
© 2014 IBM Corporation

Bare-Metal Multicore Performance
in a General-Purpose Operating System

(Now With Added Energy Efficiency!)

Paul E. McKenney, IBM Distinguished Engineer, Linux Technology Center
Member, IBM Academy of Technology

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

© 2014 IBM Corporation2

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

Group Effort: Acknowledgments

 Josh Triplett: First prototype (LPC 2009)

 Frederic Weisbecker: Core kernel work and x86 port

 Steven Rostedt: Lots of code review and comments, tracing upgrades

 Christoph Lameter: Early adopter feedback, work on vmstat kthread

 Li Zhong: Power port

 Geoff Levand, Kevin Hilman: ARM port, with Kevin continuing on with residual-tick-elimination work

 Peter Zijlstra: Scheduler-related review, comments, and work

 Paul E. McKenney: Read-copy update (RCU) work, full-system idle

 Thomas Gleixner, Paul E. McKenney: “Godfathers”

 Ingo Molnar: Maintainer

 Other contributors:
– Avi Kivity, Chris Metcalf, Gilad Ben Yossef, Hakan Akkan, Lai Jiangshan, Max Krasnyansky, Namhyung Kim, Paul

Gortmaker, Paul Mackerras, Zen Lin, Jason Furmanek, Paul Clarke, Mala Anand, Mike Galbraith, Oleg Nesterov,
Viresh Kumar, and probably many others

© 2014 IBM Corporation3

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

There Used To Be Things You Could Count On...

© 2014 IBM Corporation4

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

There Used To Be Things You Could Count On...

Like a scheduling-clock interrupt every jiffy on every CPU.

© 2014 IBM Corporation5

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

There Used To Be Things You Could Count On...

© 2014 IBM Corporation6

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

There Used To Be Things You Could Count On...

Like a scheduling-clock interrupt every jiffy on every CPU.

Whether you needed it or not.

© 2014 IBM Corporation7

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

There Used To Be Things You Could Count On...

Like a scheduling-clock interrupt every jiffy on every CPU.

Whether you needed it or not.

And especially, whether your battery needed it or not.

© 2014 IBM Corporation8

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

There Used To Be Things You Could Count On...

© 2014 IBM Corporation9

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

There Used To Be Things You Could Count On...

© 2014 IBM Corporation10

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

There Used To Be Things You Could Count On...

Like a scheduling-clock interrupt every jiffy on every CPU.

Whether you needed it or not.

And especially, whether your battery needed it or not.

Of course, back then you needed a somewhat larger battery...

© 2014 IBM Corporation11

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

There Used To Be Things You Could Count On...

Like a scheduling-clock interrupt every jiffy on every CPU.

Whether you needed it or not.

And especially, whether your battery needed it or not.

Of course, back then you needed a somewhat larger battery...

And, if your system was portable, a forklift.

© 2014 IBM Corporation12

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

What We Need Instead...

© 2014 IBM Corporation13

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

“Good Old Days” Before Linux's dyntick-idle System

CPU 1

CPU 0

Scheduling-Clock
Interrupts

Busy Period
Ends

But CPU Remains
in High-Power State

© 2014 IBM Corporation14

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

“Good Old Days” Before Linux's dyntick-idle System

© 2014 IBM Corporation15

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

Semi-Modern Innovation: Linux's dyntick-idle System

CPU 1

CPU 0

Scheduling-Clock
Interrupts

Enter Dyntick-Idle Mode
At End Of Busy Period

Dyntick-Idle Mode Enables
CPU Deep-Sleep States

Very Good For Energy Efficiency!!!

© 2014 IBM Corporation16

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

Also: Avoid Unnecessary Usermode Interrupts

HPC and real-time applications can increase performance if
unnecessary scheduling-clock interrupts are omitted

And if there is only one runnable task on a given CPU, why
interrupt it?

 If another task shows up, then we can interrupt the CPU

Until then, interrupting it only slows it down

© 2014 IBM Corporation17

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

Also: Avoid Unnecessary Usermode Interrupts

© 2014 IBM Corporation18

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

Also: Avoid Unnecessary Usermode Interrupts

HPC and real-time applications can increase performance if
unnecessary scheduling-clock interrupts are omitted

And if there is only one runnable task on a given CPU, why
interrupt it?

