
© 2002 IBM Corporation

Performance, Scalability, and Real-Time Response From the Linux Kernel

ACACES   July 17, 2009 Copyright © 2009 IBM

Creating Real-Time Linux ApplicationsCreating Real-Time Linux Applications

Paul E. McKenneyPaul E. McKenney
IBM Distinguished Engineer & CTO LinuxIBM Distinguished Engineer & CTO Linux
Linux Technology CenterLinux Technology Center



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 2

OverviewOverview

 Introduction to Performance, Scalability, and Introduction to Performance, Scalability, and 
Real-Time Issues on Modern Multicore Real-Time Issues on Modern Multicore 
Hardware: Is Parallel Programming Hard, Hardware: Is Parallel Programming Hard, 
And If So, Why?And If So, Why?

Performance and Scalability Technologies in Performance and Scalability Technologies in 
the Linux Kernelthe Linux Kernel

Creating Performant and Scalable Linux Creating Performant and Scalable Linux 
ApplicationsApplications

Real-Time Technologies in the Linux KernelReal-Time Technologies in the Linux Kernel
Creating Real-Time Linux Applications



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 3

OverviewOverview

 What Is “Real Time”?What Is “Real Time”?
 What Real-Time Applications?What Real-Time Applications?
 Example Real-Time ApplicationExample Real-Time Application
 Example Real-Fast ApplicationExample Real-Fast Application
 Real Time vs. Real Fast: How to ChooseReal Time vs. Real Fast: How to Choose
 Course SummaryCourse Summary



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 4

What is “Real Time”?What is “Real Time”?



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 5

Hard or Soft Real Time?Hard or Soft Real Time?

Required Response TimeRequired Response Time

1us1us 10us10us 100us100us 1ms1ms 10ms10ms

P
ro

ba
bi

lit
y 

of
 M

ee
tin

g 
D

ea
dl

in
e

P
ro

ba
bi

lit
y 

of
 M

ee
tin

g 
D

ea
dl

in
e

0%0%

50%50%

100%100%



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 6

Definitions of Hard Real TimeDefinitions of Hard Real Time

1.1.A Hard Real-Time System Will A Hard Real-Time System Will AlwaysAlways Meet its  Meet its 
DeadlinesDeadlines

2.2.A Hard Real-Time System Will Either (1) Meet its A Hard Real-Time System Will Either (1) Meet its 
Deadlines, or (2) Give Timely Failure IndicationDeadlines, or (2) Give Timely Failure Indication

3.3.A Hard Real-Time System Will Always Meet its A Hard Real-Time System Will Always Meet its 
Deadlines (in Absence of Hardware Failure)Deadlines (in Absence of Hardware Failure)

4.4.A Hard Real-Time System Will Pass a Specified A Hard Real-Time System Will Pass a Specified 
Test SuiteTest Suite

 Which definition is appropriate?  Why, and Which definition is appropriate?  Why, and 
under what conditions?under what conditions?



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 7

Hard Realtime: Problem With Definition #1Hard Realtime: Problem With Definition #1

 If you have a hard realtime system...If you have a hard realtime system...
 I have a hammer that will make it miss its deadlines!I have a hammer that will make it miss its deadlines!



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 8

Hard Realtime: Problem With Definition #2Hard Realtime: Problem With Definition #2

 I have a “hard realtime” systemI have a “hard realtime” system
 It simply always fails!It simply always fails!



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 9

Hard Realtime: Problem With Definition #3Hard Realtime: Problem With Definition #3

 ““Rest assured, sir, that if your life support fails, your death will Rest assured, sir, that if your life support fails, your death will 
most certainly not have been due to a software problem!!!”most certainly not have been due to a software problem!!!”



