
© 2002 IBM Corporation

Performance, Scalability, and Real-Time Response From the Linux Kernel

ACACES July 14, 2009 Copyright © 2009 IBM

Performance and Scalability Technologies in the Performance and Scalability Technologies in the
Linux KernelLinux Kernel

Paul E. McKenneyPaul E. McKenney
IBM Distinguished Engineer & CTO LinuxIBM Distinguished Engineer & CTO Linux
Linux Technology CenterLinux Technology Center

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 2

Course Objectives and GoalsCourse Objectives and Goals

 Introduction to Performance, Scalability, and Introduction to Performance, Scalability, and
Real-Time Issues on Modern Multicore Real-Time Issues on Modern Multicore
Hardware: Is Parallel Programming Hard, Hardware: Is Parallel Programming Hard,
And If So, Why?And If So, Why?

Performance and Scalability Technologies in
the Linux Kernel

Creating Performant and Scalable Linux Creating Performant and Scalable Linux
ApplicationsApplications

Real-Time Technologies in the Linux KernelReal-Time Technologies in the Linux Kernel
Creating Real-Time Linux ApplicationsCreating Real-Time Linux Applications

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 3

OverviewOverview

Programming Environments in Linux KernelProgramming Environments in Linux Kernel
Synchronization PrimitivesSynchronization Primitives
Per-CPU VariablesPer-CPU Variables
The Existence ProblemThe Existence Problem
Solutions to the Existence ProblemSolutions to the Existence Problem

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 4

OverviewOverview

Programming Environments in Linux KernelProgramming Environments in Linux Kernel
Synchronization PrimitivesSynchronization Primitives
Per-CPU VariablesPer-CPU Variables
The Existence ProblemThe Existence Problem
Solutions to the Existence ProblemSolutions to the Existence Problem
RCU APIRCU API
Why Free and Open-Source Software?Why Free and Open-Source Software?

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 5

Programming Environments in Linux KernelProgramming Environments in Linux Kernel

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 6

!PREEMPT Environments in Linux Kernel!PREEMPT Environments in Linux Kernel
K

er
ne

l

U
se

r
T

hr
ea

de
d

so
ft

irq

so
ft

irq

yieldyield

yieldyield

!lo
ca

l_
bh

_d
is

ab
le

!lo
ca

l_
bh

_d
is

ab
le

ha
rd

irq

!lo
ca

l_
irq

_d
is

ab
le

!lo
ca

l_
irq

_d
is

ab
le

nm
i

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 7

PREEMPT Environments in Linux KernelPREEMPT Environments in Linux Kernel
K

er
ne

l

U
se

r
T

hr
ea

de
d

so
ft

irq

so
ft

irq

!lo
ca

l_
bh

_d
is

ab
le

!lo
ca

l_
bh

_d
is

ab
le

ha
rd

irq

!lo
ca

l_
irq

_d
is

ab
le

!lo
ca

l_
irq

_d
is

ab
le

nm
i

!p
re

em
pt

_d
is

ab
le

!p
re

em
pt

_d
is

ab
le

!p
re

em
pt

_d
is

ab
le

!p
re

em
pt

_d
is

ab
le

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 8

PREEMPT_RT Environments in Linux KernelPREEMPT_RT Environments in Linux Kernel
K

er
ne

l

U
se

r
T

hr
ea

de
d

so
ft

irq

T
hr

ea
de

d
ha

rd
irq

!p
re

em
pt

_d
is

ab
le

!p
re

em
pt

_d
is

ab
le

ha
rd

irq
(r

ar
e)

!lo
ca

l_
irq

_d
is

ab
le

!lo
ca

l_
irq

_d
is

ab
le

nm
i

!p
re

em
pt

_d
is

ab
le

!p
re

em
pt

_d
is

ab
le

!p
re

em
pt

_d
is

ab
le

!p
re

em
pt

_d
is

ab
le

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 9

Synchronization PrimitivesSynchronization Primitives

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 10

Synchronization Primitives (Partial)Synchronization Primitives (Partial)

spin_lock()
spin_trylock()
spin_unlock()
read_lock()
read_trylock()
read_unlock()
write_lock()
write_trylock()
write_unlock()

_irq
_irqsave
_irqrestore
_bh

mutex_lock()
mutex_trylock()
mutex_unlock()

_killable
_interruptible

down_read()
down_read_trylock()
up_read()
down_write()
down_write_trylock()
up_write()
downgrade_write()

seqlock_t
DEFINE_SEQLOCK()
seqlock_init()
read_seqbegin()
read_seqretry()
write_seqlock()
write_sequnlock()

seqcount_t
seqcount_init()
read_seqcount begin()
read_seqcount_retry()
write_seqcount_begin()
write_seqcount_end()

How to Characterize?

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 11

Synchronization Primitives (Partial)Synchronization Primitives (Partial)

spin_lock()
spin_trylock()
spin_unlock()
read_lock()
read_trylock()
read_unlock()
write_lock()
write_trylock()
write_unlock()

_irq
_irqsave
_irqrestore
_bh

mutex_lock()
mutex_trylock()
mutex_unlock()

_killable
_interruptible

down_read()
down_read_trylock()
up_read()
down_write()
down_write_trylock()
up_write()
downgrade_write()

seqlock_t
DEFINE_SEQLOCK()
seqlock_init()
read_seqbegin()
read_seqretry()
write_seqlock()
write_sequnlock()

seqcount_t
seqcount_init()
read_seqcount begin()
read_seqcount_retry()
write_seqcount_begin()
write_seqcount_end()

Restricted TM

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 12

Sequence Lock Example (Reader)Sequence Lock Example (Reader)

void ktime_get_ts(struct timespec *ts)void ktime_get_ts(struct timespec *ts)
{{
 struct timespec tomono;struct timespec tomono;
 unsigned long seq;unsigned long seq;

 do {do {
 seq = read_seqbegin(&xtime_lock);seq = read_seqbegin(&xtime_lock);
 getnstimeofday(ts);getnstimeofday(ts);
 tomono = wall_to_monotonic;tomono = wall_to_monotonic;