 If another task shows up, then we can interrupt the CPU

Until then, interrupting it only slows it down

Josh Triplett prototyped CONFIG_NO_HZ_FULL 2009

© 2014 IBM Corporation19

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

Benchmark Results Before (Anton Blanchard)

© 2014 IBM Corporation20

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

Benchmark Results After (Anton Blanchard)

Well worth going after...

© 2014 IBM Corporation21

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

But There Were A Few Small Drawbacks...

User applications can monopolize CPU
– But if there is only one runnable task, so what???
– If new task awakens, interrupt the CPU, restart scheduling-clock interrrupts
– In the meantime, we have an “adaptive ticks usermode” CPU

No process accounting
– Use delta-based accounting, based on when process started running
– One CPU retains scheduling-clock interrupts for timekeeping purposes

RCU grace periods go forever, running system out of memory
– Inform RCU of adaptive-ticks usermode execution so that it ignores adaptive-

ticks user-mode CPUs, similar to its handling of dyntick-ticks CPUs

Frederic Weisbecker took on the task of fixing this (for x86-64)
– Geoff Levand and Kevin Hilman: Port to ARM
– Li Zhong: Port to PowerPC
– I was able to provide a bit of help with RCU

© 2014 IBM Corporation22

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

How Does It Work?

KernelIdle Usermode Kernel Usermode

Scheduling
clock
interrupts

KernelIdle Usermode Kernel Usermode

Adaptive
Ticks

Second task awakens

One task per CPU

© 2014 IBM Corporation23

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

Other Than Energy Efficiency, Looks Great!!!

But what is the problem with energy efficiency?

© 2014 IBM Corporation24

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

Energy Efficiency and Timekeeping

Hardware oscillators drift

Requires periodic recalculation of time conversion
parameters, e.g., via NTP

–Otherwise user applications get bad time data

One special case

© 2014 IBM Corporation25

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

Energy Efficiency and Timekeeping

Hardware oscillators drift

Requires periodic recalculation of time conversion
parameters, e.g., via NTP

–Otherwise user applications get bad time data

One special case:
–If all CPUs are idle, none of them care about accurate timekeeping
–Just need to recalculate time-conversion parameters when the first

CPU goes non-idle

© 2014 IBM Corporation26

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

Energy Efficiency, Timekeeping, and Idle

CPU 1

CPU 0

T T

T

T
T

No need for time
parameter recalculation

© 2014 IBM Corporation27

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

But If Running Userspace, Need Recalculation

© 2014 IBM Corporation28

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

Energy Efficiency, Timekeeping, and Userspace

CPU 1 User

CPU 0

T T

T

T
T

Need time
parameter recalculation!!!

© 2014 IBM Corporation29

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

Shut Down Almost All Scheduling-Clock Interrupts

 If all CPUs are idle, we can shut down all CPUs' scheduling-
clock interrupts

 If any CPU is non-idle, we need at least one CPU running the
scheduling-clock interrupt

 Initial approach: Require that CPU 0 always run the
scheduling-clock interrupt

© 2014 IBM Corporation30

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

Shut Down Almost All Scheduling-Clock Interrupts

CPU 1 User

CPU 0

T T T T

Keep scheduling-clock
Interrupt on at least on CPU 0

T

© 2014 IBM Corporation31

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

The Battery-Powered Embedded Folks Not Happy...

© 2014 IBM Corporation32

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

The Battery-Powered Embedded Folks Not Happy...
We Must Shut Down All Scheduling-Clock Interrupts

© 2014 IBM Corporation33

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

We Must Shut Down All Scheduling-Clock Interrupts:
Two Simple (But Broken) Approaches

Just count non-idle CPUs!!!
–Maintain an atomic counter
–When a CPU goes idle, atomically increment the counter
–When a CPU goes non-idle atomically decrement the counter

• This is a really bad idea on a system with lots of CPUs
• Memory contention will degrade scalability and performance – and in

extreme cases, hangs the system

Just scan CPUs looking for non-idle ones!!!
–Have the timekeeping kthread periodically scan CPUs: If all are idle,

turn off the scheduling-clock tick
• Vulnerable to race conditions, see next slide

© 2014 IBM Corporation34

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

Scanning For Full-System Idle is Broken!

Scanning is subject to race conditions!

