
© 2009 IBM Corporation

Is Parallel Programming Hard?
And, If So, Why?

Paul E. McKenney – IBM Distinguished Engineer, Linux Technology Center

29 Jan 2011 linux.conf.au Multicore and Parallel Computing MiniConf

© 2009 IBM Corporation2

Table of contents

Early Experiences With Parallelism

Why All The Excitement About Parallelism/Multicore?

The Great Software Crisis

What Is Hard About Programming?

Pathways To Multicore Programming Success

Traps And Pitfalls

How Far Should You Take Parallelism?

How Does the Linux Kernel Community Cope?

Summary

Verifying Parallel Software: Can Theory Meet Practice?

© 2009 IBM Corporation3

Early Experiences With Parallelism

© 2009 IBM Corporation4

Early Experiences With Parallelism

 In the mid-1970s, the doorbell rang
–And like a fool, I answered it...

© 2009 IBM Corporation5

Nor Were the Quints' Parents Unprecedented

Early Experiences With Parallelism

© 2009 IBM Corporation6

Nor Were the Quints' Parents Unprecedented

Early Experiences With Parallelism

Concurrency comes naturally to human beings

© 2009 IBM Corporation7

Other Examples of Human Tolerance of Concurrency

Early Experiences With Parallelism

Team sports:
–Basketball: Nine other players plus referees
–American football: 21 other players plus referees
–Football/soccer: 21 other players plus referees
–Ice Hockey: 11 other players plus referees
–Massively Multiplayer Online Gaming: lots of other players

Teaching: tens of students

Construction: tens of workers

Driving in congested conditions: many other drivers
–Hopefully also paying attention to pedestrians and bicyclists!

Air-traffic control: many aircraft

Emergency services: large numbers of people

© 2009 IBM Corporation8

Let's Face It: Concurrency Comes Naturally To The Entire Universe

Early Experiences With Parallelism

After you!!!

No, after you!!!

We had better give
Pluto a turn!

© 2009 IBM Corporation9

But Just Because Concurrency Comes Naturally Does Not
Necessarily Mean That Concurrent Programming Comes Naturally

Early Experiences With Parallelism

More on this later...

© 2009 IBM Corporation10

Early Experiences With Parallel Computing

Early Experiences With Parallelism

1989: distributed simulation on network of workstations

1990-1999: DYNIX/ptx parallel UNIX kernel

2000: AIX parallel UNIX kernel

2001-present: Linux UNIX kernel

© 2009 IBM Corporation11

Early Experiences With Parallel Computing

Early Experiences With Parallelism

1989: distributed simulation on network of workstations

1990-1999: DYNIX/ptx parallel UNIX kernel

2000: AIX parallel UNIX kernel

2001-present: Linux UNIX kernel

So why all the excitement after all these decades?

© 2009 IBM Corporation12

Why Excitement About Parallelism After All These Decades?

© 2009 IBM Corporation13

Why Excitement About Parallelism After All These Decades?

The Party Line

© 2009 IBM Corporation14

Simple Economics!

Why Excitement About Parallelism After All These Decades?

© 2009 IBM Corporation15

Why Excitement About Parallelism After All These Decades?
Simple Economics!

1990: “Low-cost” multiprocessors system >> $100K

2006: Grad student buys dual-core Mac on whim

2011: Multiprocessor systems << $1K

Why Excitement About Parallelism After All These Decades?

© 2009 IBM Corporation16

Why Excitement About Parallelism After All These Decades?
Simple Economics!

1990: “Low-cost” multiprocessors system >> $100K

2006: Grad student buys dual-core Mac on whim

2011: Multiprocessor systems << $1K

Suddenly, multiprocessor systems can be used everywhere

Suddenly there is an acute shortage of parallel programmers

Why Excitement About Parallelism After All These Decades?

© 2009 IBM Corporation17

Why Excitement About Parallelism After All These Decades?
Simple Economics!

