu refcounts were changed to use
RCU-sched.

.. and in the process apparently broke the AIO RCU locking.

Tejun, Paul, please tell me why I'm wrong.

               Linus

security@kernel.org

LKML



20

Root Cause Of Exploit

void reader(void)
{
  rcu_read_lock_sched();
  /*
   * Access RCU-
   * protected data.
   */
  rcu_read_unlock_sched();
}

void updater(void)
{
  /* Remove old data. */
  synchronize_rcu();
  /* Free old data. */
}



21

Need Consistency, Except That...
rcu_read_lock();
rcu_read_unlock();

rcu_read_lock_bh();
rcu_read_unlock_bh();

rcu_read_lock_sched();
rcu_read_unlock_sched();

synchronize_rcu_bh();

synchronize_sched();

synchronize_rcu();

...to err is human!
Plus userspace controls content of much kernel data!!!



22

And the Call to Action
Date: Sun, 4 Mar 2018 10:53:54 -0800
From: Linus Torvalds <torvalds@linux-foundation.org>
To: Tejun Heo <tj@kernel.org>
Cc: Jann Horn <jannh@google.com>, Paul McKenney <paulmck@linux.vnet.ibm.com>,
        Benjamin LaHaise <bcrl@kvack.org>, security@kernel.org, Al Viro
        <viro@zeniv.linux.org.uk>
Subject: Re: AIO locking bug in lookup_ioctx()
From linus971@gmail.com  Sun Mar  4 10:56:59 2018

[ . . . ]

I've been confused before, and this time it was an actual security
bug. Admittedly one that is probably almost impossible to ever hit in
practice or mis-use, but still.

I repeat: I really love the traditional RCU, but I *despise* how there
are a million different and confusing versions of it. It clearly
causes real problems.

The only reason for rcu-sched to exist in the first place is that the
regular RCU had been made so much slower with PREEMPT_RCU. In other
words, the proliferation of different insane RCU implementations ends
up feeding on itself, and causing more and more of the proliferation.

Paul, is there really no way out of this mess?

                   Linus

Paul, is there really no way out of this mess?



23

Desired State (Usability/Security)
rcu_read_lock();
rcu_read_unlock();

rcu_read_lock_bh();
rcu_read_unlock_bh();

rcu_read_lock_sched();
rcu_read_unlock_sched();

synchronize_rcu();

Aside from the need to backport to v4.19 or earlier...



24

Backport synchronize_rcu()

● v4.20 or later: Just backport with no change
● v4.19 or earlier:

– Only waiting on rcu_read_lock():
● Use synchronize_rcu(), as in no change

– Otherwise, use synchronize_rcu_mult():
synchronize_rcu_mult(call_rcu, call_rcu_bh, call_rcu_sched);

● Using whichever call_rcu*() variants you need
● Chain call_rcu(), call_rcu_bh(), and call_rcu_sched()



25

lockdep & list_for_each_entry_rcu()

Contributed by Joel Fernandes, available in v5.4



26

Lockdep & list_for_each_entry_rcu()
● Non-lockdep style (still supported):

– list_for_each_entry_rcu(pos, head, member)

– hlist_for_each_entry_rcu(pos, head, member)

● With lockdep support:
– list_for_each_entry_rcu(pos, head, member[, cond])

– hlist_for_each_entry_rcu(pos, head, member[, cond])
● Example “cond”: “lockdep_is_held(&event_mutex)”

Contributed by Joel Fernandes, available in v5.4



27

Single-Argument kvfree_rcu()

Contributed by Uladzislau Rezki, available in v5.9



28

Single-Argument kvfree_rcu()

● Classic way: kvfree_rcu(p, rh)
– Requires an rcu_head field named “rh” in object
– Never sleeps
– Will continue to be supported

● New way: kvfree_rcu(p)
– No rcu_head required, but can sleep if OOM

● kfree_rcu() is a synonym for kvfree_rcu()
– Uses kfree_bulk() for cache locality (since v5.7)

Contributed by Uladzislau Rezki, available in v5.9



29

RCU Tasks {,Rude,Trace}



30

RCU Tasks {,Rude,Trace}

● RCU Tasks and RCU Tasks Rude:
– Used for tracing, e.g., freeing trampolines

● RCU Tasks Trace
– Used for sleepable BPF trampolines

● All three variants are extremely specialized
– Check with their other users before using them!!!