Example race scenario on a four-CPU system:
–CPU 0 goes idle (3 CPUs non-idle)
–Timekeeping kthread checks CPU 0, sees it idle
–CPU 1 goes idle (2 CPUs non-idle)
–CPU 0 goes non-idle (3 CPUs non-idle)
–Timekeeping kthread checks CPU 1, sees it idle
–CPU 2 goes idle (2 CPUs non-idle)
–CPU 1 goes non-idle (3 CPUs nonidle)
–Timekeeping kthread checks CPU 2, sees it idle
–CPU 3 goes idle (2 CPUs non-idle)
–CPU 2 goes non-idle (3 CPUs nonidle)
–Timekeeping kthread checks CPU 3, sees it idle
–Timekeeping kthread wrongly concludes that the entire system is idle!!!
–Despite the fact that there has never been fewer than two non-idle CPUs

© 2014 IBM Corporation35

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

How To Efficiently Detect Full-System Idle?

 We have to give up something:
–Energy efficiency
–Scalability
–Determinism
–Full-system idle detection latency
–Sanity

© 2014 IBM Corporation36

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

Opportunistic Idle on Large Systems?

© 2014 IBM Corporation37

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

Opportunistic Idle on Large Systems?

Not s
o m

uch!!!

© 2014 IBM Corporation38

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

How To Efficiently Detect Full-System Idle?

We have to give up something:
–Energy efficiency
–Scalability
–Determinism
–Full-system idle detection latency
–Sanity

© 2014 IBM Corporation39

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

How To Efficiently Detect Full-System Idle?

We have to give up something:
–Energy efficiency
–Scalability
–Determinism
–Full-system idle detection latency
–Sanity: You cannot give up something that you do not have!!!

© 2014 IBM Corporation40

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

How To Efficiently Detect Full-System Idle?

We have to give up something:
–Full-system idle detection latency

Use a state machine

Enter full-system-idle state more slowly on larger systems
–Forces more time between atomic updates of global state variable on

large systems, maintaining a constant level of memory contention

Leverage RCU's pre-existing scan of idle CPUs
–If a CPU is idle, it does not respond to RCU grace periods
–RCU therefore scans CPUs, report quiescent states on their behalf
–Also track last time each CPU went idle

© 2014 IBM Corporation41

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

Full-System-Idle State Machine

Added twist: A timekeeping CPU being non-idle must not
prevent the system from entering full-system-idle state!

States:
–RCU_SYSIDLE_NOT: Some CPU is not idle.

• Return to this state any time a non-timekeeping CPU goes non-idle from
RCU_SYSIDLE_LONG or later state.

–RCU_SYSIDLE_SHORT: All CPUs idle for brief period.
• Advance here if scan finds all non-timekeeping CPUs idle.

–RCU_SYSIDLE_LONG: All CPUs idle for “long enough”.
• Advance here if in RCU_SYSIDLE_SHORT state long enough, and if all

CPUs remained idle throughout that time.
–RCU_SYSIDLE_FULL: All CPUs idle, ready for sysidle.

• Advance here from RCU_SYSIDLE_LONG if still idle on next scan.
–RCU_SYSIDLE_FULL_NOTED: Scheduling-clock tick disabled globally.

• Advance here when timekeeping ktheads sees RCU_SYSIDLE_FULL state.

© 2014 IBM Corporation42

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

Full-System-Idle State Machine Schematic

R
C

U
_S

Y
S

ID
LE

_ F
U

LL
_N

O
T

E
D

R
C

U
_S

Y
S

ID
LE

_ F
U

L
L

R
C

U
_S

Y
S

ID
LE

_ L
O

N
G

R
C

U
_S

Y
S

ID
LE

_ S
H

O
R

T

R
C

U
_S

Y
S

ID
LE

_ N
O

T

Non-timekeeping CPU goes non-idle

Id
le

 s
ca

n

Id
le

 f
o

r
su

ff
ic

i e
n

t
ti

m
e

Id
le

 s
ca

n

T
ic

k
tu

r n
ed

 o
ff

Protect against memory contention

Wake
timekeeping
CPU

© 2014 IBM Corporation43

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

How Long Idle in RCU_SYSIDLE_SHORT State?

CPU going idle records the time

RCU remembers most recent idle time when scanning CPUs

Advance to RCU_SYSIDLE_LONG only if it has been
sufficiently long since the last CPU went idle

–Increases linearly with increasing numbers of CPUs
–Adjusted by HZ and number of CPUs per rcu_node structure

© 2014 IBM Corporation44

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

How Long Is “Sufficiently Long”, Anyway?