 } while (read_seqretry(&xtime_lock, seq));} while (read_seqretry(&xtime_lock, seq));

 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
 ts->tv_nsec + tomono.tv_nsec);ts->tv_nsec + tomono.tv_nsec);
}}

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 13

Sequence Lock Example (Writer)Sequence Lock Example (Writer)

static inline void warp_clock(void)static inline void warp_clock(void)
{{
 write_seqlock_irq(&xtime_lock);write_seqlock_irq(&xtime_lock);
 wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
 xtime.tv_sec += sys_tz.tz_minuteswest * 60;xtime.tv_sec += sys_tz.tz_minuteswest * 60;
 update_xtime_cache(0);update_xtime_cache(0);
 write_sequnlock_irq(&xtime_lock);write_sequnlock_irq(&xtime_lock);
 clock_was_set();clock_was_set();
}}

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 14

Sleep/Wakeup Primitives (Partial)Sleep/Wakeup Primitives (Partial)

 wait_event(), wait_event_interruptible(), wait_event(), wait_event_interruptible(),
wait_event_timeout(), wait_event_killable(), wait_event_timeout(), wait_event_killable(),
wait_event_interruptible_timeout()wait_event_interruptible_timeout()

 wake_up(), wake_up_process(), ...wake_up(), wake_up_process(), ...

 wait_on_bit()wait_on_bit()
 wake_up_bit()wake_up_bit()

 These are favored over traditional sleep_on() These are favored over traditional sleep_on()
APIs for software-engineering reasonsAPIs for software-engineering reasons

 ““Unsafe at any speed” primitives get fixedUnsafe at any speed” primitives get fixed
 Sometimes repeatedly...Sometimes repeatedly...

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 15

Synchronization PrimitivesSynchronization Primitives

Work
Partitioning

Interacting
With Hardware

Parallel
Access Control

Resource
Partitioning

& Replication

But do this first!!!!But do this first!!!!
Job #1 is Job #1 is notnot selecting primitives! selecting primitives!

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 16

Per-CPU VariablesPer-CPU Variables

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 17

Per-CPU VariablesPer-CPU Variables

 DEFINE_PER_CPU(type, name)DEFINE_PER_CPU(type, name)
 DECLARE_PER_CPU(type, name)DECLARE_PER_CPU(type, name)
 per_cpu(name, cpu)per_cpu(name, cpu)
 __get_cpu_var(name)__get_cpu_var(name)
 __raw_get_cpu_var(name)__raw_get_cpu_var(name)
 for_each_online_cpu(var)for_each_online_cpu(var)

 But careful!!! CPUs can come and go...But careful!!! CPUs can come and go...
 get_online_cpus() and put_online_cpus()get_online_cpus() and put_online_cpus()

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 18

The Existence ProblemThe Existence Problem

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 19

The Existence ProblemThe Existence Problem

http://www.usenix.org/events/osdi99/full_papers/gamsa/gamsa.pdfhttp://www.usenix.org/events/osdi99/full_papers/gamsa/gamsa.pdf

header lock

data

more data

So, how can this lock protectSo, how can this lock protect
concurrent access and deletion?concurrent access and deletion?

header lock

data

more data

header lock

data

more data

data

more data

header lock

The need for full partitioning suggests partitioning synchronization primitives, too!The need for full partitioning suggests partitioning synchronization primitives, too!

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 20

Solution to the Existence Problem?Solution to the Existence Problem?

 AccessAccess

 p = header;p = header;

 spin_lock(&p->lock);spin_lock(&p->lock);

 do_something_with(p);do_something_with(p);

 spin_unlock(&p->lock);spin_unlock(&p->lock);

 DeletionDeletion

 p = header;p = header;

 spin_lock(&p->lock);spin_lock(&p->lock);

 if (header == p)if (header == p)

 header = NULL;header = NULL;

 elseelse

 p = NULL;p = NULL;

 spin_unlock(&p->lock);spin_unlock(&p->lock);

 if (p != NULL)if (p != NULL)

 kfree(p);kfree(p);

If so, why? If not, why not, and what would be a solution?If so, why? If not, why not, and what would be a solution?

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 21

Solution to the Existence Problem?Solution to the Existence Problem?

 AccessAccess

 p = header;p = header;
 if (p != NULL){if (p != NULL){
 spin_lock(&p->lock);spin_lock(&p->lock);
 do_something_with(p);do_something_with(p);
 spin_unlock(&p->lock);spin_unlock(&p->lock);
 }}

 DeletionDeletion

 q = p = header;q = p = header;
 if (p != NULL) {if (p != NULL) {
 spin_lock(&p->lock);spin_lock(&p->lock);
 if (header == p)if (header == p)
 header = NULL;header = NULL;
 elseelse
 q = NULL;q = NULL;
 spin_unlock(&p->lock);spin_unlock(&p->lock);
 if (q != NULL)if (q != NULL)
 kfree(q);kfree(q);
 }}

Never forget the NULL-pointer checks...Never forget the NULL-pointer checks...

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 22

The Existence Problem ExtendedThe Existence Problem Extended

lock

next

data

lock

next

data

header

lock

next

data

How can this lock protectHow can this lock protect
concurrent access and deletion?concurrent access and deletion?

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 23

Solutions to the Existence ProblemSolutions to the Existence Problem

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 24

Solutions to the Existence ProblemSolutions to the Existence Problem

 Single-threaded programsSingle-threaded programs
 Locking chain extending back to “header”Locking chain extending back to “header”

 Similarly, transaction covering back to “header”Similarly, transaction covering back to “header”

 Global lockGlobal lock
 Hashed global array of locksHashed global array of locks
 Per-CPU global locksPer-CPU global locks
 Garbage collectorGarbage collector
 Type-safe memoryType-safe memory
 Global reference countGlobal reference count
 Others?Others?

