Introduction to Performance, Scalability, and

Real-Time Issues on Modern Multicore Hardware:
Is Parallel Programming Hard, And If So, Why?

Paul E. McKenney
IBM Distinguished Engineer & CTO Linux
| Linux Technology Center

Course Objectives and Goals

Introduction to Performance, Scalability, and Real-Time Issues
on Modern Multicore Hardware: Is Parallel Programming Hard,
And If So, Why?

Performance and Scalability Technologies in the Linux Kernel
Creating Performant and Scalable Linux Applications
Real-Time Technologies in the Linux Kernel

Creating Real-Time Linux Applications

“I hear and | forget”
“l see and | remember”’

“l do and | understand”
But unfortunately, we won't have time to get here this week
* And need to go beyond understanding to habit formation
« See “Outliers” by Malcolm Gladwell

What decades-old parallel programming environment permits parallel-
programming novices to keep large multi-core computers usefully busy?

Overview

= Why Parallel Programming?

" Why Real-Time Programming?

= Parallel Programming Goals

= Parallel Programming Tasks

= Performance of Synchronization Operations
= Conclusions

Why Parallel Programming?

n
]
=
7]
3
(m)
0]
e
Lo
=
]
]
—
-
-
[
-

106 l l l l
1994 1996 1998 Z20UAL 2P0 2004 2HURE 2B 2B1 6

Year

Why Parallel Programming? (Reality)

= Parallelism is one performance-optimization
technique of many

%+ Hashing, search trees, parsers, cordic algorithms, ...
= But operating-system kernels are special

+ In-kernel performance and scalability losses cannot
be made up by user-level code

+ Therefore, if any user application is to be fast and
scalable, the portion of the kernel used by that
application must be fast and scalable

= System libraries and utilities can also be special
= As can database kernels, web servers, ...

<+ More on this later!

Why Real-Time Programming?

Why Real-Time Programming?

= Computer input, early-mid 1970s

% Turn-around time ranged from minutes to days

666

14444444 4440444444444444844844444444444444444824444444844440444444

9333355%

G666666666666666666666066

e

0

555555 55555555555555555555555555555.555555565

66666006666 66666666666b6606666066

959555555555

§

i |
11!

Why Real-Time Programming?

= Commercial computing response time

+ -1970s: punched-card-based batch processing
* Response time: minutes-days
 One computer

+ 1960s-1980: time sharing
 Response time: seconds-minutes
 Two computers (host and terminal)
+ 1980s-present: workstation/desktop/laptop!...
 Response time: milliseconds-minutes
 One computer
+ 1990s-present: web computing
 Response time: milliseconds-seconds
» Lots of computers, routers, gateways, web front-ends, ...

" Industrial computing response time
<+ Microseconds-milliseconds, but now interconnected

e
r E_%_

Why Real-Time Programming?

Logiégcs Enterprise Resource Planning (ERP)

Manufacturing Execution System (MES) Supply Chain '”V&ilﬁin”gl &

SCADA Transport Materials
logistics warehousing

Factory Automation System / DCS

Work
Routing

Setup

Sensors (on-site stocks)
Print/Verify/Ship Application PGy Eoneiiels

Machine tool 2

Machine tool 1

Per-domain RT QoS:
RFID RFID conveyor white: enterprise-like

print read actuator silver: soft, 1-5s
gold: harder, <1s
red: hard, sub-reflex

SCADA: supervisory/system control and data acquisition

Parallel Programming Goals

Parallel Programming Goals

Performance

TN

Productivity «—®= (Generality

Parallel Programming Goals: Why Performance?

= (Performance often expressed as scalability or
normalized as in performance per watt)

= [f you don't care about performance, why are
you bothering with parallelism???

% Just run single threaded and be happy!!!

= But what about:

< All the multi-core systems out there?

> Efficient use of resources?

» Everyone saying parallel programming is crucial?

