Is Parallel Programming Hard, And If So,
What Can You Do About It?

Paul E. McKenney
IBM Distinguished Engineer & CTO Linux
Linux Technology Center

“; | IBM Linux Technology Center

‘lll
[
[}

Who is Paul and How Did He Get This Way?

'

| IBM Linux Technology Center

.|||
||ll
[}

Who is Paul and How Did He Get This Way?

= Grew up in rural Oregon, USA

= First use of computer in high school (72-76)
<+ IBM mainframe: punched cards and FORTRAN
* Later ASR-33 TTY and BASIC

= BSME & BSCS, Oregon State University (76-81)
* Tuition provided by FORTRAN and COBOL

= Contract Programming and Consulting (81-85)

+ Building control system (Pascal on z80)
* Security card-access system (Pascal on PDP-11)

B D|n|ng hall system (Pascal on PDP-11)
: ystemNGonEIDEEH)

j’ | IBM Linux Technology Center

‘lll
[
[}

Who is Paul and How Did He Get This Way?

= SRl International (85-90)

UNIX systems administration
Packet-radio research
Internet protocol research

< MSCS Computer Science (88)

= Sequent Computer Systems (90-00)

Communications performance
% Parallel programming: memory allocators, RCU, ...

= IBM LTC (00-present)

NUMA-aware and brlock-like locking primitive in AIX
% RCU maintainer for Linux kernel

2 anafEnNgImEERMgN0A

| L |
[§[H]
"1 I f

n
-IIIHI
i)
[}

| IBM Linux Technology Center

Who is Paul and How Did He Get This Way?

= SRl International (85-90)

UNIX systems administration
Packet-radio research
Internet protocol research

< MSCS Computer Science (88)

= Sequent Computer Systems (90-00)

Communications performance
% Parallel programming: memory allocators, RCU, ...

= IBM LTC (00-present)

NUMA-aware and brlock-like locking primitive in AIX
% RCU maintainer for Linux kernel

1:D::Computer-Sci

zlrzlll2] orocreinningg for 20 Vairs

| L |
1A
II| I f

n
-IIIHI
null)
[}

j’ | IBM Linux Technology Center

Who is Paul and How Did He Get This Way?

= SRl International (85-90)
UNIX systems administration
Packet-radio research
Internet protocol research

< MSCS Computer Science (88)

= Sequent Computer Systems (90-00)

Communications performance
% Parallel programming: memory allocators, RCU, ...

= IBM LTC (00-present)
NUMA-aware and brlock-like locking primitive in AIX
% RCU maintainer for Linux kernel
+ Ph:D: Computer Science andjENGIREELNGN02

thas been doing paralleINreEramnuNOIaZONES
5 5 ; parallel programming, then???

“; | IBM Linux Technology Center

‘lll
[
[}

Why Has Parallel Programming Been Hard?

[|um]]
[R1H
II| I |
-1IIHI
]

j’ | IBM Linux Technology Center

Why Has Parallel Programming Been Hard?

= Parallel systems were rare and expensive

= Very few developers had access to parallel
systems: little ROI for parallel languages & tools

= Almost no publicly accessible parallel code

= Parallel-programming engineering discipline
confined to a few proprietary projects

=" Technological obstacles:
% Synchronization overhead

[|um]]
[R1H
III lI
-1IIHI
]

| IBM Linux Technology Center

Parallel Programming: What Has Changed?

= Parallel systems were rare and expensive
" About $1,000,000 each in 1990
" About $100 in 2011

% Four orders of magnitude decrease in 21 years

+ From many times the price of a house to a small
fraction of the cost of a bicycle

=" In 2006, masters student | was collaborating
with bought a dual-core laptop

@ And just to be able to present a parallel-
pr mming talk usipeRaNeEall SINIOWIEIIIIEY:

.|||
||ll
[}

| IBM Linux Technology Center

arallel Programming: Rare and Expensive

| IBM Linux Technology Center

Parallel Programming: Rare and Expensive

¥asth WO
AN W

-

"ll
||ll

@

“’ | IBM Linux Technology Center

Parallel Programming: Cheap and Plentiful

¢ L& B Nol
y m g

— |] |
Downloaded All OnSD card

Settings
1 process and 0 services

Mail 21MB
1 process and 2 services 64:00:24

. Google Services 19MB
2 processes and 1 service 273:35:48

. News & Weather 6.2MB

1 process and 1 service 05:56

Helping Grandpa Get His i
Tech On
Mirwy York Times

Maps 6.2MB
1 process and 1 service 76:05:04

. Email 3.2MB
1 process and 1 service 278:22:47

134MB used 217MB free

)
= =]

h”'\.