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 10

Hard Realtime: Problem With Definition #4Hard Realtime: Problem With Definition #4

 This definition can cause purists severe This definition can cause purists severe 
heartburn and cognitive dissonanceheartburn and cognitive dissonance

 But this definition is what is used in “real life”But this definition is what is used in “real life”
 Real systems are too complex to admit first-Real systems are too complex to admit first-

principles mathematical analysisprinciples mathematical analysis
 Perhaps this will change with improved toolingPerhaps this will change with improved tooling



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 11

What Does Real-World Real-Time Entail?What Does Real-World Real-Time Entail?

 Quality of Service (Beyond “Hard”/“Soft”)Quality of Service (Beyond “Hard”/“Soft”)
 Services SupportedServices Supported

• Probability of meeting deadline absent HW failureProbability of meeting deadline absent HW failure
• Deadlines supportedDeadlines supported

 Performance/Scalability for RT & non-RT CodePerformance/Scalability for RT & non-RT Code

 Amount of Global Knowledge RequiredAmount of Global Knowledge Required
 Fault IsolationFault Isolation
 HW/SW Configurations SupportedHW/SW Configurations Supported

 ““But Will People Use It?”But Will People Use It?”



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 12

Real Time and Real Fast: Real Time and Real Fast: UsefulUseful Definitions Definitions

 Real TimeReal Time
 OS: “how long before work starts?”OS: “how long before work starts?”

 Real FastReal Fast
 Application: “once started, how quickly is work Application: “once started, how quickly is work 

completed?”completed?”

 This Separation Can Result in Confusion!This Separation Can Result in Confusion!

Real TimeReal Time Real FastReal Fast

What Users Care AboutWhat Users Care About



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 13

What Real-Time Applications?What Real-Time Applications?



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 14

What Real-Time Applications?What Real-Time Applications?

In Search of Life ...In Search of Life ...

... In Search of Death ...... In Search of Death ...

... In Search of Money... In Search of Money



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 15

What Real-Time Applications?What Real-Time Applications?

In Search of Life ...In Search of Life ...

... In Search of Death ...... In Search of Death ...

... In Search of Money... In Search of Money

(Or In Search of (Or In Search of 
Knowledge, If You Prefer.)Knowledge, If You Prefer.)



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 16

What Real-Time Applications?What Real-Time Applications?

 Industrial controlIndustrial control
 Embedded devicesEmbedded devices

 PDAs, cellphones, TVs, refrigerators, cars, ...PDAs, cellphones, TVs, refrigerators, cars, ...

 MilitaryMilitary
 ScientificScientific
 FinancialFinancial
 CommercialCommercial

 Break with traditional practice: real-time systems no Break with traditional practice: real-time systems no 
longer standalone, but tied into enterprise IT longer standalone, but tied into enterprise IT 
systemssystems



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 17

Historical Latency Trends, RevisitedHistorical Latency Trends, Revisited

 Traditional response time limits on the order of 1-2 secondsTraditional response time limits on the order of 1-2 seconds
 In contrast, 100ms is perceived as ideal, 1 second just barely acceptable, and In contrast, 100ms is perceived as ideal, 1 second just barely acceptable, and 

10 seconds as unacceptable.10 seconds as unacceptable.
 http://www.bohmann.dk/articles/response_time_still_matters.htmlhttp://www.bohmann.dk/articles/response_time_still_matters.html

 Improved response times gain business:Improved response times gain business:
 http://www.akamai.com/en/resources/pdf/casestudy/Akamai_CaseStudy_SKF.pdfhttp://www.akamai.com/en/resources/pdf/casestudy/Akamai_CaseStudy_SKF.pdf
 http://www.zend.com/products/zend_platformhttp://www.zend.com/products/zend_platform
 http://www-306.ibm.com/software/tivoli/products/composite-application-mgr-rtt/http://www-306.ibm.com/software/tivoli/products/composite-application-mgr-rtt/

 Numerous other products and services to measure/improve web response Numerous other products and services to measure/improve web response 
timestimes

 Improvement from 1 second to 100ms represents an hour per month savings Improvement from 1 second to 100ms represents an hour per month savings 
for employees who use the web heavily (one page view per two minutes)for employees who use the web heavily (one page view per two minutes)

 Gameset generation moving into positions with IT purchasing authorityGameset generation moving into positions with IT purchasing authority
 This group has grown up with sub-reflex response from computersThis group has grown up with sub-reflex response from computers

 Endgame: 100ms end-to-end response timeEndgame: 100ms end-to-end response time
 translates into smaller per-machine response times!translates into smaller per-machine response times!



