
Cleaning Up Linux’s CPU Hotplug For Real Time and Energy Management

Thomas Gleixner
Linutronix

Paul E. McKenney
IBM LTC assigned to Linaro

Vincent Guittot
ST-Ericsson assigned to Linaro

Abstract
Linux’s CPU-Hotplug facility was originally designed to
allow failing hardware to be removed from a running sys-
tem. Hardware fails quite infrequently, so CPU-hotplug
performance (much less real-time response) was not a
major consideration. However, CPU hotplug is now used
for energy management and (believe it or not!) real-
time response, both of which have unsurprisingly ex-
posed some shortcomings in CPU hotplug. This docu-
ment reviews a number of these shortcomings, and then
proposes an alternative CPU-hotplug approach that we
believe will address these shortcomings.

1 Introduction

The Linux kernel’s CPU-hotplug facility allows CPUs to
be added to or removed from a running kernel. CPU hot-
plug has historically been used to isolate failing CPUs
or to simplify running scalability benchmarks [5]. The
roots of the Linux kernel’s CPU-hotplug facility go back
almost ten years [4], but during that time, it has gained a
number of additional uses, including adjusting the sizes
of guest OSes in virtualized environments, clearing cur-
rent and future work from a given CPU, and improving
energy efficiency. These new uses place considerable
stress on the Linux kernel’s implementation, which was
not designed with them in mind.

Linux’s CPU-hotplug implementation is based on no-
tifiers, which are callbacks into the subsystems that need
to be aware of CPUs coming and going. These noti-
fiers are invoked repeatedly in multiple phases, so that
when a CPU is coming online, they are invoked with
CPU UP PREPARE (which runs on some other CPU), then
CPU STARTING (which runs with interrupts disabled on
the CPU coming online), and finally CPU ONLINE (which
might run on any CPU, but after the CPU has come on-
line). CPUs going offline have four notification phases:
CPU DOWN PREPARE (which might run on any CPU),

CPU DYING (which runs with interrupts disabled on the
offlining CPU while all other CPUs are spinning wait-
ing), CPU DEAD (which runs on some other CPU after
the CPU has gone offline), and CPU POST DEAD (which
runs on some other CPU after some of the CPU-hotplug
locks have been dropped). The CPU UP PREPARE and
CPU DOWN PREPARE notifiers are permitted to “fail”, in
other words, to refuse to allow the hotplug operation to
proceed.

Section 2 reviews shortcomings of the current imple-
mentation, Section 3 overviews our work in progress,
Section 4 lists alternative proposals, and Section 5 lists
potential issues with our approach.

2 CPU-Hotplug Shortcomings

The shortcomings of CPU hotplug are well known, but
worth discussion. The most obvious from a real-time-
computing perspective is OS jitter, discussed in Sec-
tion 2.1. From a Linux-kernel implementation view-
point, the lack of a well-defined CPU model during hot-
plug operations is most vexing, as described in Sec-
tion 2.2. A few unlucky portions of the Linux kernel
must correctly handle offline (or “zombie”) CPUs, which
is covered in Section 2.3. Finally, CPU hotplug notifies
kernel subsystems of hotplug operations, but a number
of these notifiers run in extremely constrained software
contexts, as documented in Section 2.4.

2.1 Overhead and OS Jitter

In a perfect world, a given CPU could come online or
go offline quickly and without disturbing the rest of the
system. Unfortunately, in this world, handling the CPU’s
per-CPU kthreads takes a long time (hundreds of mil-
liseconds or even seconds) [1]. This limits CPU hot-
plug’s use as an energy efficiency measure because the
CPU must stay powered off for quite some time to make

1



up for the CPU-hotplug overhead [3]1. Furthermore,
CPU hotplug uses stop machine(), which halts ap-
plication execution on all online CPUs for an extended
period of time. This rules out use of CPU hotplug
for real-time workloads—and makes its use difficult on
battery-powered systems because the CPU hotplug oper-
ation might consume more energy than is saved by pow-
ering off the CPU for a short time.

The traditional rule “don’t use CPU hotplug on real-
time systems” is now starting to fail due to real-time
guests running on real-time hypervisors. In this case, the
hypervisor needs to offline a failing CPU without caus-
ing all the real-time guest OSes to miss their deadlines.
Furthermore, a guest might need to add or remove CPUs
without disrupting its real-time application.

In addition, offlining and immediately onlining a CPU
has the useful side-effect of forcing all current and future
work off of that CPU, providing better response to its
real-time application. Unfortunately, such offlining and
onlining will cause any pre-existing real-time application
running on that same system to miss its deadlines.

