
© 2002 IBM Corporation

2011 Android System Developer Forum

April 28, 2011 Copyright © 2011 IBM

Is Parallel Programming Hard, And If So,
What Can You Do About It?

Paul E. McKenney
IBM Distinguished Engineer & CTO Linux
Linux Technology Center

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 2

Who is Paul and How Did He Get This Way?

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 3

Who is Paul and How Did He Get This Way?

 Grew up in rural Oregon, USAGrew up in rural Oregon, USA

 First use of computer in high school (72-76)First use of computer in high school (72-76)
 IBM mainframe: punched cards and FORTRANIBM mainframe: punched cards and FORTRAN
 Later ASR-33 TTY and BASICLater ASR-33 TTY and BASIC

 BSME & BSCS, Oregon State University (76-81)BSME & BSCS, Oregon State University (76-81)
 Tuition provided by FORTRAN and COBOLTuition provided by FORTRAN and COBOL

 Contract Programming and Consulting (81-85)Contract Programming and Consulting (81-85)
 Building control system (Pascal on z80)Building control system (Pascal on z80)
 Security card-access system (Pascal on PDP-11)Security card-access system (Pascal on PDP-11)
 Dining hall system (Pascal on PDP-11)Dining hall system (Pascal on PDP-11)
 Acoustic navigation system (C on PDP-11)Acoustic navigation system (C on PDP-11)

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 4

Who is Paul and How Did He Get This Way?

 SRI International (85-90)SRI International (85-90)
 UNIX systems administrationUNIX systems administration

 Packet-radio researchPacket-radio research

 Internet protocol researchInternet protocol research

 MSCS Computer Science (88)MSCS Computer Science (88)

 Sequent Computer Systems (90-00)Sequent Computer Systems (90-00)
 Communications performanceCommunications performance

 Parallel programming: memory allocators, RCU, ...Parallel programming: memory allocators, RCU, ...

 IBM LTC (00-present)IBM LTC (00-present)
 NUMA-aware and brlock-like locking primitive in AIXNUMA-aware and brlock-like locking primitive in AIX

 RCU maintainer for Linux kernelRCU maintainer for Linux kernel

 Ph.D. Computer Science and Engineering (04)Ph.D. Computer Science and Engineering (04)

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 5

Who is Paul and How Did He Get This Way?

 SRI International (85-90)SRI International (85-90)
 UNIX systems administrationUNIX systems administration

 Packet-radio researchPacket-radio research

 Internet protocol researchInternet protocol research

 MSCS Computer Science (88)MSCS Computer Science (88)

 Sequent Computer Systems (90-00)Sequent Computer Systems (90-00)
 Communications performanceCommunications performance

 Parallel programming: memory allocators, RCU, ...Parallel programming: memory allocators, RCU, ...

 IBM LTC (00-present)IBM LTC (00-present)
 NUMA-aware and brlock-like locking primitive in AIXNUMA-aware and brlock-like locking primitive in AIX

 RCU maintainer for Linux kernelRCU maintainer for Linux kernel

 Ph.D. Computer Science and Engineering (04)Ph.D. Computer Science and Engineering (04)

 Paul has been doing parallel programming for 20 yearsPaul has been doing parallel programming for 20 years

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 6

Who is Paul and How Did He Get This Way?

 SRI International (85-90)SRI International (85-90)
 UNIX systems administrationUNIX systems administration

 Packet-radio researchPacket-radio research

 Internet protocol researchInternet protocol research

 MSCS Computer Science (88)MSCS Computer Science (88)

 Sequent Computer Systems (90-00)Sequent Computer Systems (90-00)
 Communications performanceCommunications performance

 Parallel programming: memory allocators, RCU, ...Parallel programming: memory allocators, RCU, ...

 IBM LTC (00-present)IBM LTC (00-present)
 NUMA-aware and brlock-like locking primitive in AIXNUMA-aware and brlock-like locking primitive in AIX

 RCU maintainer for Linux kernelRCU maintainer for Linux kernel

 Ph.D. Computer Science and Engineering (04)Ph.D. Computer Science and Engineering (04)

 Paul has been doing parallel programming for 20 yearsPaul has been doing parallel programming for 20 years
 What is so hard about parallel programming, then???What is so hard about parallel programming, then???

