
© 2012 IBM Corporation

Bare-Metal Multicore Performance
in a General-Purpose Operating System

Paul E. McKenney, IBM Distinguished Engineer, Linux Technology Center
Member, IBM Academy of Technology

Multicore World 2013, Wellington, New Zealand October 19, 2012

© 2009 IBM Corporation2

Multicore World 2013

Group Effort: Acknowledgments

Josh Triplett: First prototype (LPC 2009)

Frederic Weisbecker: Core kernel work and x86 port

Steven Rostedt: Lots of code review and comments

Li Zhong: Power port

Geoff Levand, Kevin Hilman: ARM port

Paul E. McKenney: Read-copy update (RCU) work

Thomas Gleixner, Paul E. McKenney: “Godfathers”

© 2009 IBM Corporation3

Multicore World 2013

What Do Database, HPC, and RT Developers Want?

© 2009 IBM Corporation4

Multicore World 2013

What Do Database, HPC, and RT Developers Want?

Get The #@#$#*!!! Kernel Out
Of Our #@#$#*!!! Way!!!

© 2009 IBM Corporation5

Multicore World 2013

What Do Database, HPC, and RT Developers Want?

But we need device drivers.

Get The #@#$#*!!! Kernel Out
Of Our #@#$#*!!! Way!!!

© 2009 IBM Corporation6

Multicore World 2013

What Do Database, HPC, and RT Developers Want?

But we need device drivers.
And file systems.

Get The #@#$#*!!! Kernel Out
Of Our #@#$#*!!! Way!!!

© 2009 IBM Corporation7

Multicore World 2013

What Do Database, HPC, and RT Developers Want?

But we need device drivers.
And file systems.

And memory protection.

Get The #@#$#*!!! Kernel Out
Of Our #@#$#*!!! Way!!!

© 2009 IBM Corporation8

Multicore World 2013

What Do Database, HPC, and RT Developers Want?

But we need device drivers.
And file systems.

And memory protection.
And...

Get The #@#$#*!!! Kernel Out
Of Our #@#$#*!!! Way!!!

© 2009 IBM Corporation9

Multicore World 2013

So What Are Us Poor Kernel Developers To Do???

© 2009 IBM Corporation10

Multicore World 2013

So What Are Us Poor Kernel Developers To Do???

For almost 20 years, my response was “Yeah, right, you
really do want the whole kernel, just admit it already!!!”

© 2009 IBM Corporation11

Multicore World 2013

So What Are Us Poor Kernel Developers To Do???

For almost 20 years, my response was “Yeah, right, you
really do want the whole kernel, just admit it already!!!”

My first clue to a third way was Linux's dyntick-idle system
–(Used in battery-powered systems for years prior to Linux's use.)

© 2009 IBM Corporation12

Multicore World 2013

Before Linux's dyntick-idle System

CPU 1

CPU 0

Scheduling-Clock
Interrupts

Busy Period
Ends

But CPU Remains
in High-Power State

© 2009 IBM Corporation13

Multicore World 2013

Scheduling-Clock Interrupts Really Optional???

Scheduling-clock interrupt purpose:
–Check for other work from time to time
–Prevent a given process from monopolizing the CPU

But if the CPU is idle, there is nothing for it to do anyway!!!

Copyright © 2013 Melissa Broussard, CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0/us/)

© 2009 IBM Corporation14

Multicore World 2013

Linux's dyntick-idle System

CPU 1

CPU 0

Scheduling-Clock
Interrupts

Enter Dyntick-Idle Mode
At End Of Busy Period

Dyntick-Idle Mode Enables
CPU Deep-Sleep States

Very Good For Energy Efficiency!!!

© 2009 IBM Corporation15

Multicore World 2013

Linux Kernel Is Now Out Of The Idle Loop's Way...

© 2009 IBM Corporation16

Multicore World 2013

Linux Kernel Is Now Out Of The Idle Loop's Way...
So Can We Get It Out Of The Application's Way?

© 2009 IBM Corporation17

Multicore World 2013

Is The Kernel Being In The Way Really A Problem?