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 18

But Latencies AccumulateBut Latencies Accumulate

Before the web (late 1980s):

User Database
Server

On the web:

User
Load

Balancer
Web

Server
Application

Server
Database

Server

Machines must be seven times faster to give same worst-case overall latency!!!Machines must be seven times faster to give same worst-case overall latency!!!
(Situation less demanding for soft realtime.)(Situation less demanding for soft realtime.)



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 19

Allocating a Latency Budget for Web ApplicationAllocating a Latency Budget for Web Application

 Start with a 200ms budget:Start with a 200ms budget:
 Assume we need to meet 200ms 99% of the time (3σ)Assume we need to meet 200ms 99% of the time (3σ)

• Based on w3.ibm.com's variability, consumes 24% of budget: leaves 152msBased on w3.ibm.com's variability, consumes 24% of budget: leaves 152ms
 Assume 90 ms for Internet latencies (based on w3.ibm.com again): leaves 62msAssume 90 ms for Internet latencies (based on w3.ibm.com again): leaves 62ms
 Assume 50ms for database to execute transaction: leaves 12msAssume 50ms for database to execute transaction: leaves 12ms
 Spread over 10 machines (not counting database backend): leaves 1.09ms per Spread over 10 machines (not counting database backend): leaves 1.09ms per 

machine.  Some of which are running web-application servers using Java.machine.  Some of which are running web-application servers using Java.

 Moving to a 100ms budget:Moving to a 100ms budget:
 Assume we need to meet 100ms 99% of the time (3σ)Assume we need to meet 100ms 99% of the time (3σ)

• Based on w3.ibm.com's variability, consumes 24% of budget: leaves 76msBased on w3.ibm.com's variability, consumes 24% of budget: leaves 76ms
 Assume 90 ms for Internet latencies (based on w3.ibm.com again): puts us 14ms in Assume 90 ms for Internet latencies (based on w3.ibm.com again): puts us 14ms in 

the red.the red.

 Endgame: whatever can be providedEndgame: whatever can be provided
 Internet latencies will be the bottleneck – greater emphasis on edge serversInternet latencies will be the bottleneck – greater emphasis on edge servers
 Also on private-network bypass for heavy-traffic localitiesAlso on private-network bypass for heavy-traffic localities



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 20

Latency Accumulation With Web 2.0Latency Accumulation With Web 2.0

User

Load
Balancer

Web
Server

Application
Server

Database
Server

Machines must be more then twenty times faster to give same overall latency!!!Machines must be more then twenty times faster to give same overall latency!!!

Firewall

Firewall/
NAT/

Modem

Load
Balancer

Web
Server

Application
Server

Database
Server

Firewall



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 21

Example Real-Time ApplicationExample Real-Time Application



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 22

Example Real-Time Application: Fuel InjectionExample Real-Time Application: Fuel Injection

 Mid-sized industrial engineMid-sized industrial engine
 Fuel injection within one degree surrounding “top Fuel injection within one degree surrounding “top 

dead center”dead center”