These use cases are specific examples of the trend to-
wards increasing general-purpose functionality on real-
time systems [2]. Now that CPU hotplug has moved
away from its original intended use of removal of fail-
ing CPUs, excessive overhead and OS jitter from CPU-
hotplug operations is no longer acceptable.

2.2 Ill-Defined Model of CPU

Suppose that a given CPU is going offline, and that half
of its notifiers have completed. What state is the CPU in?

The answer to this question is unclear. The CPU is
marked as online in the cpu online mask, but some of
its functionality really has been disabled. Worse yet, the
default is for the notifiers to execute in the same order
as they were registered at boot time. This is a problem
because the boot process adds capabilities to the CPU in
a good order that respects dependencies among those ca-
pabilities, which means that removing them in the same
order can be problematic. For example, the scheduler
uses both RCU and IPIs, and during boot, RCUs and IPIs
are initialized before the scheduler. So the boot process
builds up the CPU’s capabilities in a tree-like fashion,
and then the CPU-hotplug system attempts to remove the
tree starting at the trunk, in this case removing RCU and
IPIs before removing the scheduler.

Although notifier priorities are used to handle this spe-
cific case, this requires painstaking manual intervention.
The Linux kernel deserves better.

1 Five milliseconds is a good upper bound on CPU-hotplug latency.

2.3 Zombie CPUs
The stop machine() primitive forces all CPUs on the
system to switch to special kernel threads (kthreads). The
outgoing CPU then executes CPU DYING class of noti-
fiers in the context of its kthread, while the other CPUs
spin in the context of their kthreads. Therefore, a newly
offlined CPU passes through the scheduler when switch-
ing from its stop machine() kthread to the idle loop,
where it is powered off.

This in turn means that both the scheduler and RCU
must handle zombie offline CPUs for a short period after
they have marked themselves offline. RCU handles this
by assuming that a given CPU will not remain a zombie
for more than one jiffy, which does currently work, but
will eventually lead to baffling failures. Again, the Linux
kernel deserves better.

2.4 Inconvenient Software Contexts
The CPU DYING and CPU STARTING classes of notifiers
execute with interrupts disabled, which prevents them
from blocking, which in turn prevents them from starting
or stopping kthreads, which in turn can be problematic.

For example, when preemptible RCU is configured
with priority boosting, it uses a set of per-CPU kthreads
to boost callback-execution priority. RCU must inter-
act with these threads in the CPU UP PREPARE, CPU

ONLINE, CPU DOWN PREPARE, and CPU DEAD notifiers,
which means that RCU must deal with either a CPU that
doesn’t have an RCU kthread or an RCU kthread that
doesn’t have a CPU, both of which are fragile and bug-
prone. Once again, the Linux kernel deserves better.

3 Approach

A successful approach to new-age CPU hotplug must
provide the following:

1. Robust design for CPUs that are partially online.

2. Simple and fast handling of per-CPU kthreads.

3. Explicit specification of notifier dependencies.

4. Parallel CPU-hotplug notification.

5. Full software capabilities in all CPU-hotplug noti-
fiers.

6. Elimination of OS jitter.

To provide all this, our approach provides a generic
facility to create and park per-CPU hotplug kthreads (see
Section 3.1), executes execute in per-CPU kthread con-
text (see Section 3.2, runs notifiers in reverse order for
offline (see Section 3.3), and restricts hotplug-time exe-
cution to per-CPU hotplug kthreads (see Section 3.4.

2



1 static int my_cpu_hotplug_kthread(void *arg)
2 {
3 int cpu = (int)(long)arg;
4
5 /*
6 * Code here from CPU_STARTING notifier.
7 */
8
9 cpu_hotplug_kthread_started();

10
11 while (!kthread_should_park()) {
12
13 /* Do actual work here. */
14
15 }
16
17 /*
18 * Code here from CPU_DYING notifier.
19 */
20
21 }

Figure 1: CPU-Hotplug Per-CPU kthread Structure

3.1 Generic Per-CPU Hotplug kthreads

Vincent established that creation and deletion of kthreads
can add multiple seconds to CPU-hotplug latencies [1].
One best to avoid this is simply to leave those kthreads
in place while the corresponding CPU is offline. A key
observation (due to Thomas) is that the Linux kernel al-
ready has some threads that remain runnable and bound
to offline CPU, namely the idle threads. A generic facil-
ity will allow the per-CPU hotplug kthreads to have this
same capability, so that they remain quiescent while the
corresponding CPU is offline.