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 7

Why Has Parallel Programming Been Hard?

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 8

Why Has Parallel Programming Been Hard?

 Parallel systems were rare and expensiveParallel systems were rare and expensive

 Very few developers had access to parallel Very few developers had access to parallel
systems: little ROI for parallel languages & toolssystems: little ROI for parallel languages & tools

 Almost no publicly accessible parallel codeAlmost no publicly accessible parallel code

 Parallel-programming engineering discipline Parallel-programming engineering discipline
confined to a few proprietary projectsconfined to a few proprietary projects

 Technological obstacles:Technological obstacles:
 Synchronization overheadSynchronization overhead
 DeadlockDeadlock
 Data racesData races

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 9

Parallel Programming: What Has Changed?

 Parallel systems were rare and expensiveParallel systems were rare and expensive

 About $1,000,000 each in 1990About $1,000,000 each in 1990

 About $100 in 2011About $100 in 2011
 Four orders of magnitude decrease in 21 yearsFour orders of magnitude decrease in 21 years
 From many times the price of a house to a small From many times the price of a house to a small

fraction of the cost of a bicyclefraction of the cost of a bicycle

 In 2006, masters student I was collaborating In 2006, masters student I was collaborating
with bought a dual-core laptopwith bought a dual-core laptop

 And just to be able to present a parallel-And just to be able to present a parallel-
programming talk using a parallel programmerprogramming talk using a parallel programmer

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 10

Parallel Programming: Rare and Expensive

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 11

Parallel Programming: Rare and Expensive

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 12

Parallel Programming: Cheap and Plentiful

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 13

Parallel Programming: What Has Changed?

 Back then: very few developers had access to Back then: very few developers had access to
parallel systemsparallel systems

 Maybe 1,000 developers with parallel systemsMaybe 1,000 developers with parallel systems
 Suppose that a tool could save 10% per developerSuppose that a tool could save 10% per developer

• Then it would not make sense to invest 100 developersThen it would not make sense to invest 100 developers
• Even assuming compatible environments: 'Fraid not!!!Even assuming compatible environments: 'Fraid not!!!

 Now: almost anyone can have a parallel systemNow: almost anyone can have a parallel system
 More than 100,000 developers with parallel systemsMore than 100,000 developers with parallel systems

• Easily makes sense to invest 100 developers for 10% gainEasily makes sense to invest 100 developers for 10% gain
• Even assuming multiple incompatible environmentsEven assuming multiple incompatible environments

 We can expect many more parallel toolsWe can expect many more parallel tools
 Linux kernel lockdep, lock profiling, ...Linux kernel lockdep, lock profiling, ...

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 14

Why Has Parallel Programming Been Hard?

 Almost no publicly accessible parallel codeAlmost no publicly accessible parallel code

 Parallel-programming engineering discipline Parallel-programming engineering discipline
confined to a few proprietary projectsconfined to a few proprietary projects

 Linux kernel: 13 million lines of parallel codeLinux kernel: 13 million lines of parallel code
 MariaDB (the database formerly known as MySQL)MariaDB (the database formerly known as MySQL)
 memcachedmemcached
 Apache web serverApache web server
 HadoopHadoop
 BOINCBOINC
 OpenMPOpenMP

 Lots of parallel code for study and copyingLots of parallel code for study and copying

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 15

Why Has Parallel Programming Been Hard?

 Technological obstacles:Technological obstacles:
 Synchronization overheadSynchronization overhead
 DeadlockDeadlock
 Data racesData races

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 16

Why Has Parallel Programming Been Hard?

 Technological obstacles:Technological obstacles:
 Synchronization overheadSynchronization overhead
 DeadlockDeadlock
 Data racesData races

 If these obstacles are impossible to overcome, If these obstacles are impossible to overcome,
why are there more than 13 million lines of why are there more than 13 million lines of
parallel Linux kernel code?parallel Linux kernel code?

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 17

Why Has Parallel Programming Been Hard?

 Technological obstacles:Technological obstacles:
 Synchronization overheadSynchronization overhead
 DeadlockDeadlock
 Data racesData races

 If these obstacles are impossible to overcome, If these obstacles are impossible to overcome,
why are there more than 13 million lines of why are there more than 13 million lines of
parallel Linux kernel code?parallel Linux kernel code?