 1500 RPM rotation rate1500 RPM rotation rate
 1500 RPM / 60 sec/min = 25 RPS1500 RPM / 60 sec/min = 25 RPS
 25 RPS * 360 degrees/round = 9000 degrees/second25 RPS * 360 degrees/round = 9000 degrees/second
 About 111 microseconds per degreeAbout 111 microseconds per degree
 Hence need to schedule to within about 100 Hence need to schedule to within about 100 

microsecondsmicroseconds



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 23

Fuel Injection: Conceptual OperationFuel Injection: Conceptual Operation

Top Dead CenterTop Dead Center Bottom Dead CenterBottom Dead Center



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 24

Too Early and Too Late Are BadToo Early and Too Late Are Bad

Injecting Too EarlyInjecting Too Early
(Exaggerated)(Exaggerated)

Injecting Too LateInjecting Too Late
(Exaggerated)(Exaggerated)



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 25

Fanciful Code Operating InjectorsFanciful Code Operating Injectors

struct timespec timewait;struct timespec timewait;

angle = crank_position();angle = crank_position();
timewait.tv_sec = 0;timewait.tv_sec = 0;
timewait.tv_nsec = 1000 * 1000 * 1000 * angle / 9000;timewait.tv_nsec = 1000 * 1000 * 1000 * angle / 9000;
nanosleep(&timewait, NULL);nanosleep(&timewait, NULL);
inject();inject();



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 26

Fuel Injection Test ProgramFuel Injection Test Program

if (clock_gettime(CLOCK_REALTIME, &timestart) != 0) {if (clock_gettime(CLOCK_REALTIME, &timestart) != 0) {
                perror("clock_gettime 1");perror("clock_gettime 1");
                exit(-1);exit(-1);
}}
if (nanosleep(&timewait, NULL) != 0) {if (nanosleep(&timewait, NULL) != 0) {
                perror("nanosleep");perror("nanosleep");
                exit(-1);exit(-1);
}}
if (clock_gettime(CLOCK_REALTIME, &timeend) != 0) {if (clock_gettime(CLOCK_REALTIME, &timeend) != 0) {
                perror("clock_gettime 2");perror("clock_gettime 2");
                exit(-1);exit(-1);
}}

Bad results, even on -rt kernel build!!!  Why?Bad results, even on -rt kernel build!!!  Why?



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 27

Test Program Needs MONOTONICTest Program Needs MONOTONIC

if (clock_gettime(CLOCK_MONOTONIC, &timestart) != 0) {if (clock_gettime(CLOCK_MONOTONIC, &timestart) != 0) {
                perror("clock_gettime 1");perror("clock_gettime 1");
                exit(-1);exit(-1);
}}
if (nanosleep(&timewait, NULL) != 0) {if (nanosleep(&timewait, NULL) != 0) {
                perror("nanosleep");perror("nanosleep");
                exit(-1);exit(-1);
}}
if (clock_gettime(CLOCK_MONOTONIC, &timeend) != 0) {if (clock_gettime(CLOCK_MONOTONIC, &timeend) != 0) {
                perror("clock_gettime 2");perror("clock_gettime 2");
                exit(-1);exit(-1);
}}

Still bad results, even on -rt kernel build!!!  Why?Still bad results, even on -rt kernel build!!!  Why?



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 28

Test Program Needs RT PriorityTest Program Needs RT Priority

Still sometimes bad results, even on -rt kernel build!!!  Why?Still sometimes bad results, even on -rt kernel build!!!  Why?

struct sched_param sp;struct sched_param sp;

sp.sched_priority = sched_get_priority_max(SCHED_FIFO);sp.sched_priority = sched_get_priority_max(SCHED_FIFO);
if (sp.sched_priority == -1) {if (sp.sched_priority == -1) {
                perror("sched_get_priority_max");perror("sched_get_priority_max");
                exit(-1);exit(-1);
}}
if (sched_setscheduler(0, SCHED_FIFO, &sp) != 0) { if (sched_setscheduler(0, SCHED_FIFO, &sp) != 0) { 
                perror("sched_setscheduler");perror("sched_setscheduler");
                exit(-1);exit(-1);
}}



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 29

Test Program Needs mlockall()Test Program Needs mlockall()