3.2 Notify From Per-CPU kthreads

Given special kthreads managed by the CPU-hotplug fa-
cility, it makes sense to run the code currently in CPU-
hotplug notifiers from within these kthreads. This al-
lows the CPU DYING and CPU STARTING notifiers to use
the full capabilities of the scheduler, allowing more of
the notifier code to execute at CPU DYING and CPU

STARTING time. This in turn simplifies the CPU-hotplug
per-CPU kthreads, as shown by the my cpu hotplug

kthread() function in Figure 1. When a CPU boots
or comes online, this function is invoked. When it fin-
ishes initialization, it invokes cpu hotplug kthread

started() as shown on line 11, signalling that the next
notifier or kthread may now be started.

The loop spanning lines 11-15 terminates when
kthread should park() returns true, indicating that
the corresponding CPU is going offline. The function
then executes offline-time cleanups as indicated by the
comment on lines 17-19.

As noted earlier, the CPU UP PREPARE and CPU DOWN

PREPARE phases can block CPU hotplug. Those that
actually do (for example, smp core99 cpu notify())

must remain notifiers. That said, most do not, and can
therefore can run in kthread context.

However, a great many of the Linux kernel’s notifiers
do not involve a kthread. Creating an additional per-CPU
kthread for each of these notifiers would be overkill, so
these notifiers should remain notifiers. They nevertheless
should run in kthread context, for example, in the context
of the kthread coordinating CPU-hotplug operation.

3.3 Reverse Notifier Order For Offline

One of the reasons for notifier priorities and for the cur-
rent multi-phase CPU-hotplug operation is dependencies
among different subsystems. These dependencies must
be handled manually in a distributed fashion, and is a
major source of pain and of bugs.

A better approach is to note that CPU hotplug is not
atomic, and that CPUs are booted up in an orderly man-
ner, with later function depending on earlier function.
For example, the scheduler uses IPIs and RCU, so a
CPU initializes its IPI and RCU handling before it starts
scheduling processes. Given that the scheduler relies
on IPIs and RCU, it makes no sense whatsoever for the
CPU-hotplug offlining path to shut down IPIs and RCU
before the scheduler. However, that is exactly what the
current CPU-hotplug notifier operation encourages by in-
voking offline-time notifiers in the same order that it in-
vokes online-time notifiers.

The only reasonable approach is to run the offline-time
notifiers in the opposite order from online-/boot-time no-
tifiers. With this approach, IPIs and RCU are notified
before the scheduler when a CPU comes online, and the
scheduler is notified before IPIs and RCU when a CPU
goes offline. This means that the scheduler can count on
IPIs and RCU being operational at all times.

In addition, this approach permits a CPU to be par-
tially torn down to a well-defined checkpoint, for exam-
ple, a CPU might be torn down to the point that all it can
do is run in the idle loop, possibly permitting more ag-
gressive power-efficiency measures to be brought to bear
while providing improved CPU-online latency. Another
example is partially tearing the CPU down to the point
that it still handles interrupts, but does not run normal
tasks, providing a form of CPU isolation.

There will of course be the occasional necessary evil
of layering violations, but with this scheme such viola-
tions should be the exception rather than the rule.

3.4 Only Per-CPU Hotplug kthreads Dur-
ing CPU Hotplug

One feature of the current CPU-hotplug approach that
has caused RCU much grief is the fact that interrupts are

3



disabled during the CPU STARTING and CPU DYING no-
tifiers. This means that RCU cannot create or destroy
kthreads at the logical time to do so, but must instead do
so in one of the other notifiers, and handle either semi-
crippled or semi-safe operations betweentimes.

On the other hand, it would be far worse to con-
tinue running arbitrary tasks during this time because
those tasks would use facilities that had already been torn
down. This is bad for the kernel’s actuarial statistics.2

One solution to this problem is for the scheduler to run
only special CPU-hotplug per-CPU tasks during CPU-
hotplug processing. This allows the notifiers to make
full use of the scheduler facilities when handling their
kthreads, while preventing unwary normal tasks from
straying onto a CPU that is only half working.

4 Alternative Approaches Considered

We considered several alternatives. The first alternative,
continuing with existing CPU hotplug, was dispensed
with in Section 2.

The second alternative was continuing with existing
CPU-hotplug, but running the offline-time notifiers in
reverse order. While this would be an improvement, it
would do nothing to solve the kthread-parking problem.