1990: “Low-cost” multiprocessors system >> $100K

2006: Grad student buys dual-core Mac on whim

2011: Multiprocessor systems << $1K

Suddenly, multiprocessor systems can be used everywhere

Suddenly there is an acute shortage of parallel programmers
–But we have been here before...

Why Excitement About Parallelism After All These Decades?

© 2009 IBM Corporation18

The Great Software Crisis

© 2009 IBM Corporation19

History And Causes

1960s: “Low-cost” computer system >> $100K

1970: Minicomputers for $25K

Late 1970s: Microcomputers << $1K

Suddenly, computer systems can be used everywhere

Suddenly there is an acute shortage of programmers
–But somehow the problem was solved. How?

The Great Software Crisis

© 2009 IBM Corporation20

The Solution To The Great Software Crisis

Low-cost PCs meant that lots of people could afford them

Lots of people bought PCs and other computers
–Both for themselves and for their children

As a result, lots of people gained experience with computers
and with software

These people produced the software that allows anyone to
make good use of computers

–Even my grandparents used computers

The advent of low-cost multicore systems will solve the Great
Multicore Software Crisis

The Great Software Crisis

© 2009 IBM Corporation21

The Solution To The Great Software Crisis

Low-cost PCs meant that lots of people could afford them

Lots of people bought PCs and other computers
–Both for themselves and for their children

As a result, lots of people gained experience with computers
and with software

These people produced the software that allows anyone to
make good use of computers

–Even my grandparents used computers

The advent of low-cost multicore systems will solve the Great
Multicore Software Crisis... Eventually...

The Great Software Crisis

© 2009 IBM Corporation22

Three Classes Of Attempted Solutions To The Great Software Crisis

The Good
–Orders of magnitude improvement in productivity
–Orders of magnitude increase in people able to use computers
–Preferably both simultaneously

The Fad
–Lots of excitement at the time, but long forgotten

The Ugly
–Was in use then, still in use now
–To ugly to die

Your nominations for these categories?
–If you remember the 1980s...

The Great Software Crisis

© 2009 IBM Corporation23

Three Classes Of Attempted Solutions To The Great Software Crisis

The Good
–Spreadsheet
–Presentation manager and word processor
–Computer-aided engineering

The Fad
–An amazingly large number of long-forgotten languages

The Ugly
–The C language
–sed, awk, perl, Visual BASIC, …

There will be the same three classes of attempted solutions
to the Great Multicore Crisis

The Great Software Crisis

© 2009 IBM Corporation24

What Is Hard About Programming?

© 2009 IBM Corporation25

Erroneous Expectations

People expect anything that seems intelligent to have some
degree of common sense

People expect intelligent beings to understand their intent

People expect to be successful despite fragmentary and
incomplete plans

What Is Hard About Programming?

© 2009 IBM Corporation26

Erroneous Expectations

People expect anything that seems intelligent to have some
degree of common sense

People expect intelligent beings to understand their intent

People expect to be successful despite fragmentary and
incomplete plans

Most of this has little to do with parallelism

What Is Hard About Programming?

© 2009 IBM Corporation27

Managing Erroneous Expectations

People expect anything that seems intelligent to have some
degree of common sense

–Computers are usually marketed as tools rather than beings
–Eliza, Aibo, and Watson notwithstanding

People expect intelligent beings to understand their intent
–Computers are used in situations where intent is known implicitly
–GPS units, web browsers, autopilots, ...

People expect to be successful despite fragmentary and
incomplete plans

–And this one is the most relevant to parallel programming
–Deadlocks, livelocks, and data races are planning failures
–Solution: Let the computer do the planning!!! Tools – Lots of tools!!!

What Is Hard About Programming?

© 2009 IBM Corporation28

Pathways To Multicore Software Success

© 2009 IBM Corporation29

What Has Worked In The Past?