I »® 0¥
AT
in PP P
=¥ A0 a7 8

o= IR <#

R <P D P

+

EEL

-
g

[

| IBM Linux Technology Center

"ll
||ll
[}

Parallel Programming: What Has Changed?

= Back then: very few developers had access to
parallel systems

+ Maybe 1,000 developers with parallel systems

+ Suppose that a tool could save 10% per developer

 Then it would not make sense to invest 100 developers
 Even assuming compatible environments: 'Fraid not!!!

= Now: almost anyone can have a parallel system

% More than 100,000 developers with parallel systems

» Easily makes sense to invest 100 developers for 10% gain
 Even assuming multiple incompatible environments

Wornore ozrzlllzliools

cldo) loe orailline), ..

j’ | IBM Linux Technology Center

"ll
||ll
[}

Why Has Parallel Programming Been Hard?

= Almost no publicly accessible parallel code
= Parallel-programming engineering discipline
confined to a few proprietary projects
<+ Linux kernel: 13 million lines of parallel code
< MariaDB (the database formerly known as MySQL)
< memcached
<+ Apache web server

e study ancd copying

j’ | IBM Linux Technology Center

Why Has Parallel Programming Been Hard?

=" Technological obstacles:

+ Synchronization overhead
<+ Deadlock
<+ Data races

| [T}
‘lll

[
@

[lom]]
THTH
III lI
-IIIHI
]

j’ | IBM Linux Technology Center

Why Has Parallel Programming Been Hard?

=" Technological obstacles:
% Synchronization overhead
<+ Deadlock
<+ Data races

= |f these obstacles are impossible to overcome,
why are there more than 13 million lines of
parallel Linux kernel code?

j’ | IBM Linux Technology Center

‘lll
[
[}

Why Has Parallel Programming Been Hard?

=" Technological obstacles:
% Synchronization overhead
<+ Deadlock
<+ Data races

"= If these obstacles are impossible to overcome,
why are there more than 13 million lines of
parallel Linux kernel code?

gBuUit-paralielyp ining Is narder tharn saclarniizl

| L |

K]
1

i

.|ll

Tl

[}

A | IBM Linux Technology Center

So Why Parallel Programming?

S | 1BM Linux Technology Center

Why Parallel Programming? (Party Line)

L
o
—
=
S
)
]
-
1y
J
()
iy
.
L
=
O
o
—
_
-
o
-

| IBM Linux Technology Center

"ll
||ll
[}

Why Parallel Programming? (Reality)

= Parallelism can increase performance
%+ Assuming...
= Parallelism may be important battery-life extender

+ Run two CPUs at half frequency

+ 25% power per CPU, 50% overall with same throughput
assuming perfect scaling

* And assuming CPU consumes most of the power
 Which is not the case on many embedded systems

= But parallelism is but one way to optimize
performance and battery lifetime

€S, Parsers, cordic algorithms;, ...

1
1
‘lll

| L |
||||H
[}

“; | IBM Linux Technology Center

Why Parallel Programming? (Reality)

If your code runs well enough single threaded,
then leave it be single threaded.

And you always have the option of implementing key
function in hardware.

But where it makes sense, parallelism can be quite
valuable.

A IBM Linux Technology Center

.|ll
[
@

Parallel Programming Goals

i
"ll

Illl
@

“’ | IBM Linux Technology Center

Parallel Programming Goals

Performance

TN

Productivity <e—®= Generality

j’ | IBM Linux Technology Center

"ll
||ll
[}

Parallel Programming Goals: Why Performance?

= (Performance often expressed as scalability or
normalized as in performance per watt)

= If you don't care about performance, why are you
bothering with parallelism???

+ Just run single threaded and be happy!!!

= But what about:

< All the multi-core systems out there?
+ Efficient use of resources?
%+ Everyone saying parallel programming is crucial?

" Parallel’Programming i OREIGRiMZatiCciimzny,

W CHECHIGINTIAY,

j’ | IBM Linux Technology Center

| [T}
"ll

Illl
@

Parallel Programming Goals: Why Productivity?