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 25

Solutions to the Existence ProblemSolutions to the Existence Problem

 Single-threaded programsSingle-threaded programs
 Can be the right thing to do, but lose scalabilityCan be the right thing to do, but lose scalability
 And existence can be a problem even in single-And existence can be a problem even in single-

threaded code via signals, events, and callbacksthreaded code via signals, events, and callbacks
 Locking/TM chain extending back to “header”Locking/TM chain extending back to “header”

 High locking/STM overhead for nesting, increased High locking/STM overhead for nesting, increased
probability of hitting HTM transaction-size limitationsprobability of hitting HTM transaction-size limitations

 Deadlock issues with lockingDeadlock issues with locking
 Increased probability of encompassing non-Increased probability of encompassing non-

idempotent operation in both HTM and STMidempotent operation in both HTM and STM
 Global lockGlobal lock

 Poor scalability and performancePoor scalability and performance

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 26

Solutions to the Existence ProblemSolutions to the Existence Problem

 Hashed global array of locksHashed global array of locks
 Poor performance due to lack of memory localityPoor performance due to lack of memory locality
 Deadlock issues, especially for large programsDeadlock issues, especially for large programs

• Engineering solutions well-known but complexEngineering solutions well-known but complex

 Per-CPU global locksPer-CPU global locks
 Requires possibly-awkward partitioning over CPUsRequires possibly-awkward partitioning over CPUs
 Deadlock issues, especially for large programsDeadlock issues, especially for large programs

• Engineering solutions well-known but complexEngineering solutions well-known but complex

 Type-safe memoryType-safe memory
 Complex code to detect and handle reallocationComplex code to detect and handle reallocation

 Garbage collectorGarbage collector
 Great if your environment provides one, but Great if your environment provides one, but

overhead and reclamation time can rule out GCoverhead and reclamation time can rule out GC

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 27

Global Reference CountGlobal Reference Count

rcu_refcnt

rcu_read_lock()

rcu_read_unlock()

synchronize_rcu()

Acquire a referenceAcquire a reference

Release a referenceRelease a reference

Wait for all referencesWait for all references
to be releasedto be released

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 28

Solution to the Existence Problem?Solution to the Existence Problem?

 AccessAccess
 rcu_read_lock();rcu_read_lock();
 p = rcu_dereference(header);p = rcu_dereference(header);
 if (p != NULL)if (p != NULL)
 do_something_with(p);do_something_with(p);
 rcu_read_unlock();rcu_read_unlock();

 DeletionDeletion
 rcu_read_lock();rcu_read_lock();
 p = rcu_dereference(header);p = rcu_dereference(header);
 q = p;q = p;
 if (p != NULL) {if (p != NULL) {
 spin_lock(&p->lock);spin_lock(&p->lock);
 if (header == p)if (header == p)
 header = NULL;header = NULL;
 elseelse
 q = NULL;q = NULL;
 spin_unlock(&p->lock);spin_unlock(&p->lock);
 }}
 rcu_read_unlock();rcu_read_unlock();
 if (q != NULL) {if (q != NULL) {
 synchronize_rcu();synchronize_rcu();
 kfree(q);kfree(q);
 }}

Reference acquired under rcu_read_lock() guaranteed to exist until rcu_read_unlock()Reference acquired under rcu_read_lock() guaranteed to exist until rcu_read_unlock()

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 29

Global Reference CountGlobal Reference Count

 1 atomic_t rcu_refcnt;1 atomic_t rcu_refcnt;
 22
 3 static void rcu_read_lock(void)3 static void rcu_read_lock(void)
 4 {4 {
 5 atomic_inc(&rcu_refcnt);5 atomic_inc(&rcu_refcnt);
 6 smp_mb__after_atomic_inc();6 smp_mb__after_atomic_inc();
 7 }7 }
 88
 9 static void rcu_read_unlock(void)9 static void rcu_read_unlock(void)
 10 {10 {
 11 smp_mb__before_atomic_dec();11 smp_mb__before_atomic_dec();
 12 atomic_dec(&rcu_refcnt);12 atomic_dec(&rcu_refcnt);
 13 }13 }
 1414
 15 void synchronize_rcu(void)15 void synchronize_rcu(void)
 16 {16 {
 17 smp_mb();17 smp_mb();
 18 while (atomic_read(&rcu_refcnt) != 0) {18 while (atomic_read(&rcu_refcnt) != 0) {
 19 poll(NULL, 0, 10);19 poll(NULL, 0, 10);
 20 }20 }
 21 smp_mb();21 smp_mb();
 22 }22 }

Acquire referenceAcquire reference

Release referenceRelease reference

Wait for referencesWait for references
to be releasedto be released

Reference counterReference counter

Does this work? Why or why not?Does this work? Why or why not?

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 30

Global Reference Count IssuesGlobal Reference Count Issues

 Updater starvation!!! (Why?)Updater starvation!!! (Why?)
 Horrible read-side performance under heavy Horrible read-side performance under heavy

contention (40us on 64-CPU Power-5 system)contention (40us on 64-CPU Power-5 system)
 Mediocre read-side performance under light Mediocre read-side performance under light

contention (100ns on Power-5 system)contention (100ns on Power-5 system)
 Extremely fast updates: 40 nanosecondsExtremely fast updates: 40 nanoseconds

 But only in absence of readersBut only in absence of readers

Two thumbs down!!!Two thumbs down!!!