31

RCU Tasks {,Rude,Trace}
Voluntary context switch (v3.18):

synchronize_rcu_tasks()

call_rcu_tasks()

rcu_barrier_tasks()

Any context switch (v5.8):

synchronize_rcu_tasks_rude()

call_rcu_tasks_rude()

rcu_barrier_tasks_rude()

Explicit read-side markers (v5.8):

rcu_read_lock_trace()

rcu_read_unlock_trace()

rcu_read_lock_trace_held()

synchronize_rcu_tasks_trace()

call_rcu_tasks_trace()

rcu_barrier_tasks_trace()

Assisted by Neeraj Upadhyay



32

Polled Grace-Period APIs



33

Polled Grace-Period APIs
● get_state_synchronize_rcu()
● cond_synchronize_rcu()

– v3.14 and later
● start_poll_synchronize_rcu()
● poll_state_synchronize_rcu()

– v5.12 and later
● get_completed_synchronize_rcu()
● start_poll_synchronize_rcu_expedited()
● cond_synchronize_rcu_expedited()

– Maybe v5.20 and later?

● get_state_synchronize_srcu()
● start_poll_synchronize_srcu()
● poll_state_synchronize_srcu()

– v5.12 and later



34

Using Polled Grace-Period APIs (1/2)

/* Get grace-period cookie. */
cookie = get_state_synchronize_rcu();
/* Do other work. */
do_something();
/* If grace period not done, wait for the rest of it. */
cond_synchronize_rcu{,_expedited}(cookie);

Classic style going back to v3.14



35

Using Polled Grace-Period APIs (2/2)

cookie

li
st
_d
el
_r
cu
()

cookie

ge
t_
st
at
e_
sy
nc
hr
on
iz
e_
rc
u(
)

st
ar
t_
po
ll
_s
yn
ch
ro
ni
ze
_r
cu
{,
_e
xp
ed
it
ed
}(
)

cookie

po
ll
_s
ta
te
_s
yn
ch
ro
ni
ze
_r
cu
()

?

Y
cookie

ge
t_
co
mp
le
te
d_
sy
nc
hr
on
iz
e_
rc
u(
)

(Optional to
 avoid counter w

rap)

RCU Readers?

Readers
Donelist_add_rcu()



36

Polled Grace Period Caveat

/* Get grace-period cookie. */
cookie = get_state_synchronize_rcu();
synchronize_rcu{,_expedited}();

/*
 * Can trigger!!!  (1) Counter wrap.  (2) Races that
 * result in partially overlapping normal and expedited
 * grace periods.  Can eliminate #2, but with either
 * more storage (2 unsigned longs) or faster counter wrap.
 */
WARN_ON_ONCE(poll_state_synchronize_rcu(cookie));

rcutorture can make #2 happen, but unlikely in production workloads.  (Famous last words...)



37

Polled Grace Period Guarantee

/* Get grace-period cookie. */
cookie = get_state_synchronize_rcu();

/* Only one grace period can be lost due to race. */
synchronize_rcu{,_expedited}();
synchronize_rcu{,_expedited}();

/* Can trigger!!!  But only due to counter wrap. */
WARN_ON_ONCE(poll_state_synchronize_rcu(cookie));



38

Runtime Callback (De-)Offloading

Contributed by Frederic Weisbecker, available in v5.12



39

Runtime Callback (De-)Offloading
● Requires CONFIG_RCU_NOCB_CPU=y

– Implied by CONFIG_NO_HZ_FULL=y

● Requires rcu_nocbs kernel boot parameter
– Implied by nohz_full kernel boot parameter

● Available only in kernel for rcu_nocbs CPUs:
– rcu_nocb_cpu_offload(cpu)
– rcu_nocb_cpu_deoffload(cpu)

Contributed by Frederic Weisbecker, available in v5.12



40

Putting SRCU on a Memory Diet



41

Putting SRCU on a Memory Diet

● Tree SRCU has a compile-time srcu_node tree
– NR_CPUS=4096 means 261 array elements

● About 100 bytes each, which is not a big deal, but...