Better results on -rt kernel: nanosleep jitter < 20us, 99.999% < 13usBetter results on -rt kernel: nanosleep jitter < 20us, 99.999% < 13us
(4-CPU 2.2GHz x86 system with RT firmware – your mileage will vary)(4-CPU 2.2GHz x86 system with RT firmware – your mileage will vary)

More than 3 More than 3 millisecondsmilliseconds on non-realtime kernel!!! on non-realtime kernel!!!
(Though improved on more recent kernels with high-resolution timers.)(Though improved on more recent kernels with high-resolution timers.)

if (mlockall(MCL_CURRENT | MCL_FUTURE) != 0) { if (mlockall(MCL_CURRENT | MCL_FUTURE) != 0) { 
                perror("mlockall");perror("mlockall");
                exit(-1);exit(-1);
}}



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 30

Fuel Injection: Further Tuning PossibleFuel Injection: Further Tuning Possible

 On multicore systems:On multicore systems:
 Affinity time-critical tasks onto private CPUAffinity time-critical tasks onto private CPU

• (Can often safely share with non-realtime tasks)(Can often safely share with non-realtime tasks)

 Affinity IRQ handlers away from time-critical tasksAffinity IRQ handlers away from time-critical tasks

 Carefully select hardware and driversCarefully select hardware and drivers
 Carefully select kernel configurationCarefully select kernel configuration

 Depends on hardware in some casesDepends on hardware in some cases



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 31

Example Real-Fast ApplicationExample Real-Fast Application



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 32

Bring RT Magic to Non-Real-Time ApplicationBring RT Magic to Non-Real-Time Application

tar -xjf linux-2.6.24.tar.bz2tar -xjf linux-2.6.24.tar.bz2
cd linux-2.6.24cd linux-2.6.24
make allyesconfig > /dev/nullmake allyesconfig > /dev/null
time make -j8 > Make.out 2>&1time make -j8 > Make.out 2>&1
cd ..cd ..
rm -rf linux-2.6.24rm -rf linux-2.6.24



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 33

Kernel Build: Performance ResultsKernel Build: Performance Results

Real Fast(s)Real Fast(s) Real Time (s)Real Time (s) SpeedupSpeedup

realreal AverageAverage 1332.61332.6 1556.21556.2 0.860.86
Std. Dev.Std. Dev. 14.614.6 22.422.4

useruser AverageAverage 3012.23012.2 2964.72964.7 1.021.02
Std. Dev.Std. Dev. 12.712.7 17.517.5

syssys AverageAverage 316.6316.6 657657 0.480.48
Std. Dev.Std. Dev. 1.41.4 9.29.2

Smaller is better, real-time kernel Smaller is better, real-time kernel notnot helping... helping...



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 34

Real Time vs. Real Fast: Throughput ComparisonReal Time vs. Real Fast: Throughput Comparison

 Real-time system starts more quicklyReal-time system starts more quickly
 Proverbial hareProverbial hare

 Real-fast system has opportunity to catch upReal-fast system has opportunity to catch up
 Proverbial tortoiseProverbial tortoise

 Tradeoff based on task durationTradeoff based on task duration



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 35

The Dark Side of Real TimeThe Dark Side of Real Time

©© 2008 Sarah McKenney Creative Commons (Attribution) 2008 Sarah McKenney Creative Commons (Attribution)



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 36

The Dark Side of Real FastThe Dark Side of Real Fast

©© 2008 Sarah McKenney Creative Commons (Attribution) 2008 Sarah McKenney Creative Commons (Attribution)



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 37

Real Time vs. Real Fast Throughput: No PenaltyReal Time vs. Real Fast Throughput: No Penalty

For example, heavy floating-point workloadsFor example, heavy floating-point workloads



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 38

Real Time vs. Real Fast Throughput: “real” PenaltyReal Time vs. Real Fast Throughput: “real” Penalty