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 31

Global Reference Count Pair DataGlobal Reference Count Pair Data

rcu_refcnt[0]

rcu_read_lock()

rcu_read_unlock()

synchronize_rcu()

Acquire current referenceAcquire current reference

Release reference acquiredRelease reference acquired

Flip rcu_idx and wait for allFlip rcu_idx and wait for all
old references to be releasedold references to be released

rcu_refcnt[1]

rcu_idx

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 32

Global Reference Count Pair DataGlobal Reference Count Pair Data

 1 atomic_t rcu_refcnt[2];1 atomic_t rcu_refcnt[2];
 2 atomic_t rcu_idx;2 atomic_t rcu_idx;
 3 DEFINE_SPINLOCK(rcu_gp_lock);3 DEFINE_SPINLOCK(rcu_gp_lock);
 4 DEFINE_PER_CPU(int, rcu_nesting);4 DEFINE_PER_CPU(int, rcu_nesting);
 5 DEFINE_PER_CPU(int, rcu_read_idx);5 DEFINE_PER_CPU(int, rcu_read_idx);

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 33

Global Reference Count Pair Reader PrimitivesGlobal Reference Count Pair Reader Primitives
 1 static void rcu_read_lock(void)1 static void rcu_read_lock(void)
 2 {2 {
 3 int i;3 int i;
 4 int n;4 int n;
 55
 6 n = __get_cpu_var(rcu_nesting);6 n = __get_cpu_var(rcu_nesting);
 7 if (n == 0) {7 if (n == 0) {
 8 i = atomic_read(&rcu_idx);8 i = atomic_read(&rcu_idx);
 9 __get_cpu_var(rcu_read_idx) = i;9 __get_cpu_var(rcu_read_idx) = i;
 10 atomic_inc(&rcu_refcnt[i]);10 atomic_inc(&rcu_refcnt[i]);
 11 }11 }
 12 __get_cpu_var(rcu_nesting) = n + 1;12 __get_cpu_var(rcu_nesting) = n + 1;
 13 smp_mb();13 smp_mb();
 14 }14 }
 1515
 16 static void rcu_read_unlock(void)16 static void rcu_read_unlock(void)
 17 {17 {
 18 int i;18 int i;
 19 int n;19 int n;
 2020
 21 smp_mb();21 smp_mb();
 22 n = __get_cpu_var(rcu_nesting);22 n = __get_cpu_var(rcu_nesting);
 23 if (n == 1) {23 if (n == 1) {
 24 i = __get_cpu_var(rcu_read_idx);24 i = __get_cpu_var(rcu_read_idx);
 25 atomic_dec(&rcu_refcnt[i]);25 atomic_dec(&rcu_refcnt[i]);
 26 }26 }
 27 __get_cpu_var(rcu_nesting) = n - 1;27 __get_cpu_var(rcu_nesting) = n - 1;
 28 }28 }

Acquire referenceAcquire reference

Release referenceRelease reference

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 34

Global Reference Count Pair Updater PrimitivesGlobal Reference Count Pair Updater Primitives

 1 void synchronize_rcu(void)1 void synchronize_rcu(void)
 2 {2 {
 3 int i;3 int i;
 44
 5 smp_mb();5 smp_mb();
 6 spin_lock(&rcu_gp_lock);6 spin_lock(&rcu_gp_lock);
 7 i = atomic_read(&rcu_idx);7 i = atomic_read(&rcu_idx);
 8 atomic_set(&rcu_idx, !i);8 atomic_set(&rcu_idx, !i);
 9 smp_mb();9 smp_mb();
 10 while (atomic_read(&rcu_refcnt[i]) != 0) { 10 while (atomic_read(&rcu_refcnt[i]) != 0) {
 11 poll(NULL, 0, 10); 11 poll(NULL, 0, 10);
 12 } 12 }
 13 spin_unlock(&rcu_gp_lock);13 spin_unlock(&rcu_gp_lock);
 14 smp_mb();14 smp_mb();
 15 }15 }

Wait for referencesWait for references
to be releasedto be released

Does this work? Why or why not?Does this work? Why or why not?

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 35

Issues With Global Reference Count PairIssues With Global Reference Count Pair

Buggy!!!
 CPU 0 rcu_read_lock() line 8: i = rcu_idx == 0CPU 0 rcu_read_lock() line 8: i = rcu_idx == 0
 CPU 1 invokes synchronize_rcu()CPU 1 invokes synchronize_rcu()

• Now rcu_idx == 1Now rcu_idx == 1
 CPU 0 rcu_read_lock() line 9: atomically increments CPU 0 rcu_read_lock() line 9: atomically increments

rcu_refcnt[0], enters read-side critical section, rcu_refcnt[0], enters read-side critical section,
acquires a reference to some data elementacquires a reference to some data element

 CPU 1 removes that same data elementCPU 1 removes that same data element
 CPU 1 invokes synchronize_rcu() again:CPU 1 invokes synchronize_rcu() again:

• Line 7 fetches i = rcu_idx == 1Line 7 fetches i = rcu_idx == 1
• Line 8 sets rcu_idx = 0Line 8 sets rcu_idx = 0
• Lines 10-11 wait for rcu_refcnt[1] to go to zeroLines 10-11 wait for rcu_refcnt[1] to go to zero

 CPU 1 kfree()s the data elementCPU 1 kfree()s the data element
• While CPU 0 is still using it!!!

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 36

Issues With Global Reference Count PairIssues With Global Reference Count Pair

Buggy!!!
 CPU 0 rcu_read_lock() line 8: i = rcu_idx == 0CPU 0 rcu_read_lock() line 8: i = rcu_idx == 0
 CPU 1 invokes synchronize_rcu()CPU 1 invokes synchronize_rcu()

• Now rcu_idx == 1Now rcu_idx == 1
 CPU 0 rcu_read_lock() line 9: atomically increments CPU 0 rcu_read_lock() line 9: atomically increments

rcu_refcnt[0], enters read-side critical section, rcu_refcnt[0], enters read-side critical section,
acquires a reference to some data elementacquires a reference to some data element

 CPU 1 removes that same data elementCPU 1 removes that same data element
 CPU 1 invokes synchronize_rcu() again:CPU 1 invokes synchronize_rcu() again:

• Line 7 fetches i = rcu_idx == 1Line 7 fetches i = rcu_idx == 1
• Line 8 sets rcu_idx = 0Line 8 sets rcu_idx = 0
• Lines 10-11 wait for rcu_refcnt[1] to go to zeroLines 10-11 wait for rcu_refcnt[1] to go to zero

 CPU 1 kfree()s the data elementCPU 1 kfree()s the data element
• While CPU 0 is still using it!!!

Everyone who has attempted an implementation has committed this bug!Everyone who has attempted an implementation has committed this bug!