© 2009 IBM Corporation18

Multicore World 2013

Is The Kernel Being In The Way Really A Problem?

For aggressive real-time workloads, scheduling clock tick
does add measurable latency

–Some insane people really are getting sub-20-microsecond real-time
interrupt latencies out of the Linux kernel...

–And I strongly believe in encouraging that sort of insanity!!!

© 2009 IBM Corporation19

Multicore World 2013

Is The Kernel Being In The Way Really A Problem?

For aggressive real-time workloads, scheduling clock tick
does add measurable latency

–Some insane people really are getting sub-20-microsecond real-time
interrupt latencies out of the Linux kernel...

–And I strongly believe in encouraging that sort of insanity!!!

Some HPC workloads are sensitive to “OS jitter”
–Especially iterative workloads with short iterations

© 2009 IBM Corporation20

Multicore World 2013

Iterative Workloads With Short Iterations: Ideal

Time

CPU 0

CPU 1

CPU 2

CPU 3

CPU 4

CPU 5

CPU 6

CPU 7

Work Barrier

© 2009 IBM Corporation21

Multicore World 2013

Iterative Workloads With Short Iterations: OS Jitter

Time

CPU 0

CPU 1

CPU 2

CPU 3

CPU 4

CPU 5

CPU 6

CPU 7

Work Barrier OS Jitter

OS Jitter Multiplied!!!

© 2009 IBM Corporation22

Multicore World 2013

Now Try This With 800,000 CPUs In A Cluster...

Time

CPU 0

CPU 1

CPU 2

CPU 3

CPU 4

CPU 5

CPU 6

CPU 7

Work Barrier OS Jitter

OS Jitter Multiplied!!!

© 2009 IBM Corporation23

Multicore World 2013

Yes, This Is A Real Problem For Some Workloads

© 2009 IBM Corporation24

Multicore World 2013

Linux Kernel Is Now Out Of The Idle Loop's Way...
So Can We Get It Out Of The Application's Way?

© 2009 IBM Corporation25

Multicore World 2013

Josh Triplett's First Prototype, 2009

Always turn off scheduling-clock interrupt for user code

Good demonstration of feasibility and benefit
–2009 Linux Plumbers Conference presentation
–http://linuxplumbersconf.org/ocw/proposals/103
–See next two slides for performance comparison

© 2009 IBM Corporation26

Multicore World 2013

Benchmark Results Before (Anton Blanchard)

© 2009 IBM Corporation27

Multicore World 2013

Benchmark Results After (Anton Blanchard)

Well worth going after...

© 2009 IBM Corporation28

Multicore World 2013

But There Were A Few Small Drawbacks...

No process accounting

User applications can monopolize CPU

RCU grace periods go forever, running system out of memory
–More on this later

© 2009 IBM Corporation29

Multicore World 2013

Can We Do Something About The Drawbacks?
(Discussion at 2010 Linux Plumbers Conference)

User applications can monopolize CPU
– But if there is only one runnable task, so what???

© 2009 IBM Corporation30

Multicore World 2013

So Another Look At The Drawbacks...
(Discussion at 2010 Linux Plumbers Conference)

User applications can monopolize CPU
– But if there is only one runnable task, so what???
– If new task awakens, interrupt the CPU, restart scheduling-clock interrrupts
– In the meantime, we have an “adaptive idle usermode” CPU

No process accounting
– Use delta-based accounting, based on when process started running
– One CPU retains scheduling-clock interrupts for timekeeping purposes

RCU grace periods go forever, running system out of memory
– Inform RCU of adaptive-idle usermode execution so that it ignores adaptive-

idle user-mode CPUs, similar to its handling of dyntick-idle CPUs

Frederic Weisbecker took on this task (for x86-64)
– Geoff Levand and Kevin Hilman: Port to ARM
– Li Zhong: Port to PowerPC
– I was able to provide a bit of help with RCU

© 2009 IBM Corporation31

Multicore World 2013

How Well Does It Work?

© 2009 IBM Corporation32

Multicore World 2013

How Well Does It Work?