Mixed workloadsMixed workloads



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 39

Real Time vs. Real Fast Throughput: “sys” PenaltyReal Time vs. Real Fast Throughput: “sys” Penalty

Filesystem I/O workloads: “don't do that”Filesystem I/O workloads: “don't do that”



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 40

Real-Time Latency vs. CPU UtilizationReal-Time Latency vs. CPU Utilization

 CPU Utilization by Real-Time TasksCPU Utilization by Real-Time Tasks
 Can be avoided by time-slottingCan be avoided by time-slotting
 Which happens naturally in piston enginesWhich happens naturally in piston engines



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 41

Sources of Real-Time OverheadSources of Real-Time Overhead

 Memory utilization due to mlockall()Memory utilization due to mlockall()
 Increased locking overheadIncreased locking overhead

 Context switches, priority inheritance, preemptable RCUContext switches, priority inheritance, preemptable RCU

 Increased irq overheadIncreased irq overhead
 Threaded irqs (context switches)Threaded irqs (context switches)

 Added delay (and interactions with rotating mass storage)Added delay (and interactions with rotating mass storage)

 Increased real-time scheduling overheadIncreased real-time scheduling overhead
 Global distribution of high-priority real-time tasksGlobal distribution of high-priority real-time tasks

 High-resolution timersHigh-resolution timers



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 42

Real Time vs. Real Fast: How to ChooseReal Time vs. Real Fast: How to Choose



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 43

Real Time vs. Real Fast: How to ChooseReal Time vs. Real Fast: How to Choose

NN

NN

NN

YY

YY

YY

YY

YY

NN

NN

Real
Fast

Throughput
only goal?

Peak Loads
Degrade

Response?

Memory
Pressure?

Virtualization
Required?

(RT Guests)

Basic
Work Item
> 100ms?

Real
Fast

Real
Time



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 44

Longer Term: Avoid the Need to ChooseLonger Term: Avoid the Need to Choose

 Reduce Overhead of Real-Time Linux!Reduce Overhead of Real-Time Linux!
 Easy to say, but...Easy to say, but...
 Reduce locking overhead (adaptive locks)Reduce locking overhead (adaptive locks)
 Reduce scheduler overhead (ongoing work)Reduce scheduler overhead (ongoing work)
 Optimize threaded irq handlersOptimize threaded irq handlers
 Eliminate networking reader-writer-lock bottlenecks Eliminate networking reader-writer-lock bottlenecks 

(ongoing work)(ongoing work)
 And my “evil plan” from yesterdayAnd my “evil plan” from yesterday

 Note that partial progress is beneficialNote that partial progress is beneficial
 Reduces the need to chooseReduces the need to choose
 Harvest the low-hanging fruitHarvest the low-hanging fruit



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 45

Low-Hanging FruitLow-Hanging Fruit

Harvest it.Harvest it.
Don't trip over it!Don't trip over it!

©© 2008 Sarah McKenney Creative Commons (Attribution) 2008 Sarah McKenney Creative Commons (Attribution)



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 46

AcknowledgmentsAcknowledgments

 Ingo MolnarIngo Molnar
 Thomas GleixnerThomas Gleixner
 Sven DeitrichSven Deitrich
 K. R. FoleyK. R. Foley
 Gene HeskettGene Heskett
 Bill HueyBill Huey
 Esben NeilsenEsben Neilsen

 Nick PigginNick Piggin
 Steve RostedtSteve Rostedt
 Michal SchmidtMichal Schmidt
 Daniel WalkerDaniel Walker
 Karsten WieseKarsten Wiese
 Gregory HaskinsGregory Haskins

 And many many And many many 
more...more...



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 47

Legal StatementLegal Statement

 This work represents the view of the author and does not This work represents the view of the author and does not 
necessarily represent the view of IBM.necessarily represent the view of IBM.