© 2014 IBM Corporation45

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

Avoiding Non-Idle Races

Bad scenario: Timekeeping CPU turns off all scheduling-clock
interrupts, then does not notice a CPU going non-idle

Avoid this as follows:
–CPU going non-idle in the RCU_SYSIDLE_FULL_NOTED state will

force scheduling-clock interrupts back on.
–CPU going non-idle will force the state to RCU_SYSIDLE_NOT unless

the current state is RCU_SYSIDLE_SHORT
–This means that there is at least one remaining scan (from

RCU_SYSIDLE_LONG to RCU_SYSIDLE_FULL): During this scan, the
CPU will be detected as non-idle, forcing state back to
RCU_SYSIDLE_NOT

–This requires careful use of atomic operations and memory barriers

Be careful, getting this right is harder than it looks!

© 2014 IBM Corporation46

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

Avoiding Non-Idle Races

Any CPU can drive state back down to RCU_SYSIDLE_NOT
–It does so when it goes non-idle, but only if state has advanced to

RCU_SYSIDLE_LONG or further
–Uses atomic xchg() operation to update state: If returns

RCU_SYSIDLE_FULL_NOTED, wakes up timekeeping CPU

Only one task advances the state
–After each scan finds all CPUs idle, with optional time constraint
–Uses cmpxchg(), upon failure assumes CPU went non-idle

 If CPU going non-idle sees RCU_SYSIDLE_SHORT, state
might advance to RCU_SYSIDLE_LONG

–But memory barriers guarantee that next scan sees the non-idle CPU

Diagrams on next three slides...

© 2014 IBM Corporation47

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

Handling Non-Idle Races: Scenario 1

RCU_SYSIDLE_SHORT

RCU_SYSIDLE_LONG

RCU_SYSIDLE_NOT

Next scan sees non-idle CPU

Timekeeping CPU CPU going non-idle

cmpxchg to
RCU_SYSIDLE_LONG Does nothing!

State machine starts over

CPU goes idle before next scan

RCU_SYSIDLE_LONG

P
o

ss
ib

le
 U

n
iv

er
se

 0 P
o

ssib
le U

n
iv erse 1

© 2014 IBM Corporation48

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

Handling Non-Idle Races: Scenario 2

RCU_SYSIDLE_LONG

RCU_SYSIDLE_FULL

RCU_SYSIDLE_NOT

RCU_SYSIDLE_NOT

CPU going non-idle: xchg Timekeeping CPU's cmpxchg
fails, timekeeping CPU aware
of non-idle CPU

Race!!!

Timekeeping CPU CPU going non-idle

cmpxchg to
RCU_SYSIDLE_FULL

xchg to
RCU_SYSIDLE_NOT

P
o

ss
ib

le
 U

n
iv

er
se

 0
P

o
ssib

le U
n

iv erse 1

State machine starts over

© 2014 IBM Corporation49

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

Handling Non-Idle Races: Scenario 3

RCU_SYSIDLE_FULL

RCU_SYSIDLE_FULL_NOTED

RCU_SYSIDLE_NOT

RCU_SYSIDLE_NOT

Timekeeping CPU sleeps Timekeeping CPU's cmpxchg
fails, timekeeping CPU stays
awake

Race!!!

Timekeeping CPU CPU going non-idle

cmpxchg to
RCU_SYSIDLE_FULL_NOTED

xchg to
RCU_SYSIDLE_NOT

CPU going non-idle wakes
timekeeping CPU and
state machine starts over

P
o

ss
ib

le
 U

n
iv

er
se

 0
P

o
ssib

le U
n

iv erse 1

© 2014 IBM Corporation50

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

Sounds Complex! Did You Mechanically Verify This?

© 2014 IBM Corporation51

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

Sounds Complex! Did You Mechanically Verify This?

Well, I tried via goto-cc/goto-instrument/satabs:

Bug report to the authors (who have been responsive)
–Array allocation problem, fix is still on the way...
–Used several other tools, all of which failed in interesting ways

So I fell back on Promela/spin
–243 lines of Promela says it works!!! (Safety and forward progress)

Performing pointer analysis for concurrency-aware abstraction
satabs: value_set.cpp:1183: void value_sett::assign(const exprt&, const exprt&, const
namespacet&, bool): Assertion `base_type_eq(rhs.type(), type, ns)' failed.
Aborted (core dumped)

© 2014 IBM Corporation52

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

Sounds Complex! Did You Mechanically Verify This?