- 1948 CSIRAC (oldest intact computer)
> 2,000 vacuum tubes, 768 20-bit words of memory
o $10M AU construction price
> 1955 technical salaries: $3-5K/year

> Makes business sense to dedicate 10-person team to increasing
performance by 10%

" 2008 z80 (popular 8-bit microprocessor)
> 8,500 transistors, 64K 8-bit works of memory
K $1.36 per CPU in quantity 1,000 (7 OOM decrease)
< 2008 SW starting salaries: $50-95K/year US (1 OOM increase)

* Need 1M CPUs to break even on a one-person-year investment to
gain 10% performance!

L be blazingly important

Ve Ao wrilen ezisa; o Wizl ol Yzl

“’ | IBM Linux Technology Center

i
"ll
Tl

Parallel Programming Goals: Why Generality?

®" The more general the solution, the more users
to spread the cost over, but...

Productivity

Application

Middleware (e.g., DBMS)
System Ultilities & Libraries
OS Kernel

Performance
Ajijesauan

FW

. : HW

[|um]]
[R1H
II| I |
il
]

j’ | IBM Linux Technology Center

Parallel Programming Goals: Why Generality?

®" The more general the solution, the more users
to spread the cost over, but...

=" Embedded unit volumes are so high that very
specialized hardware accelerators are often the
way to go

= So we might yet see GPGPUs on Android
smartphones, and much else besides!!!

[|um]]
[R1H
II| I |
il
]

j’ | IBM Linux Technology Center

Parallel Programming: What Might You Need?

= Scheduler features
+ Tracing?
+ Gang scheduling (media handling)?
= Lightweight virtualization (containers)?
< Hard limits and guarantees?
* Process/thread groups (cgroups)?

= Lightweight CPU hotplug?

= Real-time response?
= OS jitter?

“; | IBM Linux Technology Center

‘lll
[
[}

Performance of Synchronization Mechanisms

j‘ | IBM Linux Technology Center

Performance of Synchronization Mechanisms

4-CPU 1.8GHz AMD Opteron 844 system

Need to be herel!

(Pertifoning/RCU)
lClock period | 06] 1

Heavily optimized reader- \

writer lock might get here
for readers (but too bad

Typical synchronization

.'llH

i
Tl
[}

j‘ | IBM Linux Technology Center

Performance of Synchronization Mechanisms

4-CPU 1.8GHz AMD Opteron 844 system

Need to be herel!

(Pertifoning/RCU)
lClock period | 06] 1

Heavily optimized reader- \

writer lock might get here
for readers (but too bad

Typical synchronization

.'llH

i
Tl
[}

i
"ll

Illl
@

j‘ | IBM Linux Technology Center

Performance of Synchronization Mechanisms

4-CPU 1.8GHz AMD Opteron 844 system

Need to be herel!

(Pertifoning/RCU)
lClock period | 06] 1

Heavily optimized reader- \

writer lock might get here
for readers (but too bad

Typical synchronization

AIGRVIIAGWE EVEING ETAISarars

32

'

| IBM Linux Technology Center

"ll
||ll
[}

Why All These Low-Level Details???

= Would you trust a bridge designed by someone who
did not understand strengths of materials?

s
‘;’

s
‘;’

Or a ship designed by someone who did not understand
the steel-alloy transition temperatures?

Or a house designed by someone who did not understand
that unfinished wood rots when wet?

Or a car designed by someone who did not understand
the corrosion properties of the metals used in the exhaust
system?

Or a space shuttle designed by someone who did not
understand the temperature limitations of O-rings?

ithmsEreIISeIECHENTRCIAne];
Usielarlyise izl Wezr a7 7Y

| [T}
‘lll

[
@

j’ | IBM Linux Technology Center

Why Such An Old System???

= Because early low-power embedded CPUs are likely
to have similar performance characteristics.

“; | IBM Linux Technology Center

‘lll
[
[}

But Isn't Hardware Just Getting Faster?