Pathways To Multicore Software Success

Apprenticeship approach
–Pair newbie with experienced parallel programmers

• Sequent Computer Systems
• Linux kernel community

–Very effective: very ordinary engineers will produce competent parallel
code within a few months

Learn from existing parallel open-source projects
–Linux kernel, PostgreSQL, Samba, …
–Find the one that most closely matches your needs

Exploit embarrassing parallelism
–Transform your problem into an embarrassing one if need be

Take validation seriously, from the ground up

© 2009 IBM Corporation30

What Has Worked In The Past?

Pathways To Multicore Software Success

Work out what you need up front
–If single-threaded software is fast enough, ignore parallelism!
–Avoid the N+1 trap

• “Do a single-threaded implementation.” “Good, now do a 2-CPU implementation.”
“Great, now make it handle 3 CPUs.” …

• Easier to do it once for (say) 32 CPUs than to rewrite it 32 times!!!

Make sure you have a solid core of experienced engineers
–Trust me, you don't want the blind mentoring the blind!!!

Make sure all engineers have access to parallel hardware
–And that they understand its properties and capabilities

Make sure all engineers have access to all source code

Make sure your team can deliver decent software...

© 2009 IBM Corporation31

Pattern for Success: Let Someone Else Be Parallel

Pathways To Multicore Software Success

Someone Else's
Database

(SQL or NoSQL)

Application

Application

Application

User

User

User

© 2009 IBM Corporation32

Pattern for Success: Let Someone Else Be Parallel

Pathways To Multicore Software Success

Someone Else's
Database

(SQL or NoSQL)

Application

Application

Application

User

User

User

You can use an in-memory database, for example, Samba's TDB

© 2009 IBM Corporation33

Pattern for Success: Treasure Trivial Solutions

Pathways To Multicore Software Success

Partition 0

Partition 1

Partition N

© 2009 IBM Corporation34

Pattern for Success: Treasure Trivial Solutions

Pathways To Multicore Software Success

Partition 0

Partition 1

Partition N

Which is one step away from map-reduce

© 2009 IBM Corporation35

Pattern for Success: Stick With Single-Threaded Code!!!

Pathways To Multicore Software Success

Partition 0

If single-threaded is fast enough, why bother with parallelism???

© 2009 IBM Corporation36

Don't Forget Simple Techniques

Partitioning is simple, but can be extremely effective

Batching is simple, but amortizes synchronization overhead

Sequential execution is simple, and should be used when the
resulting performance is sufficient

Pipelining is simple, but can greatly reduce synchronization
overhead

Never be afraid to exploit important special cases:
–Read-only and read-most situations, partitionable common-case

execution, privatizable data, …

Finding bottlenecks should be simple, but often isn't

Pathways To Multicore Software Success

© 2009 IBM Corporation37

Traps and Pitfalls

© 2009 IBM Corporation38

Traps and Pitfalls

Not that sequential code has any traps and pitfalls...

© 2009 IBM Corporation39

Parallelizing An Existing Single-Threaded Project

Traps and Pitfalls

Single-Threaded Design, Code, and APIs

Sequential Staff

Darwin Strikes Again!!!

Weak or Non-Existent Validation

Failing to Understand Underlying Software and Hardware

© 2009 IBM Corporation40

Single-Threaded Design, Code, and APIs

Traps and Pitfalls

Things that are cheap and easy for single-threaded code:
–Singleton pattern/objects through which all control passes

• Global counters
• Hoare monitors
• Global transaction IDs

–Ordering guarantees
–Stop-the-world processing
–Global locks
–Strongly non-commutative APIs that guarantee determinism and

linearizability (Attiya et al. “Laws of Order”)

These are all quite expensive for parallel code: Often fatal!!!

Parallelizing your single-threaded software may require big-
animal changes.

© 2009 IBM Corporation41

Sequential Staff

Traps and Pitfalls

 If you have an existing sequential software project, you
probably already have people working on it

–Who probably know nothing about parallel software

You might be able to attract (or hire) an experienced parallel
programmer (preferably in the required type of parallelism)

You will then need:
–Readily available parallel/multicore hardware
–Large body of high-quality parallel code for review and tinkering
–Easy access to parallel-programming experts

• Preferably with a wide variety of viewpoints
–Immediate “frank and open” expert feedback for multicore newbies

What if you can't get an experienced parallel programmer?