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 37

Global Reference Count Pair Updater PrimitivesGlobal Reference Count Pair Updater Primitives

 1 void synchronize_rcu(void)1 void synchronize_rcu(void)
 2 {2 {
 3 int i;3 int i;
 44
 5 smp_mb();5 smp_mb();
 6 spin_lock(&rcu_gp_lock);6 spin_lock(&rcu_gp_lock);
 7 i = atomic_read(&rcu_idx);7 i = atomic_read(&rcu_idx);
 8 atomic_set(&rcu_idx, !i);8 atomic_set(&rcu_idx, !i);
 9 smp_mb();9 smp_mb();
 10 while (atomic_read(&rcu_refcnt[i]) != 0) { 10 while (atomic_read(&rcu_refcnt[i]) != 0) {
 11 poll(NULL, 0, 10); 11 poll(NULL, 0, 10);
 12 } 12 }
 13 smp_mb();13 smp_mb();
 14 atomic_set(&rcu_idx, i);14 atomic_set(&rcu_idx, i);
 15 smp_mb();15 smp_mb();
 16 while (atomic_read(&rcu_refcnt[!i]) != 0) { 16 while (atomic_read(&rcu_refcnt[!i]) != 0) {
 17 poll(NULL, 0, 10); 17 poll(NULL, 0, 10);
 18 }18 }
 19 spin_unlock(&rcu_gp_lock);19 spin_unlock(&rcu_gp_lock);
 20 smp_mb();20 smp_mb();
 21 }21 }

Wait for referencesWait for references
to be releasedto be released

Does this work? Why or why not?Does this work? Why or why not?

Flip counter twiceFlip counter twice

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 38

Global Reference Count Pair IssuesGlobal Reference Count Pair Issues

 Horrible read-side performance under heavy Horrible read-side performance under heavy
contention (40us on 64-CPU Power-5 system)contention (40us on 64-CPU Power-5 system)

 Double counter flip and update-side lock slow: Double counter flip and update-side lock slow:
200ns in isolation, 200ns in isolation, 40us on 64-CPU Power 5)40us on 64-CPU Power 5)

 And no more concurrent updates!!!And no more concurrent updates!!!

 Mediocre-to-poor read-side performance under Mediocre-to-poor read-side performance under
light contention (150ns on Power-5 system)light contention (150ns on Power-5 system)

 No updater starvationNo updater starvation

One thumb down!!!One thumb down!!!

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 39

Per-CPU Reference Count?Per-CPU Reference Count?

 Partitioning for performance and scalabilityPartitioning for performance and scalability
 But threads (tasks) take references, not CPUs!But threads (tasks) take references, not CPUs!

 So, disable preemption while holding referenceSo, disable preemption while holding reference
• We We areare executing in the kernel, after all!!! executing in the kernel, after all!!!

 As is currently the case when holding spinlocksAs is currently the case when holding spinlocks
• And when holding “raw” spinlocks in PREEMPT_RTAnd when holding “raw” spinlocks in PREEMPT_RT

 But if we are going to disable preemption...But if we are going to disable preemption...
 The fact that the task is running on a given CPU The fact that the task is running on a given CPU isis

the reference!!!the reference!!!
 Each context switch then implicitly releases the Each context switch then implicitly releases the

outgoing task's reference ...outgoing task's reference ...
 ... and acquires the incoming task's reference... and acquires the incoming task's reference

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 40

““Running on CPU” as ReferenceRunning on CPU” as Reference

 1 static void rcu_read_lock()1 static void rcu_read_lock()
 2 {2 {
 3 preempt_disable(); /* no-op for !PREEMPT */3 preempt_disable(); /* no-op for !PREEMPT */
 4 }4 }
 55
 6 static void rcu_read_unlock()6 static void rcu_read_unlock()
 7 {7 {
 8 preempt_enable(); /* no-op for !PREEMPT */8 preempt_enable(); /* no-op for !PREEMPT */
 9 }9 }
 1010
 11 void synchronize_rcu()11 void synchronize_rcu()
 12 {12 {
 13 int cpu;13 int cpu;
 1414
 15 for_each_online_cpu(cpu)15 for_each_online_cpu(cpu)
 16 run_on(cpu);16 run_on(cpu);
 17 }17 }

Acquire referencereference

Release referenceRelease reference

Wait for referencesWait for references
to be releasedto be released

Does this work? Why or why not?Does this work? Why or why not?
Can rcu_read_lock() participate in a deadlock cycle?Can rcu_read_lock() participate in a deadlock cycle?

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 41

““Running on CPU” as Reference EvaluationRunning on CPU” as Reference Evaluation

 Excellent read-side scalability and performance: Excellent read-side scalability and performance:
“free” is a “free” is a veryvery good price!!! good price!!!

 Scheduling on each CPU in turn works well for Scheduling on each CPU in turn works well for
small numbers of CPUs,small numbers of CPUs, but does not scale well but does not scale well

 Actual Linux-kernel implementation uses batching to Actual Linux-kernel implementation uses batching to
achieve excellent update-side scalabilityachieve excellent update-side scalability

 But is considerably more complexBut is considerably more complex

 No updater starvationNo updater starvation

Two thumbs up!!!Two thumbs up!!!

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 42

““Running on CPU” as Reference: SchematicRunning on CPU” as Reference: Schematic

synchronize_rcu()synchronize_rcu()

CPU 0CPU 0

CPU 1CPU 1

CPU 2CPU 2

co
nt

ex
t

sw
itc

h

co
nt

ex
t

sw
itc

h

RCU re
ad

-s
ide

RCU re
ad

-s
ide

 cr

itic
al

se
cti

on

cr
itic

al
se

cti
on

““Grace Period”Grace Period”
list_del_rcu()list_del_rcu() kfree()kfree()

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 43

““Running on CPU” as Reference: Use CaseRunning on CPU” as Reference: Use Case

 Combines waiting for readers and multiple versions:Combines waiting for readers and multiple versions:
 Writer removes element B from the list (list_del_rcu())Writer removes element B from the list (list_del_rcu())
 Writer waits for all readers to finish (synchronize_rcu())Writer waits for all readers to finish (synchronize_rcu())
 Writer can then free B (kfree())Writer can then free B (kfree())

readers?readers?