'y | IBM Linux Technology Center =

Performance of Synchronization Mechanisms

16-CPU 2.8GHz Intel X5550 (Nehalem) System

Clock period o4 000 1
"Best-case” CAS

Best-case lock
Single cache miss
CAS cache miss

What a difference a few years can make!!!

j‘ | IBM Linux Technology Center EE: =9

Performance of Synchronization Mechanisms

16-CPU 2.8GHz Intel X5550 (Nehalem) System

Operation Cost (ns
lock period :

“Best-case” CAS 12.

Best-case lock

Single cache “miss”

CAS cache “miss”

Single cache miss (off-core)

AS cache miss (off-core)

||
!I
= —
X
W
OO

=W
U | BN

Single cache miss (off-core)

HISTIRANOXAITIPIOVEIEI I

'y | IBM Linux Technology Center

.|||
([l
[}

Performance of Synchronization Mechanisms

16-CPU 2.8GHz Intel X5550 (Nehalem) System

Operation Cost (ns) Ratio
Clock period 0.4 1
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache miss 12.9 35.8
CAS cache miss 7.0 19.4
Single cache miss (off-core) 31.2 86.6
CAS cache miss (off-core) 31.2 86.5
Single cache miss (off-socket) 92.4 256.7
' ff-socket) 95.9 266.4

uch a 'rU difference after all...
ANENIESIFCASENAI NESTI SV

ey
........

38

'y | IBM Linux Technology Center

(|1
@

Performance of Synchronization Mechanisms

16-CPU 2.8GHz Intel X5550 (Nehalem) System

Most embedded devices here

Operation

Clock period 0.4
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache miss 12.9 35.8
CAS cache miss 7.0 19.4
Single cache miss (off-core) 31.2 86.6
CAS cache miss (off-core) 31.2 86.5
Single cache miss (off-socket)

CAS cache miss (off-socket)

ey
........

uch a 'rU difference
| i BN JJ'Jd\

39

¥

| IBM Linux Technology Center

([l
@

Performance of Synchronization Mechanisms

16-CPU 2.8GHz Intel X5550 (Nehalem) System

For now...

Most embedded devices here

uch a 'rU difference

ey
........

e Ve JJ'Jd\

Operation

Clock period 0.4
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache miss 12.9 35.8
CAS cache miss 7.0 19.4
Single cache miss (off-core) 31.2 86.6
CAS cache miss (off-core) 31.2 86.5
Single cache miss (off-socket)

CAS cache miss (off-socket)

40

S | 1BM Linux Technology Center

Performance of Synchronization Mechanisms

e
A
=

L

!
=
b
=
e
b
%
=

=
b
[E]

=
b
=
|
-

28 48 68 88 1848 128 144
Hunber of CPUs/Threads

S | 1BM Linux Technology Center

Performance of Synchronization Mechanisms

e
A
=

L

!
=
b
=
e
b
%
=

=
b
[E]

=
b
=
|
-

B 2 4 6 8§ 18 12 14 16
Hunber of CPUs/Threads

S | 1BM Linux Technology Center

Design Principle: Avoid Bottlenecks

S | 1BM Linux Technology Center

Design Principle: Avoid Bottlenecks

o)i ojrezit for garformzines s sezlzolliny
XCEPUONSHONISHIEY:

j’ | IBM Linux Technology Center

‘lll
[
[}

Exercise: Dining Philosophers Problem

Each philosopher requires two chopsticks to eat.
Need to avoid starvation.

| IBM Linux Technology Center

Exercise: Dining Philosophers Solution #1

| L |
[§[H]
II| I f

n
-lllH|
i)
[}

| IBM Linux Technology Center

Exercise: Dining Philosophers Solution #2

| [T}
‘lll

[
@

'

| IBM Linux Technology Center

Exercise: Dining Philosophers Solution #3

Bundle pairs of chopsticks.

| [T}
‘lll

[
@

'

| IBM Linux Technology Center

‘lll
[
[}

Exercise: Dining Philosophers Solution #4

Zero contention.

| L |

K]
1

i

..llH

Tl

“; | IBM Linux Technology Center

Exercise: Dining Philosophers Solutions

" Objections to solution #2 and #3:

+ “You can't just change the rules like that!!!”
* No rule against moving or adding chopsticks!!!

<+ “Dining Philosophers Problem valuable lock-hierarchy

teaching tool — #3 just destroyed it!!!”

* Lock hierarchy is indeed very valuable and widely used, so the
restriction “there can only be five chopsticks positioned as
shown” does indeed have its place, even if it didn't appear in
this instance of the Dining Philosophers Problem.