© 2009 IBM Corporation42

Sequential Staff With No Experts?

Traps and Pitfalls

Decent classes are becoming available
–But I cannot judge: I learned this stuff directly from the hardware
–But I do know the single most important lesson!!!

Any number of parallel open-source projects are out there
–One quick (if brutal) way to get employee training!
–If your project has an incompatible license, use carefully crafted

procedures to avoid contamination
–But it might be easier to select a project with a compatible license

© 2009 IBM Corporation43

Sequential Staff: The Most Important Parallel/Multicore Lesson:

Traps and Pitfalls

Avoid having only one of something on the fastpath!!!

© 2009 IBM Corporation44

Sequential Staff: The Most Important Parallel/Multicore Lesson:

Traps and Pitfalls

Avoid having only one of something on the fastpath!!!

© 2009 IBM Corporation45

Sequential Staff With No Experts?

Traps and Pitfalls

Decent classes are becoming available
–But I cannot judge: I learned this stuff directly from the hardware
–But I do know the single most important lesson!!!

Any number of parallel open-source projects are out there
–One quick (if brutal) way to get employee training!
–If your project has an incompatible license, use carefully crafted

procedures to avoid contamination
–But it might be easier to select a project with a compatible license

But how about just hiring a bunch of really smart people?

© 2009 IBM Corporation46

Sequential Staff With Really Smart Newbies?

Traps and Pitfalls

This can work if the newbies have access to hardware,
software, experts, and feedback

Otherwise, added intelligence is a negative
–The smarter you are, the deeper a hole you will dig for yourself before

you realize that you are in trouble
–There are a very small number of exceptions to this rule, and I am not

one of them

Fortunately, the increasing quantities of readily available
multicore hardware and parallel software is increasing the
odds that newbies will have parallel/multicore experience

Just as with the Great Software Crisis!

© 2009 IBM Corporation47

Sequential Staff: One More Question...

Traps and Pitfalls

There is a good chance that your single-threaded software
base will need big-animal changes

So can your existing developers make big-animal changes in
your current code base?

© 2009 IBM Corporation48

Sequential Staff: One More Question...

Traps and Pitfalls

There is a good chance that your single-threaded software
base will need big-animal changes

So can your existing developers make big-animal changes in
your current code base?

Or have your original developers long since departed?

© 2009 IBM Corporation49

Sequential Staff: Software Janitors?

Traps and Pitfalls

Your multicore strategy must take into account available skills!

© 2009 IBM Corporation50

Darwin Strikes Again!!!

Traps and Pitfalls

Through the 80s, 90s, and the first half of the 00s, parallel
systems and programmers were rare and expensive

–Extreme cost, itty bitty unit volumes

With a very few exceptions, projects and products whose
developers disliked parallelism were at a large advantage

–Most of the market at reasonably low cost

 If your product or project is decades old, some attitude
adjustments may be required...

© 2009 IBM Corporation51

Weak or Non-Existent Validation

Traps and Pitfalls

Parallelism adds failure modes, requiring tougher validation

So get your validation in good shape before parallelizing!!!

© 2009 IBM Corporation52

Failing to Understand Underlying Software and Hardware

Traps and Pitfalls

Would you trust:
–A bridge designed by someone who didn't understand that concrete,

while strong in compression, is weak in tension?
–A home heating system designed by someone who didn't understand

that would houses burn?
–A home in the rainy Pacific Northwest designed by someone who

didn't understand that wood rots in temperate rain forests?
–A space shuttle designed by someone who didn't understand the low-

temperature properties of O-rings?