A

B

C

A

B

C

A

B

C

A

B

C

A

C

sy
nc

hr
on

iz
e_

rc
u(

)

lis
t_

de
l_

rc
u(

)

kf
re

e(
)

No more readers No more readers
referencing B!referencing B!

One VersionOne Version Two VersionsTwo Versions One VersionOne Version One VersionOne Version

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 44

““Running on CPU” as Reference: Use CaseRunning on CPU” as Reference: Use Case

int search(struct foo_head *fhp, int k)int search(struct foo_head *fhp, int k)
{{
 struct foo *p;struct foo *p;
 struct list_head *head = &fhp->list;struct list_head *head = &fhp->list;

 rcu_read_lock();
 list_for_each_entry_rcu(p, head, list) {
 if (p->key == k) {
 rcu_read_unlock();
 return 1;return 1;
 }
 }
 rcu_read_unlock();
 return 0;return 0;
}}

int delete(struct foo_head *fhp, int k)int delete(struct foo_head *fhp, int k)
{{
 struct foo *p;struct foo *p;
 struct list_head *head = &fhp->list;struct list_head *head = &fhp->list;

 spin_lock(&fhp->mutex);spin_lock(&fhp->mutex);
 list_for_each_entry(p, head, list) {list_for_each_entry(p, head, list) {
 if (p->key == k) {if (p->key == k) {
 list_del_rcu(p);
 spin_unlock(&fhp->mutex);
 synchronize_rcu();
 kfree(p);
 return 1;return 1;
 }}
 }}
 spin_unlock(&fhp->mutex);spin_unlock(&fhp->mutex);
 return 0;return 0;
}}

struct foo_head {struct foo_head {
 struct list_head list;struct list_head list;
 spinlock_t mutex;spinlock_t mutex;
};};

struct foo {struct foo {
 struct list_head list;struct list_head list;
 int key;int key;
};};

foo_headfoo_head foo (A)foo (A) foo (B)foo (B) foo (C)foo (C)

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 45

““Running on CPU” as Reference: rwlockRunning on CPU” as Reference: rwlock

int search(struct foo_head *fhp, int k)int search(struct foo_head *fhp, int k)
{{
 struct foo *p;struct foo *p;
 struct list_head *head = &fhp->list;struct list_head *head = &fhp->list;

 read_lock(&fhp->mutex);
 list_for_each_entry(p, head, list) {(p, head, list) {
 if (p->key == k) {if (p->key == k) {
 read_lock(&fhp->mutex);
 return 1;return 1;
 }}
 }}
 read_unlock(&fhp->mutex);
 return 0;return 0;
}}

int delete(struct foo_head *fhp, int k)int delete(struct foo_head *fhp, int k)
{{
 struct foo *p;struct foo *p;
 struct list_head *head = &fhp->liststruct list_head *head = &fhp->list;

 write_lock(&fhp->mutex);(&fhp->mutex);
 list_for_each_entry(p, head, list) {list_for_each_entry(p, head, list) {
 if (p->key == k) {if (p->key == k) {
 list_del(p);(p);
 write_unlock(&fhp->mutex);(&fhp->mutex);
 /* synchronize_rcu(); */
 kfree(p);kfree(p);
 return 1;return 1;
 }}
 }}
 write_unlock(&fhp->mutex);(&fhp->mutex);
 return 0;return 0;
}}

struct foo_head {struct foo_head {
 struct list_head list;struct list_head list;
 rwlock_t mutex;mutex;
};};

struct foo {
 struct list_head list;
 int key;
};

foo_headfoo_head foo (A)foo (A) foo (B)foo (B) foo (C)foo (C)

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 46

RCU vs. Reader-Writer Locking PerformanceRCU vs. Reader-Writer Locking Performance

CONFIG_PREEMPT kernel buildCONFIG_PREEMPT kernel build

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 47

What is RCU???What is RCU???

 RCU is a:RCU is a:
 reader-writer lock replacementreader-writer lock replacement
 restricted reference-counting mechanismrestricted reference-counting mechanism
 bulk reference-counting mechanismbulk reference-counting mechanism
 poor-man's garbage collectorpoor-man's garbage collector
 way of providing existence guaranteesway of providing existence guarantees
 way of waiting for things to finishway of waiting for things to finish

 Use RCU in:Use RCU in:
 read-mostly situations orread-mostly situations or
 for deterministic response from read-side primitives for deterministic response from read-side primitives

and from asynchronous update-side primitivesand from asynchronous update-side primitives

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 48

RCU as a Solution to the Existence ProblemRCU as a Solution to the Existence Problem

 For read-mostly data structures, RCU provides For read-mostly data structures, RCU provides
the benefits of the data-parallel modelthe benefits of the data-parallel model

 But without the need to actually partition or replicate But without the need to actually partition or replicate
the RCU-protected data structuresthe RCU-protected data structures

 Readers access data without needing to exclude Readers access data without needing to exclude
each others or updateseach others or updates

• Extremely lightweight read-side primitivesExtremely lightweight read-side primitives

 And RCU provides additional read-side And RCU provides additional read-side
performance and scalability benefitsperformance and scalability benefits

 With a few limitations and restrictions....With a few limitations and restrictions....

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 49

RCU for Read-Mostly Data StructuresRCU for Read-Mostly Data Structures

Work
Partitioning

Interacting
With Hardware

Parallel
Access Control

RCU data-parallel approach: RCU data-parallel approach: first partition resourcesfirst partition resources, then partition work, and, then partition work, and
only then worry about parallel access control, and only for updates.only then worry about parallel access control, and only for updates.

Resource
Partitioning

& Replication

RCU

Almost...Almost...

