
© 2002 IBM Corporation

2009 linux.conf.au Kernel Miniconf

January 19, 2009 Copyright © 2009 IBM

Is Parallel Programming Hard, And If So, Why?

Paul E. McKenney
IBM Distinguished Engineer & CTO Linux
Linux Technology Center

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 2

Credits

Joint work with Manish Gupta, Maged Michael,
Phil Howard, Joshua Triplett, and Jonathan Walpole

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 3

Overview

Why Parallel Programming?
Parallel Programming Goals
Parallel Programming Tasks
Performance of Synchronization Operations
Do “Tasks” Relate to Real-World Software?
Conclusions

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 4

Why Parallel Programming?

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 5

Why Parallel Programming? (Party Line)

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 6

Why Parallel Programming? (Reality)

Parallelism is one performance-optimization
technique of many

 Hashing, search trees, parsers, cordic algorithms, ...

But the kernel is special
 In-kernel performance and scalability losses cannot

be made up by user-level code
 Therefore, if any user application is to be fast and

scalable, the portion of the kernel used by that
application must be fast and scalable

System libraries and utilities can also be special
As can database kernels, web servers, ...

 More on this later!

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 7

Parallel Programming Goals

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 8

Parallel Programming Goals

Performance

Productivity Generality

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 9

Parallel Programming Goals: Why Performance?

 (Performance often expressed as scalability or
normalized as in performance per watt)

 If you don't care about performance, why are
you bothering with parallelism???

 Just run single threaded and be happy!!!

But what about:
 All the multi-core systems out there?
 Efficient use of resources?
 Everyone saying parallel programming is crucial?

Parallel Programming: one optimization of many
CPU: one potential bottleneck of many

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 10

Parallel Programming Goals: Why Productivity?

 1948 CSIRAC (oldest intact computer)
 2,000 vacuum tubes, 768 20-bit words of memory
 $10M AU construction price
 1955 technical salaries: $3-5K/year
 Makes business sense to dedicate 10-person team to increasing

performance by 10%

 2008 z80 (popular 8-bit microprocessor)
 8,500 transistors, 64K 8-bit works of memory
 $1.36 per CPU in quantity 1,000 (7 OOM decrease)
 2008 SW starting salaries: $50-95K/year US (1 OOM increase)
 Need 1M CPUs to break even on a one-person-year investment to

gain 10% performance!
• Or 10% more performance must be blazingly important
• Or you are doing this as a hobby... In which case, do what you want!

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 11

Parallel Programming Goals: Why Generality?

 The more general the solution, the more users
to spread the cost over.

HW

FW

OS Kernel

System Utilities & Libraries

Middleware (e.g., DBMS)

Application

P
er

fo
rm

an
ce G

en
erality

Productivity

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 12

Performance, Scalability, and Generality

MPI

C/C++ Locking
Plus Threads

Java

Productivity

P
er

fo
rm

an
ce

 a
nd

 S
ca

la
bi

lit
y

OpenMP

Map / Reduce

SQL LAMP

Ruby on
Rails

Pick any two!!!

“Nirvana”

T
o

o
 b

ad
 it

 d
o

es
n

't
 e

xi
st

!!
!

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 13

Why Are Environments Specialized?

 C/C++ Locking Plus Threads
 General purpose (and the only one useful for Linux kernel work)

 Java
 General purpose

 MPI
 Theoretically general purpose, but used primarily for HPC

 OpenMP
 Parallel loops, primarily HPC (parallelize single control flow)

 SQL
 Relational database (not good for tree/graph-structured data)

 Map/Reduce
 “Shardable” applications with no cross-shard dependencies

 LAMP
 Relational database with web presence

 Ruby on Rails
 Relational database with web presence without legacy database

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 14

Why Are Environments Specialized?

User 1
User 2

User 3 User 4

HW/
Abs

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 15

Parallel Programming Tasks

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 16

Parallel Programming Tasks

Parallel Programming Only Partly Technical
 Human element is extremely important
 What can a human being easily construct and read?

• Similar to stylized English used in emergency situations
• Clarity, concision, and unambiguity trump style and grace

 In a perfect world, use human-factors studies
 But few very narrow parallel human-factors studies
 And programmers vary by orders of magnitude
 < 3-4 OOM benefit is invisible to affordable study

 Therefore, look at tasks that must be performed
for parallel programs that need not be for
sequential programs

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 17

Parallel Programming Tasks

Work
Partitioning

Interacting
With Hardware

Parallel
Access Control

Resource
Partitioning

& Replication

Data-parallel approach: first partition resources, then partition work, and only
then worry about parallel access control. Lather, rinse, and repeat.

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 18

Parallel Programming Tasks (Close-Up View)

Parallel
Access Control

Im
pl

ic
it

vs
.

