
© 2002 IBM Corporation

Performance, Scalability, and Real-Time Response From the Linux Kernel

ACACES July 13, 2009 Copyright © 2009 IBM

Introduction to Performance, Scalability, and Introduction to Performance, Scalability, and
Real-Time Issues on Modern Multicore Hardware:Real-Time Issues on Modern Multicore Hardware:
Is Parallel Programming Hard, And If So, Why?Is Parallel Programming Hard, And If So, Why?

Paul E. McKenneyPaul E. McKenney
IBM Distinguished Engineer & CTO LinuxIBM Distinguished Engineer & CTO Linux
Linux Technology CenterLinux Technology Center

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 2

Course Objectives and GoalsCourse Objectives and Goals

 Introduction to Performance, Scalability, and Real-Time Issues
on Modern Multicore Hardware: Is Parallel Programming Hard,
And If So, Why?

 Performance and Scalability Technologies in the Linux KernelPerformance and Scalability Technologies in the Linux Kernel
 Creating Performant and Scalable Linux ApplicationsCreating Performant and Scalable Linux Applications
 Real-Time Technologies in the Linux KernelReal-Time Technologies in the Linux Kernel
 Creating Real-Time Linux ApplicationsCreating Real-Time Linux Applications

 ““I hear and I forget”I hear and I forget”
 ““I see and I remember”I see and I remember”
 ““I do and I understand”I do and I understand”

 But unfortunately, we won't have time to get here this weekBut unfortunately, we won't have time to get here this week
 And need to go beyond understanding to habit formationAnd need to go beyond understanding to habit formation

• See “Outliers” by Malcolm GladwellSee “Outliers” by Malcolm Gladwell

 What decades-old parallel programming environment permits parallel-What decades-old parallel programming environment permits parallel-
programming novices to keep large multi-core computers usefully busy?programming novices to keep large multi-core computers usefully busy?

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 3

OverviewOverview

Why Parallel Programming?Why Parallel Programming?
Why Real-Time Programming?Why Real-Time Programming?
Parallel Programming GoalsParallel Programming Goals
Parallel Programming TasksParallel Programming Tasks
Performance of Synchronization OperationsPerformance of Synchronization Operations
ConclusionsConclusions

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 4

Why Parallel Programming?Why Parallel Programming?

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 5

Why Parallel Programming? (Party Line)Why Parallel Programming? (Party Line)

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 6

Why Parallel Programming? (Reality)Why Parallel Programming? (Reality)

 Parallelism is one performance-optimization Parallelism is one performance-optimization
technique of manytechnique of many

 Hashing, search trees, parsers, cordic algorithms, ...Hashing, search trees, parsers, cordic algorithms, ...

 But operating-system kernels are specialBut operating-system kernels are special
 In-kernel performance and scalability losses cannot In-kernel performance and scalability losses cannot

be made up by user-level codebe made up by user-level code
 Therefore, if any user application is to be fast and Therefore, if any user application is to be fast and

scalable, the portion of the kernel used by that scalable, the portion of the kernel used by that
application must be fast and scalableapplication must be fast and scalable

 System libraries and utilities can also be specialSystem libraries and utilities can also be special
 As can database kernels, web servers, ...As can database kernels, web servers, ...

 More on this later!More on this later!

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 7

Why Real-Time Programming?Why Real-Time Programming?

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 8

Why Real-Time Programming?Why Real-Time Programming?

 Computer input, early-mid 1970sComputer input, early-mid 1970s
 Turn-around time ranged from minutes to daysTurn-around time ranged from minutes to days

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 9

Why Real-Time Programming?Why Real-Time Programming?

 Commercial computing response timeCommercial computing response time
 -1970s: punched-card-based batch processing-1970s: punched-card-based batch processing

• Response time: minutes-daysResponse time: minutes-days
• One computerOne computer

 1960s-1980: time sharing1960s-1980: time sharing
• Response time: seconds-minutesResponse time: seconds-minutes
• Two computers (host and terminal)Two computers (host and terminal)

 1980s-present: workstation/desktop/laptop/...1980s-present: workstation/desktop/laptop/...
• Response time: milliseconds-minutesResponse time: milliseconds-minutes
• One computerOne computer

 1990s-present: web computing1990s-present: web computing
• Response time: milliseconds-secondsResponse time: milliseconds-seconds
• Lots of computers, routers, gateways, web front-ends, ...Lots of computers, routers, gateways, web front-ends, ...