Preliminary results look good

© 2009 IBM Corporation33

Multicore World 2013

How Well Does It Work?

Big
KernelIdle Usermode Small

Kernel Usermode

Scheduling
clock
interrupts

Big
KernelIdle Usermode Small

Kernel Usermode

Adaptive
Ticks

Extra scheduling
clock interrupts due
to RCU callbacks

Second task awakens

One task per CPU

© 2009 IBM Corporation34

Multicore World 2013

Other Than RCU, Looks Great!!!

Need to fix RCU

But first, what is RCU?

© 2009 IBM Corporation35

Multicore World 2013

What Is RCU?

© 2009 IBM Corporation36

Multicore World 2013

What Is RCU? (AKA Read-Copy Update)

For an overview, see http://lwn.net/Articles/262464/

For the purposes of this presentation, think of RCU as
something that defers work, with one work item per callback

–Each callback has a function pointer and an argument
–Callbacks are queued on per-CPU lists, invoked after grace period
–Deferring the work a bit longer than needed is OK, deferring too long is

bad – but failing to defer long enough is fatal
–Allow extremely fast and scalable read-side access to shared data

rcu_datarcu_datarcu_datarcu_data

rcu_head

 ->next

 ->func

rcu_head

 ->next

 ->func

rcu_head

 ->next

 ->func

© 2009 IBM Corporation37

Multicore World 2013

RCU:
Tapping The Awesome Power of Procrastination

For Two Decades!!!

© 2009 IBM Corporation38

Multicore World 2013

RCU Area of Applicability

Update-Mostly, Need Consistent Data
(RCU is Really Unlikely to be the Right Tool For The Job,

But SLAB_DESTROY_BY_RCU Is A Possibility)

Read-Write, Need Consistent Data
(RCU Might Be OK...)

Read-Mostly, Need Consistent Data
(RCU Works OK)

Read-Mostly, Stale &
Inconsistent Data OK
(RCU Works Great!!!)

Use the right tool for the job!!!

© 2009 IBM Corporation39

Multicore World 2013

Applicability To The Linux Kernel

© 2009 IBM Corporation40

Multicore World 2013

What Is RCU? (AKA Read-Copy Update)

RCU uses a state machine driven out of the scheduling-clock
interrupt to determine when it is safe to invoke callbacks

Actual callback invocation is done from softirq

Scheduling-Clock
Interrupts

softirq Callback
Invocation

CPU 0

Callback
Queued

© 2009 IBM Corporation41

Multicore World 2013

Procrastination's Dark Side

© 2009 IBM Corporation42

Multicore World 2013

Procrastination's Dark Side: Eventually Must Do Work

CPU 0
Callback Invoked

Grace Period

Likely disrupting whatever was
intended to execute at about this time...

call_rcu():
Queue Callback

© 2009 IBM Corporation43

Multicore World 2013

Why Not Offload RCU's Callbacks?

© 2009 IBM Corporation44

Multicore World 2013

Offload RCU Callbacks: Houston/Korty Approach

CPU 2

Callback Invoked

No disruption!

CPU 0

Callback Invoked

Grace Period

RCU
(CPU 1)

call_rcu()

call_rcu()

© 2009 IBM Corporation45

Multicore World 2013

Offload RCU Callbacks: Houston/Korty Approach

CPU 2

Callback Invoked

No disruption!
(But also no scalability,
and Linux kernel must scale)

CPU 0

Callback Invoked

Grace Period

RCU
(CPU 1)

call_rcu()

call_rcu()

© 2009 IBM Corporation46

Multicore World 2013

Scalable RCU Callback Offloading

CPU 2

Callback Invoked

Grace Period

rcuo kthread

No disruption!

CPU 1

Callback Invoked

Grace Period

rcuo kthread

call_rcu()

call_rcu()

Scheduler controls placement
(or can place manually)

© 2009 IBM Corporation47

Multicore World 2013

Adaptive Ticks And Callback Offloading

Big
KernelIdle Usermode Small

Kernel Usermode

Scheduling
clock
interrupts

Big
KernelIdle Usermode Small

Kernel Usermode

One task per CPU

Adaptive
Ticks

RCU no longer causes
extra scheduling clock
interrupts

Second task awakens

© 2009 IBM Corporation48

Multicore World 2013

Where To Run RCU Callbacks???