E
xp

lic
it S

yn
ch

ro
n

izatio
n

M
ech

an
ism

s

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 19

Parallel Programming Tasks (Even Closer View)

Synchronization Mechanisms

To name but a few...

Locking

Message
Passing

Reference
Counting

Data
Ownership

Hazard
Pointers

NBS

Transactions

TM

RCU

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 20

Parallel Programming Tasks: RCU

 For read-mostly data structures, RCU provides
the benefits of the data-parallel model

 But without the need to actually partition or replicate
the RCU-protected data structures

 Readers access data without needing to exclude
each others or updates

• Extremely lightweight read-side primitives

And RCU provides additional read-side
performance and scalability benefits

 With a few limitations and restrictions....

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 21

RCU for Read-Mostly Data Structures

Work
Partitioning

Interacting
With Hardware

Parallel
Access Control

RCU data-parallel approach: first partition resources, then partition work, and
only then worry about parallel access control, and only for updates.

Resource
Partitioning

& Replication

RCU

Almost...

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 22

RCU Usage in the Linux Kernel

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 23

Update-Mostly, Need Consistent Data
(RCU is Really Unlikely to be the Right Tool For The Job)

Read-Write, Need Consistent Data
(RCU Might Be OK...)

Read-Mostly, Need Consistent Data
(RCU Works OK)

RCU Area of Applicability

Read-Mostly, Stale &
Inconsistent Data OK
(RCU Works Great!!!)

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 24

Performance of Synchronization Mechanisms

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 25

Performance of Synchronization Mechanisms

Operation Ratio
Clock period 0.6 1
Best-case CAS 37.9 63.2
Best-case lock 65.6 109.3
Single cache miss 139.5 232.5
CAS cache miss 306.0 510.0

Cost (ns)

4-CPU 1.8GHz AMD Opteron 844 system

Typical synchronization
mechanisms do this a lot

Heavily optimized reader-
writer lock might get here
for readers (but too bad

about those poor writers...)

Need to be here!
(Partitioning/RCU)

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 26

System Hardware Structure

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

S
O

L
R

T
 @

 5
G

H
z

Electrons move at 0.03C to 0.3C in transistors and, so lots of waiting. 3D to the rescue?

3
ce

nt
im

et
er

s

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 27

CPU Hardware Structure

CPU CPU CPU CPU

$ $ $ $

Interconnect

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 28

Why Aren't All Instructions Created Equal?

t = CAS(&c, 0, 1);

a = 1;

b = 2;

c = 3;

Store Buffer

a=1

a=1,b=2

a=1,b=2,c=3

a = 1;

b = 2;

Store Buffer

a=1

a=1,b=2

a=1,b=2

Wait for cache line containing “c”!!!

Cannot possibly know “t” till then!!!

There are many tricks the HW guys play – otherwise the latencies would be much worse.

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 29

Visual Demonstration of Instruction Overhead

The Bogroll Demonstration

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 30

Exercise: Dining Philosophers Problem
Each philosopher requires two forks to eat.
Need to avoid starvation.

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 31

Exercise: Dining Philosophers Solution #1

1

52

3 4
Locking hierarchy.
Pick up low-numbered fork first,
preventing deadlock. Is this a good solution???

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 32

Exercise: Dining Philosophers Solution #2

1
5

2

3

4
Locking hierarchy.
Pick up low-numbered fork first,
preventing deadlock.

If all want to eat, at least two
will be able to do so.

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 33

Exercise: Dining Philosophers Solution #3

Zero contention.
All 5 can eat concurrently.
Excellent disease control.

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 34

Exercise: Dining Philosophers Solutions

Objections to solution #2 and #3:
 “You can't just change the rules like that!!!”

• No rule against moving or adding forks!!!
 “Dining Philosophers Problem valuable lock-hierarchy

teaching tool – #3 just destroyed it!!!”
• Lock hierarchy is indeed very valuable and widely used, so the

restriction “there can only be five forks positioned as shown”
does indeed have its place, even if it didn't appear in this
instance of the Dining Philosophers Problem.

• But the lesson of transforming the problem into perfectly
partitionable form is also very valuable, and given the wide
availability of cheap multiprocessors, most desperately needed.

 “But what if each fork cost a million dollars?”
• Then we make the philosophers eat with their fingers... ☺

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 35

But What To Do...

What do you do for a problem that is inherently
fine-grained (so that synchronization primitives
such as locking, TM, NBS, &c are inefficient)
and update-heavy (so that RCU is not helpful)?

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 36

But What To Do...

What do you do for a problem that is inherently
fine-grained (so that synchronization primitives
such as locking, TM, NBS, &c are inefficient)
and update-heavy (so that RCU is not helpful)?

 Why not just write an optimized sequential program?
 Or you can always invent something new!!!

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 37

Do “Tasks” Relate to Real-World Software?