 Industrial computing response timeIndustrial computing response time
 Microseconds-milliseconds, but now interconnectedMicroseconds-milliseconds, but now interconnected

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 10

Why Real-Time Programming?Why Real-Time Programming?

Machine tool 1

SCADA

Enterprise Resource Planning (ERP)

Supply Chain Invoicing &
billing

Per-domain RT QoS: Per-domain RT QoS:
• white: enterprise-likewhite: enterprise-like
• silver: soft, 1-5ssilver: soft, 1-5s
• gold: harder, <1sgold: harder, <1s
• red: hard, sub-reflexred: hard, sub-reflex

WorkWork
RoutingRouting

Manufacturing Execution System (MES)

Logistics
ERP

SetupSetup

SCADA: supervisory/system control and data acquisitionSCADA: supervisory/system control and data acquisition

Transport
logistics

Materials
warehousing

Factory Automation System / DCSFactory Automation System / DCSFactory Automation System / DCS

Print/Verify/Ship Application
Sensors (on-site stocks)

Factory conditions

RFID
print

RFID
read

conveyor
actuator

PLC

PLC PLC

Machine tool 2

PLC

PLC

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 11

Parallel Programming GoalsParallel Programming Goals

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 12

Parallel Programming GoalsParallel Programming Goals

Performance

Productivity Generality

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 13

Parallel Programming Goals: Why Performance?Parallel Programming Goals: Why Performance?

 (Performance often expressed as scalability or (Performance often expressed as scalability or
normalized as in performance per watt)normalized as in performance per watt)

 If you don't care about performance, If you don't care about performance, whywhy are are
you bothering with parallelism???you bothering with parallelism???

 Just run single threaded and be happy!!!Just run single threaded and be happy!!!

 But what about:But what about:
 All the multi-core systems out there?All the multi-core systems out there?
 Efficient use of resources?Efficient use of resources?
 Everyone saying parallel programming is crucial?Everyone saying parallel programming is crucial?

 Parallel Programming: one optimization of manyParallel Programming: one optimization of many
 CPU: one potential bottleneck of manyCPU: one potential bottleneck of many

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 14

Parallel Programming Goals: Why Productivity?Parallel Programming Goals: Why Productivity?

 1948 CSIRAC (oldest intact computer)1948 CSIRAC (oldest intact computer)
 2,000 vacuum tubes, 768 20-bit words of memory2,000 vacuum tubes, 768 20-bit words of memory
 $10M AU construction price$10M AU construction price
 1955 technical salaries: $3-5K/year1955 technical salaries: $3-5K/year
 Makes business sense to dedicate 10-person team to increasing Makes business sense to dedicate 10-person team to increasing

performance by 10%performance by 10%

 2008 z80 (popular 8-bit microprocessor2008 z80 (popular 8-bit microprocessor))
 8,500 transistors, 64K 8-bit works of memory8,500 transistors, 64K 8-bit works of memory
 $1.36 per CPU in quantity 1,000 (7 OOM decrease)$1.36 per CPU in quantity 1,000 (7 OOM decrease)
 2008 SW starting salaries: $50-95K/year US (1 OOM increase)2008 SW starting salaries: $50-95K/year US (1 OOM increase)
 Need 1M CPUs to break even on a one-person-year investment to Need 1M CPUs to break even on a one-person-year investment to

gain 10% performance!gain 10% performance!
• Or 10% more performance must be blazingly importantOr 10% more performance must be blazingly important
• Or you are doing this as a hobby... In which case, do what you want!Or you are doing this as a hobby... In which case, do what you want!

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 15

Parallel Programming Goals: Why Generality?Parallel Programming Goals: Why Generality?

 The more general the solution, the more users The more general the solution, the more users
to spread the cost over.to spread the cost over.