Well, I tried via goto-cc/goto-instrument/satabs:

Bug report to the authors (who have been responsive)
–Array allocation problem, fix is still on the way...
–Used several other tools, all of which failed in interesting ways

So I fell back on Promela/spin
–243 lines of Promela says it works!!! (Safety and forward progress)
–Should I believe it? ;-)

Performing pointer analysis for concurrency-aware abstraction
satabs: value_set.cpp:1183: void value_sett::assign(const exprt&, const exprt&, const
namespacet&, bool): Assertion `base_type_eq(rhs.type(), type, ns)' failed.
Aborted (core dumped)

© 2014 IBM Corporation53

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

Other Issues

1Hz residual tick:
–Just in case something we haven't found yet needs interrupts...
–Kevin Hilman has a patch series that turns this off: Use at your own risk!

Timer wheel:
–Suppose that the application occasionally enters the kernel
–Current timer-wheel code will proceed jiffy-by-jiffy to catch up

• Resulting in extreme latency blows
–“Bandaid” patches available: single-timer and no-timer cases
–Thomas Gleixner working on more general solution

vmstat kthread
–Christoph Lameter has a prototype patch

RCU_SOFTIRQ
–Patches to avoid needlessly invoking this softirq handler

 “Whack-a-mole” with other problems, e.g., unbound workqueues

© 2014 IBM Corporation54

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

To Probe More Deeply Into Adaptive Ticks

Documentation/timers/NO_HZ.txt

 Is the whole system idle?
– http://lwn.net/Articles/558284/

 (Nearly) full tickless operation in 3.10
– http://lwn.net/Articles/549580/

 “The 2012 realtime minisummit” (LWN, CPU isolation discussion)
– http://lwn.net/Articles/520704/

 “Interruption timer périodique” (Kernel Recipes, in French)
– https://kernel-recipes.org/?page_id=410

 “What Is New In RCU for Real Time” (RTLWS 2012)
– http://www.rdrop.com/users/paulmck/realtime/paper/RTLWS2012occcRT.2012.10.19e.pdf

• Slides 31-32

 “TODO”
– https://github.com/fweisbec/linux-dynticks/wiki/TODO

 “NoHZ tasks” (LWN)
– http://lwn.net/Articles/420544/

© 2014 IBM Corporation55

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

Configuration Cheat Sheet (Subject to Change!)

CONFIG_NO_HZ_FULL=y Kconfig: enable adaptive ticks
–Implies dyntick-idle mode (specify separately via CONFIG_NO_HZ_IDLE=y)
–Specify which CPUs at compile time: CONFIG_NO_HZ_FULL_ALL=y

• But boot CPU is excluded, used as timekeeping CPU
–“full_nohz=” boot parameter: Specify adaptive-tick CPUs, overriding build-time Kconfig

• “full_nohz=1,3-7” says CPUs 1, 3, 4, 5, 6, and 7 are adaptive-tick
• Omitting “full_nohz=”: No CPUs are adaptive-tick unless CONFIG_NO_HZ_FULL_ALL=y
• Boot CPU cannot be adaptive-ticks, it will be used as timekeeping CPU regardless

–PMQOS to reduce idle-to-nonidle latency
• X86 can also use “idle=mwait” and “idle=poll” boot parameters, but note that these can cause thermal

problems and degrade energy efficiency, especially “idle=poll”

CONFIG_RCU_NOCB_CPU=y Kconfig: enable RCU offload
–Specify which CPUs to offload at build time:

• RCU_NOCB_CPU_NONE=y Kconfig: No offloaded CPUs (specify at boot time)
• RCU_NOCB_CPU_ZERO=y Kconfig: Offload CPU 0 (intended for randconfig testing)
• RCU_NOCB_CPU_ALL=y Kconfig: Offload all CPUs

–“rcu_nocbs=” boot parameter: Specify additional offloaded CPUs

CONFIG_NO_HZ_FULL_SYSIDLE=y: enable system-wide idle detection
–Still needs more plumbing from Frederic, work in progress

Also: CONFIG_HIGH_RES_TIMERS=y, CONFIG_DEBUG_PREEMPT=n,
CONFIG_TRACING=n, CONFIG_DEBUG_LIST=n, ...

© 2014 IBM Corporation56

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

Patch Cheat Sheet 1/2 (Subject to Change!)