« But the lesson of transforming the problem into perfectly
partitionable form is also very valuable, and given the wide
availability of cheap multiprocessors, most desperately needed.

+ “But what if each chopstick costs a million dollars?”

Jilllosounars gz Wit inaie finegzrs.. €

“; | IBM Linux Technology Center

‘lll
[
[}

But What About Real-World Software?

j’ | IBM Linux Technology Center

Sequential Programs Often Highly Optimized

= Highly optimized means difficult to modify

< And no wand can wish this away

| [T}
‘lll

[
@

| IBM Linux Technology Center

Sequential Programs Often Highly Optimized

= Highly optimized means difficult to modify

< And no wand can wish this away

= But there are some tricks that can often help:
+ Partition the problem at high level

« Reduce communication overhead between partitions
* Good approach for multitasking smartphones

+ Use existing parallel software

« Single-threaded user-interface programs talking to central
database software in servers

« Changes in protocols may be needed to open up similar
opportunltles in bedded

— ¥ Hardwar erationiCaniaiSORIERTCLIVE

variofulEncs-critiez] cocls

| L |

K]
1

i

.'llH

Illl

[lom]]
THTH
II| | |
-IIIHl
]

j’ | IBM Linux Technology Center

Some Issues With Real-World Software

= Object-oriented spaghetti code

= Highly optimized sequential code

= Parallel-unfriendly APIs

= Parallelization can be a major change

| IBM Linux Technology Center

Object-Oriented Spaghetti Code

| L |
K]

1
i
.'llH
Illl

@

“; | IBM Linux Technology Center

Object-Oriented Spaghetti Code: Solution 1

| IBM Linux Technology Center

Object-Oriented Spaghetti Code:

Solution 2

| L |
)
[l

1]
-tllHI
i)
[}

| IBM Linux Technology Center

"ll
||ll
[}

Object-Oriented Spaghetti Code: Solution 3

= Use explicit locking
* No “synchronized” clauses

+ Provide a global hashed array of locks
« Hash from object address to corresponding lock
+ Also provide a single global lock

= Conditionally acquire needed locks before making any
changes

< If any lock acquisition fails, drop all locks and then acquire the
global lock

<+ Then unconditionally acquire the needed locks

= Make changes, then release all the acquired locks

oM Concurrent PrograminiiogunsavasabeEsign

and Patterns by ADoUgNEEs

[|um]]
[R1H
II| I |
-1IIHI
]

| IBM Linux Technology Center

Highly Optimized Sequential Code

= Highly optimized sequential code is difficult to
change, especially if the result is to remain
optimized

= Parallelization is a change, so parallelizing
highly optimized sequential code is likely to be
difficult

+ But it is easy to run multiple instances in parallel

< It may well be that the sequential optimizations work
better than parallelization

. Parallellsm is but one o tlmlzatlon of many: Use the best
) -for the | ¢zl plzinel

j’ | IBM Linux Technology Center

‘lll
[
[}

Parallel-Unfriendly APIs

=" Consider a hash-table addition function that
returns the number of entries in the table

= What is the best way to implement this in
parallel?

[|um]]
[R1H
II| I |
-1IIHI
]

| IBM Linux Technology Center

Parallel-Unfriendly APIs

=" Consider a hash-table addition function that
returns the number of entries in the table

= What is the best way to implement this in
parallel?

" The problem is that concurrent additions must
communicate, and this communication is
inherently expensive

+ http://lwn.net/Articles/423994/

one Instead?

[|um]]
[R1H
II| I |
-IIIHI
]

j’ | IBM Linux Technology Center

Parallel-Unfriendly APIs

=" Don't return the count!

<+ Without the count, a hash-table implementation can
handle two concurrent “add” operations with no
conflicts: fully in parallel

< With the count, the two concurrent “add” operations
must update the count

= Alternatively, return an approximate count

= Either way, sequential APls may need to be
reworked to allow efficient implementation

| [T}
"ll

Illl
@

j’ | IBM Linux Technology Center

Parallelization Can Be A Major Change

= Software resembles building construction
< Start with architects
<+ Then construction
+ Finally maintenance

= |If you have a old piece of software, your staff might
consist only of software janitors

+ Nothing wrong with janitors: | used to be one
<+ But odds are against janitors remodeling skyscrapers

= Use the right people for the job

-Can curreni'-:- aff-d majel=changes?

gl gz el ollclezito S,

®
____..__

-
i M

Conclusions

| IBM Linux Technology Center

[[on]|
THTH
II| | |
-ll|H|
Tl

j’ | IBM Linux Technology Center

Summary and Problem Statement

= Writing new parallel code is quite doable
<+ Many open-source projects prove this point

= Converting existing sequential code to run in
parallel can be easy...