= Parallel Programming: one optimization of many
= CPU: one potential bottleneck of many

)

>

L)

L)

>

L)

L)

Parallel Programming Goals: Why Productivity?

= 1948 CSIRAC (oldest intact computer)

+ 2,000 vacuum tubes, 768 20-bit words of memory
<+ $10M AU construction price
> 1955 technical salaries: $3-5K/year

» Makes business sense to dedicate 10-person team to increasing
performance by 10%

" 2008 280 (popular 8-bit microprocessor)
> 8,500 transistors, 64K 8-bit works of memory
< $1.36 per CPU in quantity 1,000 (7 OOM decrease)
< 2008 SW starting salaries: $50-95K/year US (1 OOM increase)

* Need 1M CPUs to break even on a one-person-year investment to
gain 10% performance!

* Or 10% more performance must be blazingly important
« Or you are doing this as a hobby... In which case, do what you want!

Parallel Programming Goals: Why Generality?

®" The more general the solution, the more users
to spread the cost over.

Productivity
Application
Middleware (e.g., DBMS)
System Ultilities & Libraries
OS Kernel

Performance
Ajljesauan

FW
HW

Performance, Scalability, and Generality

“Nirvana”

Performance and Scalability

Map / Reduce

C/C++ Locking
Plus Threads Iuiuiaiaiaiais

OpenMP

= = m m = m mjs om wm m wm w s =

1
1
1

22

O

<

» o

-]
[|

Productivity

Parallel Programming Tasks

Parallel Programming Tasks

= Parallel Programming Only Partly Technical
¢ Human element is extremely important

< What can a human being easily construct and read?

« Similar to stylized English used in emergency situations
» Clarity, concision, and unambiguity trump style and grace

= |n a perfect world, use human-factors studies
< But few very narrow parallel human-factors studies
<+ And programmers vary by orders of magnitude
+ < 3-4 OOM benefit is invisible to affordable study

" Therefore, look at tasks that must be performed
for parallel programs that need not be for
sequential programs

Parallel Programming Tasks

Work
Partitioning

Resource
Partitioning
& Replication

Parallel
Access Control

Interacting
With Hardware

Data-parallel approach: first partition resources, then partition work, and only
then worry about parallel access control. Lather, rinse, and repeat.

Parallel
Access Control

4

swsiueyos\
oljeziuoJysuA

L

Parallel Programming Tasks (Even Closer View)

Synchronization Mechanisms

: Data _
Locking Ownership Transactions
Message Hazard
Passing Pointers SeqLocks
Reference
Counting NBS RCU

To name but a few...

Performance of Synchronization Mechanisms

Performance of Synchronization Mechanisms

4-CPU 1.8GHz AMD Opteron 844 system

Need to be here!
(Partitioning/RCU)
Clockperiod | 06 1

Single cache miss 139.5 232.5
CAS cache miss 306.0 510.0

Heavily optimized reader- \
writer lock might get here for

readers (but too bad about Typical synchronization
those poor writers...) mechanisms do this a lot

Performance of Synchronization Mechanisms

4-CPU 1.8GHz AMD Opteron 844 system

Need to be here!

(Partitioning/RGU)
alClock period | 06 1

Heavily optimized reader- \

writer lock might get here for Tvbical hronizati
readers (but too bad about ypical synchronization
mechanisms do this a lot

those poor writers...)

But this is an old system...

| A AR
| A b B
B e RO Q-9
b ey /
[ELe e
EES UL
BT
; R v O
b AR O R |

Performance of Synchronization Mechanisms

4-CPU 1.8GHz AMD Opteron 844 system

Need to be here!

(Partitioning/RGU)
alClock period | 06 1

Heavily optimized reader- \

writer lock might get here for Tvbical hronizati
readers (but too bad about ypical synchronization
mechanisms do this a lot

those poor writers...)

But this is an old system... And why low-level details???

| A AR
| A b B
B e RO Q-9
S /
[ELe T
EES UL
BT
; R v O
b AR O R |

Why All These Low-Level Details???