Get the vmstat per-CPU kthreads out of the way:
– http://lwn.net/Articles/569669/

Turn off the residual 1Hz tick:
– http://www.spinics.net/lists/arm-kernel/msg273778.html

Remove residual RCU_SOFTIRQ jitter:
– https://lkml.org/lkml/2013/11/15/561 (in 3.14)
– https://lkml.org/lkml/2014/2/17/619, https://lkml.org/lkml/2014/2/17/678,

https://lkml.org/lkml/2014/2/17/780 (expected in 3.15)

Timer latency bandaids (to be obsoleted by rewrite):
– https://lkml.org/lkml/2014/1/15/924, https://lkml.org/lkml/2014/1/15/929,

https://lkml.org/lkml/2014/1/15/928, https://lkml.org/lkml/2014/1/15/925,
https://lkml.org/lkml/2014/1/15/930 (expected in 3.15)

© 2014 IBM Corporation57

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

Patch Cheat Sheet 2/2 (Subject to Change!)

Workqueues:
– https://lkml.org/lkml/2014/3/27/242, https://lkml.org/lkml/2014/3/27/237,

https://lkml.org/lkml/2014/3/27/236, https://lkml.org/lkml/2014/3/27/239

Dedicated timekeeper IPI:
– https://lkml.org/lkml/2014/3/19/454, https://lkml.org/lkml/2014/3/19/457,

https://lkml.org/lkml/2014/3/19/456

Cleanups and fixes:
– https://lkml.org/lkml/2014/1/25/44, https://lkml.org/lkml/2014/1/16/291,

https://lkml.org/lkml/2014/1/16/306, https://lkml.org/lkml/2014/1/16/292 (in 3.14)
– https://lkml.org/lkml/2014/2/14/234

© 2014 IBM Corporation58

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

Boot/Doc Cheat Sheet (Subject to Change!)

Boot:
–nosoftlockup: Decrease soft-lockup checking overhead, and also

remove the corresponding diagnostics. (Decisions, decisions!)
–isolcpus=n-m: Tell the Linux kernel to isolate the specified CPUs.

(Some consider this to be obsolete, others swear by it.)
–elevator=noop: Disable complex block I/O schedulers. (Some prefer

compiling with CONFIG_IOSCHED_NOOP=n,
CONFIG_IOSCHED_DEADLINE=n, and
CONFIG_IOSCHED_CFQ=n.)

Documentation:
–How-to info for kthreads: Documentation/kernel-per-CPU-kthreads.txt
–Available in 3.10, see Documentation/timers/NO_HZ.txt for more info

© 2014 IBM Corporation59

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

Summary

General-purpose OS or bare-metal performance?
–Why not both?
–Work in progress gets us very close for CPU-bound workloads:

• Adaptive ticks userspace execution (early version in mainline)
• RCU callback offloading (version two in mainline)
• Interrupt, process, daemon, and kthread affinity
• Timer offloading

–Some restrictions:
• Need to reserve CPU(s) for housekeeping; 1-Hz residual tick
• Adaptive-ticks and RCU-callback-offloaded CPUs specified at boot time
• One task per CPU for adaptive-ticks usermode execution
• Global TLB-flush IPIs, cache misses, and TLB misses are still with us
• Whack-a-mole with various other issues, patches in flight

–And can maintain energy efficiency as well!

© 2014 IBM Corporation60

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

Summary

General-purpose OS or bare-metal performance?
–Why not both?
–Work in progress gets us very close for CPU-bound workloads:

• Adaptive ticks userspace execution (early version in mainline)
• RCU callback offloading (version two in mainline)
• Interrupt, process, daemon, and kthread affinity
• Timer offloading

–Some restrictions:
• Need to reserve CPU(s) for housekeeping; 1-Hz residual tick
• Adaptive-ticks and RCU-callback-offloaded CPUs specified at boot time
• One task per CPU for adaptive-ticks usermode execution
• Global TLB-flush IPIs, cache misses, and TLB misses are still with us
• Whack-a-mole with various other issues, patches in flight

–And can maintain energy efficiency as well!

Extending Linux's reach further into extreme computing!!!

© 2014 IBM Corporation61

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

Legal Statement

This work represents the view of the author and does not
necessarily represent the view of IBM.

 IBM and IBM (logo) are trademarks or registered trademarks
of International Business Machines Corporation in the United
States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.

© 2014 IBM Corporation62

Beaver BarCamp, Corvallis, OR, USA, April 12, 2014

Questions?

	IBM Presentation Template Full Version
	Selecting a template
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