HW

FW

OS Kernel

System Utilities & Libraries

Middleware (e.g., DBMS)

Application

P
er

fo
rm

an
ce

P
er

fo
rm

an
ce G

en
erality

G
en

erality

ProductivityProductivity

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 16

Performance, Scalability, and GeneralityPerformance, Scalability, and Generality

MPI

C/C++ Locking
Plus Threads

Java

ProductivityProductivity

P
er

fo
rm

an
ce

 a
n

d
 S

ca
la

b
ili

ty
P

er
fo

rm
an

ce
 a

n
d

 S
ca

la
b

ili
ty

OpenMP

Map / Reduce

SQL LAMP

Ruby on
Rails

Pick any two!!!Pick any two!!!

“Nirvana”

T
o

o
 b

ad
 it

 d
o

es
n

't
 e

xi
st

!!
!

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 17

Parallel Programming TasksParallel Programming Tasks

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 18

Parallel Programming TasksParallel Programming Tasks

 Parallel Programming Only Partly TechnicalParallel Programming Only Partly Technical
 Human element is extremely importantHuman element is extremely important
 What can a human being easily construct and read?What can a human being easily construct and read?

• Similar to stylized English used in emergency situationsSimilar to stylized English used in emergency situations
• Clarity, concision, and unambiguity trump style and graceClarity, concision, and unambiguity trump style and grace

 In a perfect world, use human-factors studiesIn a perfect world, use human-factors studies
 But few very narrow parallel human-factors studiesBut few very narrow parallel human-factors studies
 And programmers vary by orders of magnitudeAnd programmers vary by orders of magnitude
 < 3-4 OOM benefit is invisible to affordable study< 3-4 OOM benefit is invisible to affordable study

 Therefore, look at tasks that must be performed Therefore, look at tasks that must be performed
for parallel programs that need not be for for parallel programs that need not be for
sequential programssequential programs

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 19

Parallel Programming TasksParallel Programming Tasks

Work
Partitioning

Interacting
With Hardware

Parallel
Access Control

Resource
Partitioning

& Replication

Data-parallel approach: first partition resources, then partition work, and onlyData-parallel approach: first partition resources, then partition work, and only
then worry about parallel access control. Lather, rinse, and repeat.then worry about parallel access control. Lather, rinse, and repeat.

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 20

Parallel Programming Tasks (Close-Up View)Parallel Programming Tasks (Close-Up View)

Parallel
Access Control

Im
pl

ic
it

vs
.

E
xp

lic
it S

yn
ch

ro
n

izatio
n

M
ech

an
ism

s

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 21

Parallel Programming Tasks (Even Closer View)Parallel Programming Tasks (Even Closer View)

Synchronization Mechanisms

To name but a few...

Locking

Message
Passing

Reference
Counting

Data
Ownership

Hazard
Pointers

NBS

Transactions

SeqLocks

RCU

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 22

Performance of Synchronization MechanismsPerformance of Synchronization Mechanisms

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 23

Performance of Synchronization MechanismsPerformance of Synchronization Mechanisms

Operation Cost (ns) Ratio
Clock period 0.6 1
Best-case CAS 37.9 63.2
Best-case lock 65.6 109.3
Single cache miss 139.5 232.5
CAS cache miss 306.0 510.0

4-CPU 1.8GHz AMD Opteron 844 system4-CPU 1.8GHz AMD Opteron 844 system

Typical synchronization Typical synchronization
mechanisms do this a lotmechanisms do this a lot

Heavily optimized reader-Heavily optimized reader-
writer lock might get here for writer lock might get here for

readers (but too bad about readers (but too bad about
those poor writers...)those poor writers...)

Need to be here!Need to be here!
(Partitioning/RCU)(Partitioning/RCU)

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 24

Performance of Synchronization MechanismsPerformance of Synchronization Mechanisms

Operation Cost (ns) Ratio
Clock period 0.6 1
Best-case CAS 37.9 63.2
Best-case lock 65.6 109.3
Single cache miss 139.5 232.5
CAS cache miss 306.0 510.0

4-CPU 1.8GHz AMD Opteron 844 system4-CPU 1.8GHz AMD Opteron 844 system

Typical synchronization Typical synchronization
mechanisms do this a lotmechanisms do this a lot

Heavily optimized reader-Heavily optimized reader-
writer lock might get here for writer lock might get here for

readers (but too bad about readers (but too bad about
those poor writers...)those poor writers...)