 But parallel programming But parallel programming isis harder than sequential harder than sequential
programming...programming...

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 18

So Why Parallel Programming?

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 19

Why Parallel Programming? (Party Line)

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 20

Why Parallel Programming? (Reality)

 Parallelism can increase performanceParallelism can increase performance
 Assuming...Assuming...

 Parallelism may be important battery-life extenderParallelism may be important battery-life extender
 Run two CPUs at half frequencyRun two CPUs at half frequency
 25% power per CPU, 50% overall with same throughput 25% power per CPU, 50% overall with same throughput

assuming perfect scalingassuming perfect scaling
• And assuming CPU consumes most of the powerAnd assuming CPU consumes most of the power
• Which is not the case on many embedded systemsWhich is not the case on many embedded systems

 But parallelism is but one way to optimize But parallelism is but one way to optimize
performance and battery lifetimeperformance and battery lifetime

 Hashing, search trees, parsers, cordic algorithms, ...Hashing, search trees, parsers, cordic algorithms, ...

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 21

Why Parallel Programming? (Reality)

If your code runs well enough single threaded,
then leave it be single threaded.

And you always have the option of implementing key
function in hardware.

But where it makes sense, parallelism can be quite
valuable.

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 22

Parallel Programming Goals

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 23

Parallel Programming Goals

Performance

Productivity Generality

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 24

Parallel Programming Goals: Why Performance?

 (Performance often expressed as scalability or (Performance often expressed as scalability or
normalized as in performance per watt)normalized as in performance per watt)

 If you don't care about performance, If you don't care about performance, whywhy are you are you
bothering with parallelism???bothering with parallelism???

 Just run single threaded and be happy!!!Just run single threaded and be happy!!!

 But what about:But what about:
 All the multi-core systems out there?All the multi-core systems out there?
 Efficient use of resources?Efficient use of resources?
 Everyone saying parallel programming is crucial?Everyone saying parallel programming is crucial?

 Parallel Programming: one optimization of manyParallel Programming: one optimization of many

 CPU: one potential bottleneck of manyCPU: one potential bottleneck of many

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 25

Parallel Programming Goals: Why Productivity?

 1948 CSIRAC (oldest intact computer)1948 CSIRAC (oldest intact computer)
 2,000 vacuum tubes, 768 20-bit words of memory2,000 vacuum tubes, 768 20-bit words of memory
 $10M AU construction price$10M AU construction price
 1955 technical salaries: $3-5K/year1955 technical salaries: $3-5K/year
 Makes business sense to dedicate 10-person team to increasing Makes business sense to dedicate 10-person team to increasing

performance by 10%performance by 10%

 2008 z80 (popular 8-bit microprocessor2008 z80 (popular 8-bit microprocessor))
 8,500 transistors, 64K 8-bit works of memory8,500 transistors, 64K 8-bit works of memory
 $1.36 per CPU in quantity 1,000 (7 OOM decrease)$1.36 per CPU in quantity 1,000 (7 OOM decrease)
 2008 SW starting salaries: $50-95K/year US (1 OOM increase)2008 SW starting salaries: $50-95K/year US (1 OOM increase)
 Need 1M CPUs to break even on a one-person-year investment to Need 1M CPUs to break even on a one-person-year investment to

gain 10% performance!gain 10% performance!
• Or 10% more performance must be blazingly importantOr 10% more performance must be blazingly important
• Or you are doing this as a hobby... In which case, do what you want!Or you are doing this as a hobby... In which case, do what you want!

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 26

Parallel Programming Goals: Why Generality?

 The more general the solution, the more users The more general the solution, the more users
to spread the cost over, but...to spread the cost over, but...

HW

FW

OS Kernel

System Utilities & Libraries

Middleware (e.g., DBMS)

Application

P
er

fo
rm

an
ce G

en
era lity

Productivity

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 27

Parallel Programming Goals: Why Generality?

 The more general the solution, the more users The more general the solution, the more users
to spread the cost over, but...to spread the cost over, but...

 Embedded unit volumes are so high that very Embedded unit volumes are so high that very
specialized hardware accelerators are often the specialized hardware accelerators are often the
way to goway to go

 So we might yet see GPGPUs on Android So we might yet see GPGPUs on Android
smartphones, and much else besides!!!smartphones, and much else besides!!!