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 50

RCU Usage in the Linux KernelRCU Usage in the Linux Kernel

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 51

RCU Area of ApplicabilityRCU Area of Applicability

Update-Mostly, Need Consistent Data
(RCU is Really Unlikely to be the Right Tool For The Job)

Read-Write, Need Consistent Data
(RCU Might Be OK...)

Read-Mostly, Need Consistent Data
(RCU Works OK)

Read-Mostly, Stale &
Inconsistent Data OK
(RCU Works Great!!!)

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 52

SummarySummary

Programming Environments in Linux KernelProgramming Environments in Linux Kernel
Synchronization PrimitivesSynchronization Primitives
Per-CPU VariablesPer-CPU Variables
The Existence ProblemThe Existence Problem
Solutions to the Existence ProblemSolutions to the Existence Problem

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 53

Legal StatementLegal Statement

 This work represents the view of the author and does not This work represents the view of the author and does not
necessarily represent the view of IBM.necessarily represent the view of IBM.

 IBM and IBM (logo) are trademarks or registered IBM and IBM (logo) are trademarks or registered
trademarks of International Business Machines trademarks of International Business Machines
Corporation in the United States and/or other countries.Corporation in the United States and/or other countries.

 Linux is a registered trademark of Linus Torvalds.Linux is a registered trademark of Linus Torvalds.

 Other company, product, and service names may be Other company, product, and service names may be
trademarks or service marks of others.trademarks or service marks of others.

 This material is based upon work supported by the This material is based upon work supported by the
National Science Foundation under Grant No. National Science Foundation under Grant No.
CNS-0719851.CNS-0719851.

 Joint work with Manish Gupta, Maged Michael, Phil Howard, Joint work with Manish Gupta, Maged Michael, Phil Howard,
Joshua Triplett, and Jonathan WalpoleJoshua Triplett, and Jonathan Walpole

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 54

Questions?Questions?

To probe further:To probe further:

 Linux Device Drivers, 3Linux Device Drivers, 3rdrd edition, J. Corbet, A. Rubini, G. Kroah-Hartman edition, J. Corbet, A. Rubini, G. Kroah-Hartman
 Linux Kernel Development, 2Linux Kernel Development, 2ndnd edition, Robert Love edition, Robert Love
 Linux Weekly News: lwn.net (Google for “whatever site:lwn.net”)Linux Weekly News: lwn.net (Google for “whatever site:lwn.net”)
 Linux Kernel source (http://kernel.org/pub/linux/kernel/v2.6/linux-2.6.30.tar.bz2)Linux Kernel source (http://kernel.org/pub/linux/kernel/v2.6/linux-2.6.30.tar.bz2)

 ““Documentation” directoryDocumentation” directory
 http://lwn.net/Articles/262464/ (What is RCU, Fundamentally?)http://lwn.net/Articles/262464/ (What is RCU, Fundamentally?)
 http://lwn.net/Articles/263130/ (What is RCU's Usage?)http://lwn.net/Articles/263130/ (What is RCU's Usage?)
 http://lwn.net/Articles/264090/ (What is RCU's API?)http://lwn.net/Articles/264090/ (What is RCU's API?)
 http://www.rdrop.com/users/paulmck/RCU/lockperf.2004.01.17a.pdfhttp://www.rdrop.com/users/paulmck/RCU/lockperf.2004.01.17a.pdf

 linux.conf.au paper comparing RCU vs. locking performancelinux.conf.au paper comparing RCU vs. locking performance
 http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdfhttp://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdf

 RCU motivation, implementations, usage patterns, performance (micro+sys)RCU motivation, implementations, usage patterns, performance (micro+sys)
 http://www.livejournal.com/users/james_morris/2153.htmlhttp://www.livejournal.com/users/james_morris/2153.html

 System-level performance for SELinux workload: >500x improvementSystem-level performance for SELinux workload: >500x improvement
 http://www.rdrop.com/users/paulmck/RCU/hart_ipdps06.pdfhttp://www.rdrop.com/users/paulmck/RCU/hart_ipdps06.pdf

 Comparison of RCU and NBS (later appeared in JPDC)Comparison of RCU and NBS (later appeared in JPDC)
 http://doi.acm.org/10.1145/1400097.1400099http://doi.acm.org/10.1145/1400097.1400099

 History of RCU in Linux (Linux changed RCU more than vice versa)History of RCU in Linux (Linux changed RCU more than vice versa)
 http://www.rdrop.com/users/paulmck/RCU/ (More RCU information)http://www.rdrop.com/users/paulmck/RCU/ (More RCU information)

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 55

RCU APIRCU API

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 56

RCU APIRCU API

srcu_read_lock()
srcu_read_unlock()

rcu_assign_pointer()
list_add_rcu()
list_add_tail_rcu()
list_del_rcu()
list_replace_rcu()
hlist_del_rcu()
hlist_add_head_rcu()

synchronize_srcu()

rcu_dereference()
list_for_each_entry_rcu()
hlist_for_each_entry_rcu()
[list_for_each_rcu()]
[list_for_each_continue_rcu()

preempt_disable()
preempt_enable()

rcu_read_lock()
rcu_read_unlock()

rcu_read_lock_bh()
rcu_read_unlock_bh()

call_rcu_sched()
synchronize_sched()
synchronize_sched_expedited()
rcu_barrier_sched()

call_rcu_bh()
synchronize_rcu_bh()
synchronize_rcu_bh_expedited()
rcu_barrier_bh()

call_rcu()
synchronize_rcu()/synchronize_net()
synchronize_rcu_expedited()
rcu_barrier()

kfree()
kmem_cache_free()

General purposeGeneral purpose

Bottom-half contextBottom-half context
(networking)(networking)

IRQs, NMIs, ...IRQs, NMIs, ...

When readers must sleepWhen readers must sleep

Pointer dereferencing, including list traversalPointer dereferencing, including list traversal

List updateList update

qrcu_read_lock()
qrcu_read_unlock()

synchronize_qrcu() When readers must sleepWhen readers must sleep
with fast updateswith fast updates

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 57

Why Free and Open-Source Software?Why Free and Open-Source Software?

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 58

Why Free and Open-Source Software?Why Free and Open-Source Software?