‘0

* ... or arbitrarily difficult

= So don't do things the hard way!

| [T}
‘lll

[
@

j’ | IBM Linux Technology Center

Is Parallel Programming Hard, And If So, Why?

Parallel Programming is as Hard or as Easy as We Make It.

It is that hard (or that easy) because we make it that way!!!

j’ | IBM Linux Technology Center

Legal Statement

= This work represents the view of the author and does not
necessarily represent the view of IBM.

= |IBM and IBM (logo) are trademarks or registered
trademarks of International Business Machines
Corporation in the United States and/or other countries.

= Linux is a registered trademark of Linus Torvalds.

= Other company, product, and service names may be
trademarks or service marks of others.

®" This material is based upon work supported by the
National Science Foundation under Grant No. CNS-

0719851.

| [T}
"ll

Illl
@

IBM Linux Technology Center

Summarized Summary

Use
the right tool
for the job!!!

| Image copyright © 2004 Melissa McKenney

'

| IBM Linux Technology Center

1

1
‘lll
[
[}

To Probe Further...

Pattern-Oriented Software Architecture, vol 2&4, Schmidt et al.
Programming with POSIX Threads, Butenhof

Intel Threading Building Blocks, Reinders

Patterns for Parallel Programming, Mattson et al.

Concurrent Programming in Java, Lea

Effective Concurrency, Sutter

The Art of Multiprocessor Programming, Herlihy and Shavit

Design and Validation of Computer Protocols, Holzmann
http://www.opengroup.org/onlinepubs/007908799/xsh/pthread.h.html

* Online pthreads reference
“Is Parallel Programming Hard, And If So, What Can You Do About It?”

» git://git.kernel.org/pub/scml/linux/kernel/git/paulmck/perfbook.git

®
____..__

-
i M

BACKUP

| IBM Linux Technology Center

[|um]]
[R1H
III lI
-1IIHI
]

j’ | IBM Linux Technology Center

Parallel Programming Advanced Topic: RCU

= For read-mostly data structures, RCU provides
the benefits of the data-parallel model

<+ But without the need to actually partition or replicate
the RCU-protected data structures

+ Readers access data without needing to exclude
each others or updates

- Extremely lightweight read-side primitives

= And RCU provides additional read-side
performance and scalability benefits

+ With a few lim NSTANUNESTHCHIONSHE

""
@

j‘ | IBM Linux Technology Center

RCU for Read-Mostly Data Structures

Work
Partitioning

Parallel
Access Control

Interacting
With Hardware

S | IBM Linux Technology Center

RCU Usage in the Linux Kernel

[

Q

0
-
—
(W
<L
-
)
(I
+

j’ | IBM Linux Technology Center

‘lll
[
[}

What Is RCU?

= Publication of new data
= Subscription to existing data

= Wait for pre-existing RCU readers

% Once all pre-existing RCU readers are done, old
versions of the data may be discarded

j’ | IBM Linux Technology Center

.|||
||ll
[}

Publication of And Subscription To New Data

Key: [l Dangerous for updates: all readers can access
B stil dangerous for updates: pre-existing readers can access
B safe for updates: inaccessible to all readers

gn_pointer()

initialization

n
n
©
-]
O
=

| L |
[§[H]
II| I f

n
-tllHI
null)
[}

j’ | IBM Linux Technology Center

RCU Removal From Linked List

= Combines waiting for readers and multiple versions:
Writer removes element B from the list (list_del_rcu())
Writer waits for all readers to finish (synchronize_rcu())
Writer can then free B (kfree())

One Version Two Versions One Version

synchronize_rcu()

Rea ers?

j’ | IBM Linux Technology Center

1

1
.|||
||ll
[}

Waiting for Pre-Existing Readers: QSBR

= Non-preemptive environment (CONFIG_PREEMPT=n)