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 38

Parallel Programming Tasks

Work
Partitioning

Interacting
With Hardware

Parallel
Access Control

Data-parallel approach: first partition resources, then partition work, and only
then worry about parallel access control. Lather, rinse, and repeat.

Resource
Partitioning

& Replication

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 39

Do “Tasks” Relate to Real-World Software?

 Three Real-World Production Environments:
 “Locking plus threads” (L+T)

• Linux kernel, Pthreads, Windows Threads, ...
• Often augmented: TM, RCU, ...

 Message Passing Interface (MPI)
• Environment of choice for high-end scientific computing

 Structured Query Language (SQL)
• Decades-old RDBMS workhorse

All three have excellent performance
 Look primarily at productivity

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 40

Do “Tasks” Relate to Real-World Software?

L+T MPI SQL
Work Partitioning m m A

Error Processing A A A
Global Processing m m A
Thread Load Balancing M M A
Work Item Load Balancing m m A
Affinity to Resources m m A
Control of Utilization m M A

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 41

Do “Tasks” Relate to Real-World Software?

Parallel Access Control L+T MPI SQL
Implicit vs. Explicit I e I
Message Passing m m A
Locking m A
Transactions m
Reference Counting m A
Shared Variables m A
Ownership m A A

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 42

Do “Tasks” Relate to Real-World Software?

Resource Partitioning L+T MPI SQL
Over Systems m H
Over NUMA Nodes m m A
Over CPUs/Dies/Cores A A A
Over Critical Sections m A
Over Synchronization Primitives m H
Over Storage Devices m m h
Over Pages and Cache Lines m m A

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 43

Conclusions

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 44

Summary and Problem Statement

 SQL Offers Impressive Example of Pervasive
Parallel Automation With High Performance

 Unfortunately, quite specialized
 L+T and MPI are General With High Performance

 Too bad about that low productivity!!!
 So: use SQL Where it Makes Sense, Else L+T or MPI

 MPI scales higher than does L+T, but harder to convert
 Parallel Research and Development:

 High productivity and high performance (specialized apps)
• Remember what the spreadsheet did for the PC!!!

 Generality and high performance (infrastructure)
• For the experts developing the above apps

 Generality and high productivity
• But only if some advantage over sequential environment!!!

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 45

Problem Statement #1: Parallel Pitfall

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 46

Problem Statement #1

Work
Partitioning

Interacting
With Hardware

Parallel
Access Control

Start with preconceived
algorithmic work breakdown

Resource
Partitioning

& Replication

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 47

Problem Statement #1

Work
Partitioning

Interacting
With Hardware

Parallel
Access Control

Start with preconceived
algorithmic work breakdown

Resource
Partitioning

& Replication

Choose
synchronization mechanism

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 48

Problem Statement #1

Work
Partitioning

Interacting
With Hardware

Parallel
Access Control

Start with preconceived
algorithmic work breakdown

Resource
Partitioning

& Replication

Choose
synchronization mechanism

No attention to partitioning and replication:
Poor scalability and performance!!!

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 49

Problem Statement #2: Take Over The World!!!

Narf!!!

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 50

Problem Statement #2

Performance

Productivity Generality

Job #1 to “Take Over the World”

But now a choice: Performance? or Productivity?

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 51

Problem Statement #2

Performance

Productivity Generality

Job #1 to “Take Over the World”

Also need to
“Be the Best”

After all, publishing performance improvements is
much easier than publishing productivity results!

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 52

Problem Statement #2

Performance

Productivity Generality

Job #1 to “Take Over the World”

Also need to
“Be the Best”

Which means
poor productivity...

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 53

Problem Statement #2

Performance

Productivity Generality

Job #1 to “Take Over the World”

Also need to
“Be the Best”

And then these people have the gall to complain
that parallel programming is hard!!!

Which means
poor productivity...

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 54

If You Really Want to Take Over the World...

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 55

If You Really Want to Take Over the World...

Remember what the spreadsheet and word processor
did for the personal computer.

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 56

If You Really Want to Take Over the World...

Remember what the spreadsheet and word processor
did for the personal computer.

Then focus on solving a specific problem really well.

Sometimes, generality can be a shot in the foot!!!

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 57

Is Parallel Programming Hard, And If So, Why?

Parallel Programming is as Hard or as Easy as We Make It.

It is that hard (or that easy) because we make it that way!!!

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 58

Legal Statement

 This work represents the view of the author and does not
necessarily represent the view of IBM.

 IBM and IBM (logo) are trademarks or registered
trademarks of International Business Machines
Corporation in the United States and/or other countries.

 Linux is a registered trademark of Linus Torvalds.

 Other company, product, and service names may be
trademarks or service marks of others.

 This material is based upon work supported by the
National Science Foundation under Grant No.
CNS-0719851.

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2009 linux.conf.au kernel Miniconf © 2009 IBM Corporation 59

Questions?