© 2009 IBM Corporation53

Failing to Understand Underlying Software and Hardware

Traps and Pitfalls

Would you trust:
–A bridge designed by someone who didn't understand that concrete,

while strong in compression, is weak in tension?
–A home heating system designed by someone who didn't understand

that would houses burn?
–A home in the rainy Pacific Northwest designed by someone who

didn't understand that wood rots in temperate rain forests?
–A space shuttle designed by someone who didn't understand the low-

temperature properties of O-rings?

 If not, why would you trust an algorithm designed by
someone who didn't understand hardware properties?

© 2009 IBM Corporation54

How Far Should You Take Parallelism?

© 2009 IBM Corporation55

How Far Should You Take Parallelism?

It Depends!

© 2009 IBM Corporation56

It Depends On Your Position In The Software Stack

HW

FW

OS Kernel

System Utilities & Libraries

Middleware (e.g., DBMS)

Application
P

er
fo

rm
an

ce G
en

era lity

Productivity

How Far Should You Take Parallelism?

There is great variety at the application level

© 2009 IBM Corporation57

How Does the Linux Kernel Community Cope?

© 2009 IBM Corporation58

Kernel-Community Approaches to Concurrency (Subset 1/2)

How Does the Linux Kernel Community Cope?

Organizational mechanisms
–Maintainers and quality assurance: recognition and responsibility
–Informal apprenticeship/mentoring model
–Design/code review required for acceptance
–Aggressive pursuit of modularity and simplicity

Use sane idioms and abstractions
–Locking, sequence locking, sleep/wakeup, memory fences, RCU, ...
–Conventional use of memory-ordering primitives, for example:
–Needing to know too much about the underlying memory model

indicates broken abstraction, broken design, or both

© 2009 IBM Corporation59

Kernel-Community Approaches to Concurrency (Subset 2/2)

How Does the Linux Kernel Community Cope?

 Static source-code analysis
–“checkpatch.pl” to enforce coding standards
–“sparse” static analyzer to check lock acquire/release mismatches
–“coccinelle” to automate inspection and generation of bug fixes

 Dynamic analysis
–“lockdep” deadlock detector (also checks for misuse of RCU)
–Tracing and performance analysis
–Assertions

 Aggressive automation
–“git” source-code control system: from weeks to minutes for rebases and

merges

 Testing
–In-kernel test facilities such as rcutorture
–Out-of-kernel test suites

© 2009 IBM Corporation60

Kernel-Community Approaches to Concurrency

How Does the Linux Kernel Community Cope?

To err is human, and therefore...
–People/organizational mechanisms are at least as
important as concurrency technology

–Use multiple error-detection mechanisms
–For core of RCU, validation starts at the very beginning:

• Write a design document: safety factors and conservative design
• Consult with experts, update design as needed
• Write code in pen on paper: Recopy until last two copies identical
• Do proofs of correctness for anything non-obvious
• Do full-up functional and stress testing
• Document the resulting code (e.g., publish on LWN)

–If I do all this, then there are probably only a few bugs left
• And I detect those at least half the time

© 2009 IBM Corporation61

Summary

© 2009 IBM Corporation62

Summary: Many Promising Starts On Parallelism

Linux kernel

Apache

MySQL (whichever fork you
like)

PostgreSQL

Samba

 liburcu

OpenMP

POSIX threads

C/C++ concurrency

 Intel TBB

RapidMind

Open Parallel

Erlang

Apple GCS

CCAN

Your project here...

© 2009 IBM Corporation63

Summary

Parallelism: Some fear is
indeed warranted

© 2009 IBM Corporation64

Summary

But don't be a slave to your fear

© 2009 IBM Corporation65

Legal Statement

This work represents the view of the author and does not
necessarily represent the view of IBM.

 IBM and IBM (logo) are trademarks or registered trademarks
of International Business Machines Corporation in the United
States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.

© 2009 IBM Corporation66

QUESTIONS?

Multi-Core Memory Models and Concurrency Theory: View from the Linux Community

	IBM Presentation Template Full Version
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