 IBM and IBM (logo) are trademarks or registered IBM and IBM (logo) are trademarks or registered 
trademarks of International Business Machines trademarks of International Business Machines 
Corporation in the United States and/or other countries.Corporation in the United States and/or other countries.

 Linux is a registered trademark of Linus Torvalds.Linux is a registered trademark of Linus Torvalds.

 Other company, product, and service names may be Other company, product, and service names may be 
trademarks or service marks of others.trademarks or service marks of others.



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 48

Questions?Questions?

To probe further:To probe further:

 Applications:Applications:
 http://www.cotsjournalonline.com/pdfs/2003/07/COTS07_softside.pdf (In search of http://www.cotsjournalonline.com/pdfs/2003/07/COTS07_softside.pdf (In search of 

death)death)
 http://www.nytimes.com/2006/12/11/technology/11reuters.html?http://www.nytimes.com/2006/12/11/technology/11reuters.html?

ei=5088&en=e5e9416415a9eeb2&ex=1323493200... (In search of money)ei=5088&en=e5e9416415a9eeb2&ex=1323493200... (In search of money)
 http://www.linuxjournal.com/article/9361 (Enterprise real-time)http://www.linuxjournal.com/article/9361 (Enterprise real-time)
 http://www.b-eye-network.de/view-articles/3365 (Time value of information)http://www.b-eye-network.de/view-articles/3365 (Time value of information)
 http://searchenterpriselinux.techtarget.com/news/article/0,289142,sid39_gci1309889http://searchenterpriselinux.techtarget.com/news/article/0,289142,sid39_gci1309889

,00.html (Order of magnitude decrease in response time required over 5 years time),00.html (Order of magnitude decrease in response time required over 5 years time)
 Extreme Real Time:Extreme Real Time:

 ““Temporal inventory and real-time synchronization in RTLinuxPro”, Victor Temporal inventory and real-time synchronization in RTLinuxPro”, Victor 
Yodaiken, http://www.yodaiken.com/papers/sync.pdf Yodaiken, http://www.yodaiken.com/papers/sync.pdf 

 Rants:Rants:
 ““Against Priority Inheritance”, Victor Yodaiken, Against Priority Inheritance”, Victor Yodaiken, 

http://www.linuxdevices.com/articles/AT7168794919.htmlhttp://www.linuxdevices.com/articles/AT7168794919.html
 ““Priority Inheritance: The Real Story”, Doug Locke, Priority Inheritance: The Real Story”, Doug Locke, 

http://www.linuxdevices.com/articles/AT5698775833.html http://www.linuxdevices.com/articles/AT5698775833.html 
 ““Soft Real Time Continues to Sag”, Victor Yodaiken, Soft Real Time Continues to Sag”, Victor Yodaiken, 

http://www.yodaiken.com/w/2006/10/soft-real-time-continues-to-sag/http://www.yodaiken.com/w/2006/10/soft-real-time-continues-to-sag/



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 49

Course SummaryCourse Summary



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 50

Course SummaryCourse Summary

 Know the hardwareKnow the hardware
 Lower-level code required more detailed knowledgeLower-level code required more detailed knowledge
 Atomics operations, memory barriers, and cache Atomics operations, memory barriers, and cache 

misses are (still) extremely expensivemisses are (still) extremely expensive

 ““Free” is a very good priceFree” is a very good price
 Don't forget to check for sequential bugsDon't forget to check for sequential bugs

 If it is my code, check initialization carefullyIf it is my code, check initialization carefully

 ““Hard Real Time” means different things to Hard Real Time” means different things to 
different peopledifferent people

 But the customer is always right!!!But the customer is always right!!!

 And finally...And finally...



Perfomance, Scalability, and Real-Time Response From the Linux Kernel

ACACES 2009 © 2009 IBM Corporation 51

Course SummaryCourse Summary

UseUse
the right toolthe right tool
for the job!!!for the job!!!

Image copyright © 2004 Melissa McKenney