Need to be here!Need to be here!
(Partitioning/RCU)(Partitioning/RCU)

But this is an old system...But this is an old system...

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 25

Performance of Synchronization MechanismsPerformance of Synchronization Mechanisms

Operation Cost (ns) Ratio
Clock period 0.6 1
Best-case CAS 37.9 63.2
Best-case lock 65.6 109.3
Single cache miss 139.5 232.5
CAS cache miss 306.0 510.0

4-CPU 1.8GHz AMD Opteron 844 system4-CPU 1.8GHz AMD Opteron 844 system

Typical synchronization Typical synchronization
mechanisms do this a lotmechanisms do this a lot

Heavily optimized reader-Heavily optimized reader-
writer lock might get here for writer lock might get here for

readers (but too bad about readers (but too bad about
those poor writers...)those poor writers...)

Need to be here!Need to be here!
(Partitioning/RCU)(Partitioning/RCU)

But this is an old system...But this is an old system... And why low-level details???And why low-level details???

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 26

Why All These Low-Level Details???Why All These Low-Level Details???

 Would you trust a bridge designed by someone Would you trust a bridge designed by someone
who did not understand strengths of materials?who did not understand strengths of materials?

 Or a ship designed by someone who did not Or a ship designed by someone who did not
understand the steel-alloy transition temperatures?understand the steel-alloy transition temperatures?

 Or a house designed by someone who did not Or a house designed by someone who did not
understand that unfinished wood rots when wet?understand that unfinished wood rots when wet?

 Or a car designed by someone who did not Or a car designed by someone who did not
understand the corrosion properties of the metals understand the corrosion properties of the metals
used in the exhaust system?used in the exhaust system?

 Or a space shuttle designed by someone who did not Or a space shuttle designed by someone who did not
understand the temperature limitations of O-rings?understand the temperature limitations of O-rings?

 So why trust algorithms from someone ignorant So why trust algorithms from someone ignorant
of the properties of the underlying hardware???of the properties of the underlying hardware???

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 27

Performance of Synchronization MechanismsPerformance of Synchronization Mechanisms

Operation Ratio
Clock period 0.4 1
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache miss 12.9 35.8
CAS cache miss 7.0 19.4

Cost (ns)

16-CPU 2.8GHz Intel X5550 (Nehalem) System16-CPU 2.8GHz Intel X5550 (Nehalem) System

What a difference a few years can make!!!What a difference a few years can make!!!

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 28

Performance of Synchronization MechanismsPerformance of Synchronization Mechanisms

Operation Ratio
Clock period 0.4 1
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache “miss” 12.9 35.8
CAS cache “miss” 7.0 19.4
Single cache miss (off-core) 31.2 86.6
CAS cache miss (off-core) 31.2 86.5

Cost (ns)

16-CPU 2.8GHz Intel X5550 (Nehalem) System16-CPU 2.8GHz Intel X5550 (Nehalem) System

Not Not quitequite so good... But still a 6x improvement!!! so good... But still a 6x improvement!!!

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 29

Performance of Synchronization MechanismsPerformance of Synchronization Mechanisms

Operation Ratio
Clock period 0.4 1
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache miss 12.9 35.8
CAS cache miss 7.0 19.4
Single cache miss (off-core) 31.2 86.6
CAS cache miss (off-core) 31.2 86.5
Single cache miss (off-socket) 92.4 256.7
CAS cache miss (off-socket) 95.9 266.4

Cost (ns)

16-CPU 2.8GHz Intel X5550 (Nehalem) System16-CPU 2.8GHz Intel X5550 (Nehalem) System

Maybe not such a big difference after all...Maybe not such a big difference after all...
And these are best-case values!!! (Why?)And these are best-case values!!! (Why?)