RCU readers are not permitted to block
* Same rule as for tasks holding spinlocks

= CPU context switch means all that CPU's readers are done
= Grace period ends after all CPUs execute a context switch

‘Q

2 &

> . 2)
&

00

CPU 0 = - @ i >
CPU 1 | > | | .:

| L |
[§[H]
II| I f

n
-1IIHI
null)
[}

“’ | IBM Linux Technology Center

RCU Replacement Of Item In Linked List

1 Version 1 Version 1 Version 2 Versions 1 Version 1 Version

list_replace _rcu()

C C C

Readers? Readers? Reai’ ars?

| L |
)
II| | f

1]
i
i)
[}

j‘ | IBM Linux Technology Center

Wait For Pre-Existing RCU Readers

rcu read lock()

Reader /

Reader Reader
Reader

RCU readers zen_rasd_unlock ()

concurrent with
updates Reader -

<¢— synchronize rcu() —p»

Change Visible

Grace Period to All Readers

'y | IBM Linux Technology Center

"ll
(|1
[}

Wait For Pre-Existing RCU Readers

Reader Reader

Reader

Roader

Reader Grace period
extends as
needed.

Reader

Reader
—P>
<-¢—— synchronize rcu() —p

Change Visible

Elees [Peties to All Readers

¥

| IBM Linux Technology Center

Wait For Pre-Existing RCU Readers

Reader

Reader Reader

Reader

Reader

Reader

synchronize rcu()

Grace Period

Reader

Change Visible
to All Readers

'y | IBM Linux Technology Center

"ll
||ll
[}

Wait For Pre-Existing RCU Readers

Reader

Reader

Reader

Reader

<¢—— synchronize rcu() —Pp

Change Visible
to All Readers

Grace Period

'y | IBM Linux Technology Center

"ll
||ll
[}

Wait For Pre-Existing RCU Readers

Reader

Reader

Reader

Reader

<¢—— synchronize rcu() —Pp Change Visible

Grace Period to All Readers

Change Visible
synchronize rcu() ———p» to All Readers

| IBM Linux Technology Center

Wait For Pre-Existing RCU Readers

Reader Reader Reader
Reader
Reader
Reader —»
Reader
Reader
synchronize rcu() |
Grace Period >

84

'y | IBM Linux Technology Center

"ll
(|1
[}

Wait For Pre-Existing RCU Readers

Reader Reader

Reader

Roader

Reader

Reader

Reader

<¢—— synchronize rcu() —Pp

Change Visible
to All Readers

Grace Period

'y | IBM Linux Technology Center

"ll
||ll
[}

Wait For Pre-Existing RCU Readers

Reader Reader

Reader

Reader

Reader

RT RT
- synchronize rcu() —T—P
Grace Period

Change Visible
to All Readers

“; | IBM Linux Technology Center

‘lll
[
[}

RCU-Mediated Mode Change Diagram

1 [N
Thread 0 ; :
Thread 1 : . : ~ Might have seen
: : recovery_mode==0
Thread 2 : e :
1 1 <
Thread ;3 > !
[| [|
Thread 4 :>>_ Guaranteed to see
' recovery_mode==
Thread 5
_

recovery mode=1 —rd— synchronize rcu() —®»r€— do_recovery()
1

i
"ll

Illl
@

j‘ | IBM Linux Technology Center

RCU-Mediated Mode Change Diagram Redux

Reader

Reader
Reader

Reader

<¢—— synchronize rcu() —p Recovery mode

recovery_mode = 1 Grace Period visible to all
readers

j’ | IBM Linux Technology Center

‘lll
[
[}

RCU Asynchronous Grace-Period Detection

= The call_rcu() function registers an RCU callback, which
is invoked after a subsequent grace period elapses

= API:

» call rcu(struct rcu_head head,
void (*func)(struct rcu _head *rcu));

" The r cu_head structure:
% struct rcu_head {

3 struct rcu_head *next;
@ void (*func)(struct rcu_head *rcu);
o3 } ;

* Ther:cu=-head structuresi embeddedawithingthe

[lm]]
)
II| | f

1]
i
i)
[}

'y | IBM Linux Technology Center

RCU Asynchronous Grace-Period Detection

Reader Reader Reader

Reader

Reader

Reader

Reader

Change Visible
to All Readers

Grace Period

[[on]|
THTH
III lI
-IIIHI
Tl

j’ | IBM Linux Technology Center

RCU Asynchronous Grace-Period Detection

= But suppose cal | _rcu() is invoked from a
kernel module, which is later unloaded?