The Parable of
The Six Blind Penguins and the Elephant

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 59

Proprietary Programming: RequirementsProprietary Programming: Requirements

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 60

Proprietary Programming: “Solution”Proprietary Programming: “Solution”

But sooner or later...But sooner or later...

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 61

Example: DYNIX/ptx RCU ImplementationExample: DYNIX/ptx RCU Implementation

 In late 1990s, knew everything there was to In late 1990s, knew everything there was to
know about RCU:know about RCU:

 rcu_read_lock()rcu_read_lock()
 rcu_read_unlock()rcu_read_unlock()
 call_rcu()call_rcu()
 kfree()kfree()
 kmem_cache_free()kmem_cache_free()
 kmem_deferred_free()kmem_deferred_free()

 But DYNIX/ptx was only a database server...But DYNIX/ptx was only a database server...

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 62

The Entire Elephant Will Make Itself Known...The Entire Elephant Will Make Itself Known...

Which it did for RCU, but in LinuxWhich it did for RCU, but in Linux

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 63

FOSS Programming: RequirementsFOSS Programming: Requirements

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 64

Just Another Day on LKML...Just Another Day on LKML...

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 65

But Sometimes Consensus is AchievedBut Sometimes Consensus is Achieved

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 66

Linux Community Taught Me Much About RCULinux Community Taught Me Much About RCU

 Simplicity as a first-class requirementSimplicity as a first-class requirement
 Support for 20+ CPU familiesSupport for 20+ CPU families

 Must hide memory barriers from RCU usersMust hide memory barriers from RCU users

 Real-time response: tens of microsecondsReal-time response: tens of microseconds
 Run on small-memory systems (2MB!!!)Run on small-memory systems (2MB!!!)
 Heavy networking workloadsHeavy networking workloads
 Denial-of-service attacksDenial-of-service attacks
 Wait for interrupt- and NMI-handler completionWait for interrupt- and NMI-handler completion
 Unloadable kernel modulesUnloadable kernel modules
 Blocking in RCU read-side critical sectionsBlocking in RCU read-side critical sections
 Sophisticated RCU-based list/tree manipulationSophisticated RCU-based list/tree manipulation
 Deep sub-millisecond RCU grace periodsDeep sub-millisecond RCU grace periods

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 67

And an Appropriate Solution Produced TherebyAnd an Appropriate Solution Produced Thereby

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 68

This is RCUThis is RCU

 rcu_read_lock()rcu_read_lock()
 rcu_read_unlock()rcu_read_unlock()











 call_rcu()call_rcu()
















 kfree()kfree()
 kmem_cache_free()kmem_cache_free()

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 69

This is RCU in LinuxThis is RCU in Linux

 rcu_read_lock()
 rcu_read_unlock()rcu_read_unlock()
 rcu_read_lock_bh()rcu_read_lock_bh()
 rcu_read_unlock_bh()rcu_read_unlock_bh()
 preempt_disable()preempt_disable()
 preempt_enable()preempt_enable()
 srcu_read_lock()srcu_read_lock()
 srcu_read_unlock()srcu_read_unlock()
 rcu_dereference()rcu_dereference()
 list_for_each_entry_rcu()list_for_each_entry_rcu()
 hlist_for_each_entry_rcu()hlist_for_each_entry_rcu()
 synchronize_rcu()synchronize_rcu()
 synchronize_net()synchronize_net()
 call_rcu()call_rcu()
 rcu_barrier()rcu_barrier()
 call_rcu_bh()call_rcu_bh()

 synchronize_sched()synchronize_sched()
 synchronize_srcu()synchronize_srcu()
 rcu_assign_pointer()rcu_assign_pointer()
 list_add_rcu()list_add_rcu()
 list_add_tail_rcu()list_add_tail_rcu()
 list_del_rcu()list_del_rcu()
 list_replace_rcu()list_replace_rcu()
 hlist_del_rcu()hlist_del_rcu()
 hlist_add_after_rcu()hlist_add_after_rcu()
 hlist_add_before_rcu()hlist_add_before_rcu()
 hlist_add_head_rcu()hlist_add_head_rcu()
 hlist_replace_rcu()hlist_replace_rcu()
 list_splice_init_rcu()list_splice_init_rcu()
 kfree()kfree()
 kmem_cache_free()kmem_cache_free()

Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 70

This is RCU in LinuxThis is RCU in Linux

 rcu_read_lock()
 rcu_read_unlock()rcu_read_unlock()
 rcu_read_lock_bh()rcu_read_lock_bh()
 rcu_read_unlock_bh()rcu_read_unlock_bh()
 preempt_disable()preempt_disable()
 preempt_enable()preempt_enable()
 srcu_read_lock()srcu_read_lock()
 srcu_read_unlock()srcu_read_unlock()
 rcu_dereference()rcu_dereference()
 list_for_each_entry_rcu()list_for_each_entry_rcu()
 hlist_for_each_entry_rcu()hlist_for_each_entry_rcu()
 synchronize_rcu()synchronize_rcu()
 synchronize_net()synchronize_net()
 call_rcu()call_rcu()
 rcu_barrier()rcu_barrier()
 call_rcu_bh()call_rcu_bh()

 synchronize_sched()synchronize_sched()
 synchronize_srcu()synchronize_srcu()
 rcu_assign_pointer()rcu_assign_pointer()
 list_add_rcu()list_add_rcu()
 list_add_tail_rcu()list_add_tail_rcu()
 list_del_rcu()list_del_rcu()
 list_replace_rcu()list_replace_rcu()
 hlist_del_rcu()hlist_del_rcu()
 hlist_add_after_rcu()hlist_add_after_rcu()
 hlist_add_before_rcu()hlist_add_before_rcu()
 hlist_add_head_rcu()hlist_add_head_rcu()
 hlist_replace_rcu()hlist_replace_rcu()
 list_splice_init_rcu()list_splice_init_rcu()
 kfree()kfree()
 kmem_cache_free()kmem_cache_free()

Any Questions?Any Questions?