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 28

Parallel Programming: What Might You Need?

 Scheduler featuresScheduler features
 Tracing?Tracing?
 Gang scheduling (media handling)?Gang scheduling (media handling)?

 Lightweight virtualization (containers)?Lightweight virtualization (containers)?
 Hard limits and guarantees?Hard limits and guarantees?
 Process/thread groups (cgroups)?Process/thread groups (cgroups)?

 Lightweight CPU hotplug?Lightweight CPU hotplug?
 Real-time response?Real-time response?
 OS jitter?OS jitter?

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 29

Performance of Synchronization Mechanisms

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 30

Performance of Synchronization Mechanisms

Operation Cost (ns) Ratio
Clock period 0.6 1
Best-case CAS 37.9 63.2
Best-case lock 65.6 109.3
Single cache miss 139.5 232.5
CAS cache miss 306.0 510.0

4-CPU 1.8GHz AMD Opteron 844 system

Typical synchronization
mechanisms do this a lot

Heavily optimized reader-
writer lock might get here
for readers (but too bad

about those poor writers...)

Need to be here!
(Partitioning/RCU)

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 31

Performance of Synchronization Mechanisms

Operation Cost (ns) Ratio
Clock period 0.6 1
Best-case CAS 37.9 63.2
Best-case lock 65.6 109.3
Single cache miss 139.5 232.5
CAS cache miss 306.0 510.0

4-CPU 1.8GHz AMD Opteron 844 system

Typical synchronization
mechanisms do this a lot

Heavily optimized reader-
writer lock might get here
for readers (but too bad

about those poor writers...)

Need to be here!
(Partitioning/RCU)

But this is an old system...But this is an old system...

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 32

Performance of Synchronization Mechanisms

Operation Cost (ns) Ratio
Clock period 0.6 1
Best-case CAS 37.9 63.2
Best-case lock 65.6 109.3
Single cache miss 139.5 232.5
CAS cache miss 306.0 510.0

4-CPU 1.8GHz AMD Opteron 844 system

Typical synchronization
mechanisms do this a lot

Heavily optimized reader-
writer lock might get here
for readers (but too bad

about those poor writers...)

Need to be here!
(Partitioning/RCU)

But this is an old system...But this is an old system... And why low-level details???And why low-level details???

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 33

Why All These Low-Level Details???

 Would you trust a bridge designed by someone who Would you trust a bridge designed by someone who
did not understand strengths of materials?did not understand strengths of materials?

 Or a ship designed by someone who did not understand Or a ship designed by someone who did not understand
the steel-alloy transition temperatures?the steel-alloy transition temperatures?

 Or a house designed by someone who did not understand Or a house designed by someone who did not understand
that unfinished wood rots when wet?that unfinished wood rots when wet?

 Or a car designed by someone who did not understand Or a car designed by someone who did not understand
the corrosion properties of the metals used in the exhaust the corrosion properties of the metals used in the exhaust
system?system?

 Or a space shuttle designed by someone who did not Or a space shuttle designed by someone who did not
understand the temperature limitations of O-rings?understand the temperature limitations of O-rings?

 So why trust algorithms from someone ignorant of So why trust algorithms from someone ignorant of
the properties of the underlying hardware???the properties of the underlying hardware???

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 34

Why Such An Old System???

 Because early low-power embedded CPUs are likely Because early low-power embedded CPUs are likely
to have similar performance characteristics.to have similar performance characteristics.

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 35

But Isn't Hardware Just Getting Faster?

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 36

Performance of Synchronization Mechanisms

Operation Ratio
Clock period 0.4 1
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache miss 12.9 35.8
CAS cache miss 7.0 19.4

Cost (ns)

16-CPU 2.8GHz Intel X5550 (Nehalem) System16-CPU 2.8GHz Intel X5550 (Nehalem) System

What a difference a few years can make!!!What a difference a few years can make!!!

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 37

Performance of Synchronization Mechanisms

Operation Ratio
Clock period 0.4 1
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache “miss” 12.9 35.8
CAS cache “miss” 7.0 19.4

31.2 86.6
31.2 86.5

Cost (ns)

Single cache miss (off-core)
CAS cache miss (off-core)

16-CPU 2.8GHz Intel X5550 (Nehalem) System16-CPU 2.8GHz Intel X5550 (Nehalem) System

Not Not quitequite so good... But still a 6x improvement!!! so good... But still a 6x improvement!!!