– Requires bigger instructions to access later fields
– And big srcu_node arrays wasted on real systems, 

which rarely have thousands of CPUs!!!
● And most srcu_struct instances don’t even need the 

srcu_node array at all!



42

Putting SRCU on a Memory Diet
● Separately allocate srcu_node tree

– But only if requested or actually needed
● srcutree.big_cpu_lim: # CPUs in “big” system (128)
● srcutree.convert_to_big: When to allocate?

– 0xX0: Never
– 0xX1: At init_srcu_struct() time (AKA “always”)
– 0xX2: When rcutorture so chooses
– 0xX3: Decide 0/1 at boot based on big_cpu_lim (0x03 is default)
– 0x1X: Above plus if lock contention is high and not OOM

– Sized based on actual number of CPUs



43

Putting SRCU on a Memory Diet
● Default to allocate on contention (0x13)?

– No: This has not yet earned our trust
– No useful way to report allocation failure

● Contention continues if OOM
● Which is probably OK...

Assisted by Neeraj Upadhyay, slated for v5.19



44

Real-Time Expedited Grace Periods



45

Real-Time Expedited Grace Periods

● Brief history of RCU CPU stall warnings:
– 1990s: Dynix/PTX 1.5 seconds
– 2000s: Linux 60 seconds
– 2010s: Linux 21 seconds
– 2020s: 20 milliseconds proposed for expedited GPs

● CONFIG_RCU_EXP_CPU_STALL_TIMEOUT
– Defaults to 20 ms if CONFIG_ANDROID, 21000 ms otherwise

● But how is this going to work???

Contributed by Uladzislau Rezki, slated for v5.19



46

Real-Time Expedited Grace Periods

● Expedited grace periods driven by workqueues
– Normal SCHED_OTHER priority

● New CONFIG_RCU_EXP_KTHREAD=y:
– kthread_create_worker() @ SCHED_FIFO
– Less than 32 CPUs, no -rt, boosting enabled
– Reduce max latency 3 OOM to ~2 ms!

Contributed by Kalesh Singh, slated for v5.19



47

Real-Time Expedited Grace Periods

● There are a few remaining issues
– Currently requires also running callback invocation 

at SCHED_FIFO
– Which results in unacceptable latency spikes
– Work in progress to run only expedited grace 

periods and priority boosting at SCHED_FIFO
● Let callbacks fight it out at SCHED_OTHER



48

Miscellaneous



49

Miscellaneous

● If CONFIG_PREEMPTION, RCU readers can 
be preempted

● No longer special restrictions on scheduler use 
of rcu_read_unlock() (Lai Jiangshan)

● RCU now watches almost all of the idle loop 
(Peter Zijlstra and Thomas Gleixner)



50

Looking to the Future



51

Possible Future Work

● Even better handling of callback floods (battery)
● Callback-invocation cache locality
● Consolidate RCU Tasks & RCU Tasks Rude
● Faster RCU Tasks Trace grace periods
● Consolidate RCU dynticks into context tracking (Peter Zijlstra and/or 

Frederic Weisbecker)
● A very long list of more speculative items

– For example, de-offload in response to callback overload
● Common case: Stuff I don’t see coming!!!



52

But How Much Future?



53

Looking Back to the Past ...