= Would you trust a bridge designed by someone

who did not understand strengths of materials?
< Or a ship designed by someone who did not
understand the steel-alloy transition temperatures?

% Or a house designed by someone who did not
understand that unfinished wood rots when wet?

% Or a car designed by someone who did not
understand the corrosion properties of the metals
used in the exhaust system?

% Or a space shuttle designed by someone who did not
understand the temperature limitations of O-rings?

= So why trust algorithms from someone ignorant
of the propertles of the underlying hardware???

Performance of Synchronization Mechanisms

16-CPU 2.8GHz Intel X5550 (Nehalem) System

Clockperod P04 1

What a difference a few years can make!!!

Performance of Synchronization Mechanisms

16-CPU 2.8GHz Intel X5550 (Nehalem) System

Clockperiod [04 = 1
CAS cache “miss” _
mgle cache mlss off-core

Not quite so good... But still a 6x improvement!!!

Fobob R T
i, 'W]l B -
B o Bt | gy ACACLEQ i

st o <

1

i: T+

Performance of Synchronization Mechanisms

16-CPU 2.8GHz Intel X5550 (Nehalem) System

Clockperiod [04 = 1
Single cache miss (off-core) 86.
CAS cache miss (off-core) 86.

Single cache miss (off-socket) 256.
CAS cache miss (off-socket) 95.9 266.4

Maybe not such a big difference after all...
And these are best-case values!!! (Why?)

Tine Per Increnent {ns)

28 48 68 88 1848 128 144
Hunber of CPUs/Threads

If you thought a single atomic operation was slow, try lots of them!!!
(Parallel atomic increment of single variable on 1.9GHz Power 5 system)

.

* '*’W}.!@:?ﬁﬁéﬁi:?::t: bR
L LI ACACES 2009:!
sy - T T

‘ . i

Tine Per Increnent {ns)

a0

B
B 2 4 6 § 18 12 14 16

Hunber of CPUs/Threads

Same effect on a 16-CPU 2.8GHz Intel X5550 (Nehalem) system

SOL RT @ 5GHz

Electrons move at 0.03C to 0.3C in transistors and, so lots of waiting. 3D???

3 centimeters

i
i ‘ |
o
Foy
’
T

Visual Demonstration of Instruction Overhead

The Bogroll Demonstration

' CPU Benchmar K
“Trac kemeet -

CPU Performance: Atomic Instructions

CPU Performance: Memory Barriers

VI T S APA
%ARRIER

L

/

-

Hhe line. Your
coll vs vexy

Exercise: Dining Philosophers Problem

Each philosopher requires two forks to eat.
Need to avoid starvation.

Exercise: Dining Philosophers Solution #1

Locking hierarchy.
Pick up low-numbered fork first,
preventing deadlock. Is this a good solution???

Exercise: Dining Philosophers Solution #2

Locking hierarchy.
Pick up low-numbered fork first, If all want to eat, at least two
preventing deadlock. will be able to do so.

Exercise: Dining Philosophers Solution #3

Zero contention.
All 5 can eat concurrently.
Excellent disease control.

No rule against moving or adding forks!!!

Lock hierarchy is indeed very valuable and widely used, so the
restriction “there can only be five forks positioned as shown”
does indeed have its place, even if it didn't appear in this
instance of the Dining Philosophers Problem.

But the lesson of transforming the problem into perfectly
partitionable form is also very valuable, and given the wide
availability of cheap multiprocessors, most desperately needed.

Then we make the philosophers eat with their fingers... ©

But What To Do...

= What do you do for a problem that is inherently
fine-grained (so that synchronization primitives
such as locking, TM, NBS, &c are inefficient)
and update-heavy (so that RCU is not helpful)?

But What To Do...

= What do you do for a problem that is inherently
fine-grained (so that synchronization primitives
such as locking, TM, NBS, &c are inefficient)
and update-heavy (so that RCU is not helpful)?