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 30

Performance of Synchronization MechanismsPerformance of Synchronization Mechanisms

If you thought a If you thought a singlesingle atomic operation was slow, try lots of the atomic operation was slow, try lots of them!!!m!!!
(Parallel atomic increment of single variable on 1.9GHz Power 5 system)(Parallel atomic increment of single variable on 1.9GHz Power 5 system)

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 31

Performance of Synchronization MechanismsPerformance of Synchronization Mechanisms

Same effect on a 16-CPU 2.8GHz Intel X5550 (Nehalem) systemSame effect on a 16-CPU 2.8GHz Intel X5550 (Nehalem) system

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 32

System Hardware StructureSystem Hardware Structure

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

S
O

L
 R

T
 @

 5
G

H
z

S
O

L
 R

T
 @

 5
G

H
z

Electrons move at 0.03C to 0.3C in transistors and, so lots of waiting. 3D???Electrons move at 0.03C to 0.3C in transistors and, so lots of waiting. 3D???

3
ce

n
ti

m
et

er
s

3
ce

n
ti

m
et

er
s

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 33

Visual Demonstration of Instruction OverheadVisual Demonstration of Instruction Overhead

The Bogroll Demonstration

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 34

CPU Performance: The Marketing PitchCPU Performance: The Marketing Pitch

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 35

CPU Performance: Memory ReferencesCPU Performance: Memory References

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 36

CPU Performance: Pipeline FlushesCPU Performance: Pipeline Flushes

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 37

CPU Performance: Atomic InstructionsCPU Performance: Atomic Instructions

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 38

CPU Performance: Memory BarriersCPU Performance: Memory Barriers

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 39

CPU Performance: Cache MissesCPU Performance: Cache Misses

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 40

CPU Performance: I/OCPU Performance: I/O

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 41

Exercise: Dining Philosophers ProblemExercise: Dining Philosophers Problem
Each philosopher requires two forks to eat.Each philosopher requires two forks to eat.
Need to avoid starvation.Need to avoid starvation.

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 42

Exercise: Dining Philosophers Solution #1Exercise: Dining Philosophers Solution #1

11

5522

33 44
Locking hierarchy.Locking hierarchy.
Pick up low-numbered fork first,Pick up low-numbered fork first,
preventing deadlock.preventing deadlock. Is this a good solution???Is this a good solution???

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 43

Exercise: Dining Philosophers Solution #2Exercise: Dining Philosophers Solution #2

11
55

22

33

44
Locking hierarchy.Locking hierarchy.
Pick up low-numbered fork first,Pick up low-numbered fork first,
preventing deadlock.preventing deadlock.

If all want to eat, at least two If all want to eat, at least two
will be able to do so.will be able to do so.

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 44

Exercise: Dining Philosophers Solution #3Exercise: Dining Philosophers Solution #3

Zero contention.Zero contention.
All 5 can eat concurrently.All 5 can eat concurrently.
Excellent disease control.Excellent disease control.

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 45

Exercise: Dining Philosophers SolutionsExercise: Dining Philosophers Solutions

 Objections to solution #2 and #3:Objections to solution #2 and #3:
 ““You can't just change the rules like that!!!”You can't just change the rules like that!!!”

• No rule against moving or adding forks!!!No rule against moving or adding forks!!!
 ““Dining Philosophers Problem valuable lock-hierarchy Dining Philosophers Problem valuable lock-hierarchy

teaching tool – #3 just destroyed it!!!”teaching tool – #3 just destroyed it!!!”
• Lock hierarchy is indeed very valuable and widely used, so the Lock hierarchy is indeed very valuable and widely used, so the

restriction “there can only be five forks positioned as shown” restriction “there can only be five forks positioned as shown”
does indeed have its place, even if it didn't appear in this does indeed have its place, even if it didn't appear in this
instance of the Dining Philosophers Problem.instance of the Dining Philosophers Problem.

• But the lesson of transforming the problem into perfectly But the lesson of transforming the problem into perfectly
partitionable form is also very valuable, and given the wide partitionable form is also very valuable, and given the wide
availability of cheap multiprocessors, most desperately needed.availability of cheap multiprocessors, most desperately needed.