288 paulmck@linux.vnet.ibm.com (74%)
 11 peterz@infradead.org
 10 agordeev@redhat.com
 10 boqun.feng@gmail.com
  6 mingo@kernel.org
  6 oleg@redhat.com
  4 paul.gortmaker@windriver.com
  3 dave@stgolabs.net
  3 tglx@linutronix.de
  2 aik@ozlabs.ru
  2 bigeasy@linutronix.de
  2 changbin.du@intel.com

Number of RCU commits over the two years ending on April 24, 2017 from 46 contributors 



54

… And Preparing for the Future

503 paulmck@kernel.org (63%)
 78 frederic@kernel.org
 26 urezki@gmail.com
 20 joel@joelfernandes.org
 14 peterz@infradead.org
 13 neeraju@codeaurora.org
 10 qiang1.zhang@intel.com
  7 mchehab+huawei@kernel.org
  7 zhouzhouyi@gmail.com
  6 bigeasy@linutronix.de
  6 tglx@linutronix.de
  5 quic_neeraju@quicinc.com

Number of RCU commits over the past two years as of April 24, 2022 from 79 contributors



55

Longer-Term Trends

Upper trace: All RCU commits.  Lower trace: Non-paulmck RCU commits.  What happened at v3.14???



56

What Happened at v3.14?  A Train!!!

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

v
2
.6

.1
2

v
2
.6

.1
6

v
2
.6

.2
0

v
2
.6

.2
4

v
2
.6

.2
8

v
2
.6

.3
2

v
2
.6

.3
6

v
3
.0

v
3
.4

v
3
.8

v
3
.1

2

v
3
.1

6

v
4
.0

v
4
.4

v
4
.8

v
4
.1

2

v
4
.1

6

v
5
.0

v
5
.4

v
5
.8

v
5
.1

2

v
5
.1

7

 0

 10

 20

 30

 40

 50
L
o
C

%
 T

e
s
t

Linux Release

RCU

RCU Test

% Test

v3.14

Plot courtesy of Akira Yokosawa, taken from “Is Parallel Programming Hard, And, If So, What Can You Do About It?”



57

What Train Affected v3.14 RCU???

● Actually v3.0-rc7: https://lwn.net/Articles/453002/ 

● Understood bug in Nanjing, just before boarding 2-hour train to Shanghai

– Without internet access, so two hours sweating bullets over alleged fix

– No access to test grid and to cowardly to boot v3.0-rc7+fix on my only laptop

● Go from train to plane in Shanghai

– Just enough internet access to send an email

● This experience motivated the rcutorture scripting, hence v3.14



58

Summary



59

Summary

● RCU is still under active development:
– Driven by the needs of its users

● RCU synchronizes in space as well as time
– But the time and space aspects are deeply intertwined

– Enables near-zero-cost read-side synchronization

● RCU’s dirty little secret:
– RCU is dead simple, but in order to make good used of it, you must change 

the way that you think about your problem



60

For More Information
● Unraveling RCU Usage Mysteries

– Part 1: https://www.linuxfoundation.org/webinars/unraveling-rcu-usage-mysteries/ 

– Part 2: https://linuxfoundation.org/webinars/unraveling-rcu-usage-mysteries-additional-use-cases/ 

● “RCU Usage In the Linux Kernel: One Decade Later”:

– http://www.rdrop.com/~paulmck/techreports/survey.2012.09.17a.pdf 

– http://www.rdrop.com/~paulmck/techreports/RCUUsage.2013.02.24a.pdf 

– 2020 update: https://dl.acm.org/doi/10.1145/3421473.3421481 

● “Structured Deferral: Synchronization via Procrastination”: http://doi.acm.org/10.1145/2488364.2488549 

● Linux-kernel RCU API, 2019 Edition: https://lwn.net/Articles/777036/ 

● “Stupid RCU Tricks: So you want to torture RCU?”: https://paulmck.livejournal.com/61432.html 

● Documentation/RCU/* in kernel source

● “Is Parallel Programming Hard, And, If So, What Can You Do About It?”, “Deferred Processing” chapter: 
https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html 

● Folly-library RCU implementation (also C-language user-space RCU)

● Large piles of information: http://www.rdrop.com/~paulmck/RCU/



61

Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