The final alternative was dispensing with CPU hotplug
completely in favor of things like cpusets and interrupt
affinity. However, the most troublesome aspects of CPU
hotplug are inherent in clearing all current and future
work from a given CPU [3], so little is gained. In ad-
dition, CPU hotplug is still required for failing hardware.

5 Issues

Old-Style Interrupt Controllers Some interrupt con-
trollers cannot be directed away from a given not-yet-
offline CPU. If such an interrupt controller absolutely
must be used, we propose interrupt trampolining as a
workaround.

Scheduler Once RCU has marked a CPU as offline,
it cannot safely do a context switch because the sched-
uler relies on RCU. This can be handled by splitting the
RCU notifiers into an earlier-in-boot notifier that handles
marking the CPU online or offline, and a later-in-boot
notifier that manages RCU’s kthreads.

Early-Boot kthreads RCU initializes itself and regis-
ters its notifiers during early boot, long before kthreads

2 That said, RCU currently must handle offline CPUs running
through the scheduler on their way from their CPU DYING notifiers to
the idle loop. RCU’s method of handling this issue is at best inelegant.

may be created. The implementations of RCU that re-
quire kthreads manually defer kthread creation until after
the scheduler is running.

x86 MTRRs Updates to x86 memory type range regis-
ters (MTRRs) require that all hardware threads in a given
core be quiesced. Although this might slow down hot-
plug for hyperthreaded x86 kernels it should be quite a
bit faster than a full stop machine().

Scanning Online CPUs One of the advantages of
stop machine() is that the final CPU-offline process
appears atomic to any in-kernel code that is not hotplug-
aware. Removing this atomicity means that each of
the several hundred occurrances of for each online

cpu() (which iterates over all online CPUs) will need to
be inspected and perhaps modified.

6 Summary and Conclusions

We expect that the new approach to CPU hotplug will re-
duce hotplug latencies to 5ms, making Linux more use-
ful in both the real-time and battery-powered-embedded
arenas.

Acknowledgements and Legal Statement

We thank Amit Kucheria, Peter Zijlstra, Srivatsa Bhat,
and Steven Rostedt for many valuable and illuminating
discussions. We are indebted to Dave Rusling and Jim
Wasko for their support of this effort.

This work represents the views of the authors and does not
necessarily represent the views of their employers.
Linux is a registered trademark of Linus Torvalds.
Other company, product, and service names may be trademarks
or service marks of such companies.

References
[1] GUITTOT, V. Cpu hotplug. Available: https://wiki.linaro.

org/WorkingGroups/PowerManagement/Doc/Hotplug

[Viewed April 20, 2012], February 2012.

[2] MCKENNEY, P. E. SMP and embedded real time. Linux
Journal, 153 (January 2007), 52–57. Available: http://www.

linuxjournal.com/article/9361 [Viewed May 31, 2007].

[3] MCKENNEY, P. E. The linaro connect scheduler minisummit. Re-
port from the Q2 2012 Linaro Connect scheduler mini-summit on
ARM’s big.LITTLE architecture., February 2012.

[4] RUSSELL, R. Hotplug cpu toy for i386. Available: http://lwn.
net/Articles/76667/ [Viewed April 25, 2012], March 2004.

[5] SEQUENT COMPUTER SYSTEMS, INC. tmp ctl - multi-processor-
control. http://oss.sgi.com/projects/numa/download/

dynix, March 2001.

4

https://wiki.linaro.org/WorkingGroups/PowerManagement/Doc/Hotplug
https://wiki.linaro.org/WorkingGroups/PowerManagement/Doc/Hotplug
http://www.linuxjournal.com/article/9361
http://www.linuxjournal.com/article/9361
http://lwn.net/Articles/76667/
http://lwn.net/Articles/76667/
http://oss.sgi.com/projects/numa/download/dynix
http://oss.sgi.com/projects/numa/download/dynix

	1 Introduction
	2 CPU-Hotplug Shortcomings
	2.1 Overhead and OS Jitter
	2.2 Ill-Defined Model of CPU
	2.3 Zombie CPUs
	2.4 Inconvenient Software Contexts

	3 Approach
	3.1 Generic Per-CPU Hotplug kthreads
	3.2 Notify From Per-CPU kthreads
	3.3 Reverse Notifier Order For Offline
	3.4 Only Per-CPU Hotplug kthreads During CPU Hotplug

	4 Alternative Approaches Considered
	5 Issues
	6 Summary and Conclusions