 ““But what if each fork cost a million dollars?”But what if each fork cost a million dollars?”
• Then we make the philosophers eat with their fingers... Then we make the philosophers eat with their fingers... ☺☺

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 46

But What To Do...But What To Do...

 What do you do for a problem that is inherently What do you do for a problem that is inherently
fine-grained (so that synchronization primitives fine-grained (so that synchronization primitives
such as locking, TM, NBS, &c are inefficient) such as locking, TM, NBS, &c are inefficient)
and update-heavy (so that RCU is not helpful)?and update-heavy (so that RCU is not helpful)?

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 47

But What To Do...But What To Do...

 What do you do for a problem that is inherently What do you do for a problem that is inherently
fine-grained (so that synchronization primitives fine-grained (so that synchronization primitives
such as locking, TM, NBS, &c are inefficient) such as locking, TM, NBS, &c are inefficient)
and update-heavy (so that RCU is not helpful)?and update-heavy (so that RCU is not helpful)?

 Why not just write an optimized sequential program?Why not just write an optimized sequential program?
 Or you can always invent something new!!!Or you can always invent something new!!!

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 48

Exercise: High-Speed Concurrent CountingExercise: High-Speed Concurrent Counting

 Need to maintain networking statisticsNeed to maintain networking statistics
 Packets transmitted and receivedPackets transmitted and received
 Bytes transmitted and receivedBytes transmitted and received

 Packets might be transmitted or received on Packets might be transmitted or received on
any CPU at any timeany CPU at any time

 Large machine capable of sending and Large machine capable of sending and
receiving millions of packets per secondreceiving millions of packets per second

 40 microseconds per packet unacceptable!!!40 microseconds per packet unacceptable!!!

 Systems-monitoring package reads out these Systems-monitoring package reads out these
statistics every five secondsstatistics every five seconds

 Can you implement this?Can you implement this?

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 49

Solution: High-Speed Concurrent CountingSolution: High-Speed Concurrent Counting

 Maintain per-CPU counters for each datumMaintain per-CPU counters for each datum
 Packets transmittedPackets transmitted
 Packets receivedPackets received
 Bytes transmittedBytes transmitted
 Bytes receivedBytes received

 Each CPU updates its own counterEach CPU updates its own counter
 __get_cpu_var(packets_xmitted)++;__get_cpu_var(packets_xmitted)++;

 To read out current value, sum all copies of the To read out current value, sum all copies of the
desired counterdesired counter

 Slow, but doesn't happen very often, so OKSlow, but doesn't happen very often, so OK

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 50

Solution: High-Speed Concurrent CountingSolution: High-Speed Concurrent Counting

One variable badOne variable bad

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 51

Solution: High-Speed Concurrent CountingSolution: High-Speed Concurrent Counting

Many variables goodMany variables good

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 52

ConclusionsConclusions

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 53

Summary and Problem StatementSummary and Problem Statement

 Parallel Research and Development:Parallel Research and Development:
 High productivity and high performance (specialized apps)High productivity and high performance (specialized apps)

• Remember what the spreadsheet did for the PC!!!Remember what the spreadsheet did for the PC!!!
 Generality and high performance (infrastructure)Generality and high performance (infrastructure)

• For the experts developing the above appsFor the experts developing the above apps
 Generality and high productivityGenerality and high productivity

• But only if some advantage over sequential environment!!!But only if some advantage over sequential environment!!!

 Problem Statements:Problem Statements:
 Work breakdown, primitives, then partitioningWork breakdown, primitives, then partitioning
 Generality, performance, then productivityGenerality, performance, then productivity

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 54

Problem Statement #1: Parallel PitfallProblem Statement #1: Parallel Pitfall

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 55

Problem Statement #1Problem Statement #1

Work
Partitioning

Interacting
With Hardware

Parallel
Access Control

Start with preconceived
algorithmic work breakdown

Resource
Partitioning

& Replication

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 56

Problem Statement #1Problem Statement #1

Work
Partitioning

Interacting
With Hardware

Parallel
Access Control

Start with preconceived
algorithmic work breakdown

Resource
Partitioning

& Replication

Choose
synchronization mechanism

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 57

Problem Statement #1Problem Statement #1

Work
Partitioning

Interacting
With Hardware

Parallel
Access Control

Start with preconceived
algorithmic work breakdown

Resource
Partitioning

& Replication

Choose
synchronization mechanism

No attention to partitioning and replication:
Poor scalability and performance!!!