© 2009 IBM Corporation49

Multicore World 2013

Where To Run RCU Callbacks???

CPU 0

CPU 1

CPU 2

CPU 3

CPU 4

CPU 5

CPU 6

CPU 7

Interrupts, Management, Callbacks
(Massive Disruption for Housekeeping)

Worker Threads (HPC, Real Time)
(No Disruption for Real Work)

Exact Layout Depends on Workload

© 2009 IBM Corporation50

Multicore World 2013

How Well Does It Work?

© 2009 IBM Corporation51

Multicore World 2013

How Well Does It Work?

Preliminary data looks good: also helps save energy
– See later slides

Some shortcomings, as always:
–Adaptive-idle usermode slows user/kernel transitions slightly

• Not a problem for computation-intensive workloads
–One task per CPU for adaptive-idle usermode execution

• Also not a problem for many computation-intensive workloads
–Must reboot to reconfigure adaptive idle and RCU callback offloading
–Must configure interrupts and processes manually (see next slide)
–CPU 0 cannot be offloaded (future work)
–At least one CPU must keep scheduling-clock interrupt (timekeeping)
–Scalability likely limited to a few hundred CPUs (future work)
–RCU callback-offloading kthreads (rcuo) not priority boosted

• Rely on configuration restrictions leaving idle time on housekeeping CPUs
–Work in progress: There are probably still a few bugs!

© 2009 IBM Corporation52

Multicore World 2013

Removing Other Sources of Disturbance

 Interrupts: /proc/irq/*/
–One directory for each IRQ
–smp_affinity file for hexadecimal specification (0x03)
–smp_affinity_list for decimal CPU-list specification (0-1)
–Verify via /proc/interrupts
–Documentation/IRQ-affinity.txt in Linux kernel source for more info

Timers: CPU hotplug remove then reinsert

Processes, daemons, and kthreads:
–Per-task affinity (taskset command, sched_setaffinity() syscall)
–cgroups or cpusets (Documentation/cgroups/*.txt)

Global TLB-flush operations
–Can be caused by kernel module unloading

• So don't unload kernel modules on production systems!

Cache and TLB misses are still with us

© 2009 IBM Corporation53

Multicore World 2013

RCU Callback Offloading: Energy Efficiency

Preliminary data courtesy of Dietmar Eggemann and Robin
Randhawa of ARM on early-silicon big.LITTLE system

But what is big.LITTLE???

© 2009 IBM Corporation54

Multicore World 2013

ARM big.LITTLE Architecture

Cortex-A15 Cortex-A15

Cortex-A7 Cortex-A7 Cortex-A7

Twice as fast

~3 times more
energy efficient

big

LITTLE

© 2009 IBM Corporation55

Multicore World 2013

ARM big.LITTLE Architecture: Strategy

Run on the LITTLE by default

Run on big if heavy processing power is required

 In other words, if feasible, run on LITTLE for efficiency, but
run on big if necessary to preserve user experience

–This suggests that RCU callbacks should run on LITTLE CPUs

© 2009 IBM Corporation56

Multicore World 2013

ARM big.LITTLE Without RCU Callback Offloading

big CPU
CB

Grace Period

LITTLE CPU

Busy

Busy Busy Busy

call_rcu()

© 2009 IBM Corporation57

Multicore World 2013

ARM big.LITTLE With RCU Callback Offloading

big CPU

CB

Grace Period

LITTLE CPU

Busy

Busy Busy Busy

call_rcu()

© 2009 IBM Corporation58

Multicore World 2013

ARM big.LITTLE With RCU Callback Offloading

big CPU

CB

Grace Period

LITTLE CPU

Busy

Busy Busy Busy

call_rcu()

CB

© 2009 IBM Corporation59

Multicore World 2013

ARM big.LITTLE With RCU Callback Offloading

big CPU

CB

Grace Period

LITTLE CPU

Busy

Busy Busy Busy

call_rcu()