+ When is it safe to actually unload the module?

[|um]]
[R1H
II| I |
-1IIHI
]

j’ | IBM Linux Technology Center

RCU Asynchronous Grace-Period Detection

= But suppose cal | _rcu() is invoked from a
kernel module, which is later unloaded?
+ When is it safe to actually unload the module?

< Only after all outstanding RCU callbacks registered
by that module have been invoked!

+ Otherwise, later RCU callbacks will try to reference
that module's code and data, which have now been
unloaded!!!

= Usercu barrier(): waits until all currently
reglstered RCU callbacks have been invoked

A er cu_ Al () r=iurns, =iz to Unlozid rocils

S | 1BM Linux Technology Center

RCU vs. Reader-Writer Locking Performance

18y
18e

19

—
I|I II|I II|I II|I II|I II|I II|I TT

Overkbead (namoseconds?

rcu

= 1@
Mumber of CPUs

93

S | 1BM Linux Technology Center

RCU vs. Reader-Writer Locking Performance

C A
r e F]
i PRI S rulock]
o - o -
0 Xﬁf
o E
- 1088 = = =
o .]
O C e]
Y N ' .
0 - i
] L ;’J 4
-
M L _
- 1890 & i« .
et C]
g i i
M I i
QL
e
< 19 £ Fou S
= I ———e —
- -]
|

= S 1a 12 14

'_L
T

94

S | 1BM Linux Technology Center

RCU vs. Reader-Writer Locking Performance

ruwlock HKJ-

Overhead (namnoseconds?

| | |
] = = g 1@

CPiticaljSthiOH Duration <microseconds?

95

'y | IBM Linux Technology Center

"ll
||ll
[}

RCU and Reader-Writer Lock Response Latency

1
rwlock reader spin rwlock reader
rwlock reader spin rwlock reader

rwlock readel rwlock reader

rwlock writer rwlock reader

| IBM Linux Technology Center

Analogy: Reader-Writer Lock vs. RCU
-0
‘— Readers Indicate When Done:
Realtime Focus

Readers Use Memory Barriers (Balance low reader

As Needed by CPU overhead w/memory
' (r Readers and preemption)

Architectures

Read
Acquire

(Linux Handles This) /
\ Remover Identifies

Removed_ Oblecti

@«equwe-» Remover Reclaimer

..llH

| [T}
Tl
[}

“’ | IBM Linux Technology Center

RCU Area of Applicability

Read-Mostly, Stale &
Inconsistent Data OK
(RCU Works Great!!!l)

Read-Mostly, Need Consistent Data
(RCU Works OK)

Read-Write, Need Consistent Data
(RCU Might Be OK...)

Update-Mostly, Need Consistent Data
(RCU is Really Unlikely to be the Right Tool For The Job,
But SLAB_DESTROY_BY_RCU Is A Possibility)

98

'

| IBM Linux Technology Center

1

1
"ll
||ll
[}

To Probe Further into RCU...

http://lwn.net/Articles/262464/ (What is RCU, Fundamentally?)
http://lwn.net/Articles/263130/ (What is RCU's Usage?)
http://lwn.net/Articles/264090/ (What is RCU's API1?)
http:/lIwww.rdrop.com/users/paulmck/RCU/lockperf.2004.01.17a.pdf

linux.conf.au paper comparing RCU vs. locking performance
http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdf

RCU motivation, implementations, usage patterns, performance (micro+sys)
http://www.livejournal.com/users/james_morris/2153.html

System-level performance for SELinux workload: >500x improvement
http://www.rdrop.com/users/paulmck/RCU/hart_ipdps06.pdf

Comparison of RCU and NBS (later appeared in JPDC)
http://doi.acm.org/10.1145/1400097.1400099

History of RCU in Linux (Linux changed RCU more than vice versa)
http:/Iwww.rdrop.com/users/paulmck/preprints/

User-level implementations of RCU (IEEE TPDS)
http://www.rdrop.com/users/paulmck/RCU/ (More RCU information)

	Evolution of Software: The simplification of software development v10a September 5, 2005
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99