+ Why not just write an optimized sequential program?

% Or you can always invent something new!!!

Exercise: High-Speed Concurrent Counting

= Need to maintain networking statistics
+ Packets transmitted and received

+ Bytes transmitted and received
= Packets might be transmitted or received on
any CPU at any time
= | arge machine capable of sending and
receiving millions of packets per second
<+ 40 microseconds per packet unacceptable!!l!

= Systems-monitoring package reads out these
statistics every five seconds

= Can you implement this?

Solution: High-Speed Concurrent Counting

= Maintain per-CPU counters for each datum
+ Packets transmitted

<+ Packets received
+ Bytes transmitted

+ Bytes received
= Each CPU updates its own counter
+ _get_cpu_var(packets xmitted)++;
" To read out current value, sum all copies of the
desired counter

+ Slow, but doesn’'t happen very often, so OK

One variable bad

Many variables good

Conclusions

Summary and Problem Statement

= Parallel Research and Development:
< High productivity and high performance (specialized apps)
« Remember what the spreadsheet did for the PC!!!
+ Generality and high performance (infrastructure)
* For the experts developing the above apps
%+ Generality and high productivity
« But only if some advantage over sequential environment!!!

=" Problem Statements:
+ Work breakdown, primitives, then partitioning

+ Generality, performance, then productivity

Problem Statement #1: Parallel Pitfall

Problem Statement #1 Start with preconceived

algorithmic work breakdown

Resource
Partitioning
& Replication

Parallel
Access Control

Interacting
With Hardware

Problem Statement #1 Start with preconceived

algorithmic work breakdown

Resource
Partitioning
& Replication

Interacting
With Hardware

Choose
synchronization mechanism

s

Problem Statement #1 Start with preconceived

algorithmic work breakdown

Resource
Partitioning
& Replication

Interacting
With Hardware

Choose
synchronization mechanism

i 5“ -

e]

Problem Statement #2: Take Over The World!!!

Narf!!!

Problem Statement #2

Performance

TN

Productivity -€—® Generality

Job #1 to “Take Over the World”

Problem Statement #2

Also need to

Performance “Be the Best”

TN

Productivity -€—® Generality

Job #1 to “Take Over the World”

Problem Statement #2

Also need to

Performance “Be the Best”

TN

Productivity <€+—®= Generality

Job #1 to “Take Over the World”

Problem Statement #2

Also need to

Performance “Be the Best”

TN

Productivity <€+—®= Generality

Job #1 to “Take Over the World”

And then these people have the gall to complain
that parallel programming is hard!!!

If You Really Want to Take Over the World...

If You Really Want to Take Over the World...

Remember what the spreadsheet and word processor
did for the personal computer.

If You Really Want to Take Over the World...

Remember what the spreadsheet and word processor
did for the personal computer.

Then focus on solving a specific problem really well.

Sometimes, generality can be a shot in the foot!!!

Is Parallel Programming Hard, And If So, Why?

Parallel Programming is as Hard or as Easy as We Make It.

It is that hard (or that easy) because we make it that way!!!

Legal Statement

= This work represents the view of the author and does not
necessarily represent the view of IBM.

= |IBM and IBM (logo) are trademarks or registered
trademarks of International Business Machines
Corporation in the United States and/or other countries.

= Linux is a registered trademark of Linus Torvalds.

= Other company, product, and service names may be
trademarks or service marks of others.

®" This material is based upon work supported by the
National Science Foundation under Grant No.
CNS-0719851.

<+ Joint work with Manish Gupta, Maged Michael, Phil Howard,
Joshua Triplett, and Jonathan Walpole

Questions?

To probe further:

Any physics text
Any queuing-theory text
Computer Architecture: A Quantitative Approach, Hennessy and Patterson

But there is no substitute for running tests on real hardware!!!

For examples, see “CodeSamples” directory in:
git://git.kernel.org/pub/scml/linux/kernel/git/paulmck/perfbook.git