CB

But 3x better
energy efficiency

© 2009 IBM Corporation60

Multicore World 2013

ARM big.LITTLE With no-CBs CPUs:
Preliminary Results (Randhawa and Eggemann, ARM)

Reference System: No offloading

Test System: big CPUs offloaded, kthreads on LITTLE CPUs

Approximate power savings:
–cyclictest: 10%
–andebench8: 2%
–audio: 10%
–bbench_with_audio: 5%

© 2009 IBM Corporation61

Multicore World 2013

To Probe More Deeply Into Adaptive Idle

 “The 2012 realtime minisummit” (LWN, CPU isolation discussion)
– http://lwn.net/Articles/520704/

 “Interruption timer périodique” (Kernel Recipes, in French)
– https://kernel-recipes.org/?page_id=410

 “What Is New In RCU for Real Time” (RTLWS 2012)
– http://www.rdrop.com/users/paulmck/realtime/paper/RTLWS2012occcRT.2012.10.19e.pdf

• Slides 31-32

 “TODO”
– https://github.com/fweisbec/linux-dynticks/wiki/TODO

 “NoHZ tasks” (LWN)
– http://lwn.net/Articles/420544/

© 2009 IBM Corporation62

Multicore World 2013

To Probe More Deeply Into RCU Callback Offloading

 “Making RCU Respect Your Device's Battery Lifetime: On-The-Job Energy-
Efficiency Training For RCU Maintainers” (LCA 2013)

– http://www.rdrop.com/users/paulmck/realtime/paper/RCUbattery.2013.01.30b.LCA.pdf

 “Relocating RCU callbacks” by Jon Corbet
–http://lwn.net/Articles/522262/

 “What Is New In RCU for Real Time” (RTLWS 2012)
– http://www.rdrop.com/users/paulmck/realtime/paper/RTLWS2012occcRT.2012.10.19e.pdf

• Slides 21-on

 “Getting RCU Further Out of the Way” (Plumbers 2012)
– http://www.rdrop.com/users/paulmck/realtime/paper/nocb.2012.08.31a.pdf

 “Cleaning Up Linux’s CPU Hotplug For Real Time and Energy Management”
(ECRTS 2012)

– http://www.rdrop.com/users/paulmck/realtime/paper/hotplug-ecrts.2012.06.11a.pdf

© 2009 IBM Corporation63

Multicore World 2013

Summary

General-purpose OS or bare-metal performance?
–Why not both?
–Work in progress gets us very close for CPU-bound workloads:

• Adaptive idle userspace execution (work in progress)
• RCU callback offloading (early version in mainline)
• Interrupt, process, daemon, and kthread affinity
• Timer offloading

–Some restrictions:
• Need to reserve CPU(s) for housekeeping
• Adaptive-idle and RCU-callback-offloaded CPUs specified at boot time
• One task per CPU for adaptive-idle usermode execution
• Cache and TLB misses are still with us

–Serendipity: Energy-efficiency benefits as well!

© 2009 IBM Corporation64

Multicore World 2013

Summary

General-purpose OS or bare-metal performance?
–Why not both?
–Work in progress gets us very close for CPU-bound workloads:

• Adaptive idle userspace execution (work in progress)
• RCU callback offloading (early version in mainline)
• Interrupt, process, daemon, and kthread affinity
• Timer offloading

–Some restrictions:
• Need to reserve CPU(s) for housekeeping
• Adaptive-idle and RCU-callback-offloaded CPUs specified at boot time
• One task per CPU for adaptive-idle usermode execution
• Cache and TLB misses are still with us

–Serendipity: Energy-efficiency benefits as well!

Extending Linux's reach farther into extreme computing!!!

© 2009 IBM Corporation65

Multicore World 2013

Legal Statement

This work represents the view of the author and does not
necessarily represent the view of IBM.

 IBM and IBM (logo) are trademarks or registered trademarks
of International Business Machines Corporation in the United
States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.

© 2009 IBM Corporation66

Multicore World 2013

Questions?

	IBM Presentation Template Full Version
	Selecting a template
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