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 58

Problem Statement #2: Take Over The World!!!Problem Statement #2: Take Over The World!!!

Narf!!!Narf!!!

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 59

Problem Statement #2Problem Statement #2

Performance

Productivity Generality

Job #1 to “Take Over the World”

But now a choice: Performance? or Productivity?

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 60

Problem Statement #2Problem Statement #2

Performance

Productivity Generality

Job #1 to “Take Over the World”

Also need to
“Be the Best”

After all, publishing performance improvements is
much easier than publishing productivity results!

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 61

Problem Statement #2Problem Statement #2

Performance

Productivity Generality

Job #1 to “Take Over the World”

Also need to
“Be the Best”

Which means
poor productivity...

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 62

Problem Statement #2Problem Statement #2

Performance

Productivity Generality

Job #1 to “Take Over the World”

Also need to
“Be the Best”

And then these people have the gall to complainAnd then these people have the gall to complain
that parallel programming is hard!!!that parallel programming is hard!!!

Which means
poor productivity...

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 63

If You If You ReallyReally Want to Take Over the World... Want to Take Over the World...

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 64

If You If You ReallyReally Want to Take Over the World... Want to Take Over the World...

Remember what the spreadsheet and word processorRemember what the spreadsheet and word processor
did for the personal computer.did for the personal computer.

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 65

If You If You ReallyReally Want to Take Over the World... Want to Take Over the World...

Remember what the spreadsheet and word processorRemember what the spreadsheet and word processor
did for the personal computer.did for the personal computer.

Then focus on solving a specific problem really well.Then focus on solving a specific problem really well.

Sometimes, generality can be a shot in the foot!!!Sometimes, generality can be a shot in the foot!!!

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 66

Is Parallel Programming Hard, And If So, Why?Is Parallel Programming Hard, And If So, Why?

Parallel Programming is as Hard or as Easy as We Make It.Parallel Programming is as Hard or as Easy as We Make It.

It is that hard (or that easy) because we make it that way!!!It is that hard (or that easy) because we make it that way!!!

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 67

Legal StatementLegal Statement

 This work represents the view of the author and does not This work represents the view of the author and does not
necessarily represent the view of IBM.necessarily represent the view of IBM.

 IBM and IBM (logo) are trademarks or registered IBM and IBM (logo) are trademarks or registered
trademarks of International Business Machines trademarks of International Business Machines
Corporation in the United States and/or other countries.Corporation in the United States and/or other countries.

 Linux is a registered trademark of Linus Torvalds.Linux is a registered trademark of Linus Torvalds.

 Other company, product, and service names may be Other company, product, and service names may be
trademarks or service marks of others.trademarks or service marks of others.

 This material is based upon work supported by the This material is based upon work supported by the
National Science Foundation under Grant No. National Science Foundation under Grant No.
CNS-0719851.CNS-0719851.

 Joint work with Manish Gupta, Maged Michael, Phil Howard, Joint work with Manish Gupta, Maged Michael, Phil Howard,
Joshua Triplett, and Jonathan WalpoleJoshua Triplett, and Jonathan Walpole

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 68

Questions?Questions?

To probe further:To probe further:

 Any physics textAny physics text
 Any queuing-theory textAny queuing-theory text
 Computer Architecture: A Quantitative Approach, Hennessy and PattersonComputer Architecture: A Quantitative Approach, Hennessy and Patterson

 But there is no substitute for running tests on real hardware!!!But there is no substitute for running tests on real hardware!!!
 For examples, see “CodeSamples” directory in:For examples, see “CodeSamples” directory in:

git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.gitgit://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git