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 38

Performance of Synchronization Mechanisms

Operation Cost (ns) Ratio
Clock period 0.4 1
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache miss 12.9 35.8
CAS cache miss 7.0 19.4

31.2 86.6
31.2 86.5
92.4 256.7
95.9 266.4

Single cache miss (off-core)
CAS cache miss (off-core)
Single cache miss (off-socket)
CAS cache miss (off-socket)

16-CPU 2.8GHz Intel X5550 (Nehalem) System16-CPU 2.8GHz Intel X5550 (Nehalem) System

Maybe not such a big difference after all...Maybe not such a big difference after all...
And these are best-case values!!! (Why?)And these are best-case values!!! (Why?)

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 39

Performance of Synchronization Mechanisms

Operation Ratio
Clock period 0.4 1
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache miss 12.9 35.8
CAS cache miss 7.0 19.4

31.2 86.6
31.2 86.5
92.4 256.7
95.9 266.4

Cost (ns)

Single cache miss (off-core)
CAS cache miss (off-core)
Single cache miss (off-socket)
CAS cache miss (off-socket)

16-CPU 2.8GHz Intel X5550 (Nehalem) System16-CPU 2.8GHz Intel X5550 (Nehalem) System

Maybe not such a big difference after all...Maybe not such a big difference after all...
And these are best-case values!!! (Why?)And these are best-case values!!! (Why?)

M
os

t
em

be
dd

e d
 d

ev
ic

es
 h

er
e

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 40

Performance of Synchronization Mechanisms

Operation Ratio
Clock period 0.4 1
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache miss 12.9 35.8
CAS cache miss 7.0 19.4

31.2 86.6
31.2 86.5
92.4 256.7
95.9 266.4

Cost (ns)

Single cache miss (off-core)
CAS cache miss (off-core)
Single cache miss (off-socket)
CAS cache miss (off-socket)

16-CPU 2.8GHz Intel X5550 (Nehalem) System16-CPU 2.8GHz Intel X5550 (Nehalem) System

Maybe not such a big difference after all...Maybe not such a big difference after all...
And these are best-case values!!! (Why?)And these are best-case values!!! (Why?)

M
os

t
em

be
dd

e d
 d

ev
ic

es
 h

er
e

F
or

 n
ow

..
.

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 41

Performance of Synchronization Mechanisms

If you thought a single atomic operation was slow, try lots of them!!!
(Atomic increment of single variable on 1.9GHz Power 5 system)

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 42

Performance of Synchronization Mechanisms

Same effect on a 16-CPU 2.8GHz Intel X5550 (Nehalem) systemSame effect on a 16-CPU 2.8GHz Intel X5550 (Nehalem) system

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 43

Design Principle: Avoid Bottlenecks

Only one of something: bad for performance and scalabilityOnly one of something: bad for performance and scalability

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 44

Design Principle: Avoid Bottlenecks

Many instances of something: great for performance and scalability!Many instances of something: great for performance and scalability!
Any exceptions to this rule?Any exceptions to this rule?

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 45

Exercise: Dining Philosophers Problem
Each philosopher requires two chopsticks to eat.
Need to avoid starvation.

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 46

Exercise: Dining Philosophers Solution #1

1

52

3 4

Is this a good solution???

Locking hierarchy.
Pick up low-numbered chopstick
first, preventing deadlock.

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 47

Exercise: Dining Philosophers Solution #2

1
5

2

3

4
Locking hierarchy.
Pick up low-numbered chopstick
first, preventing deadlock.

If all want to eat, at least two
will be able to do so.

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 48

Exercise: Dining Philosophers Solution #3

Bundle pairs of chopsticks.
Discard fifth chopstick.
Take pair: no deadlock.
Starvation still possible.

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 49

Exercise: Dining Philosophers Solution #4

Zero contention.
Neither deadlock nor livelock.
All 5 can eat concurrently.
Excellent disease control.

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 50

Exercise: Dining Philosophers Solutions

 Objections to solution #2 and #3:Objections to solution #2 and #3:
 ““You can't just change the rules like that!!!”You can't just change the rules like that!!!”

• No rule against moving or adding chopsticks!!!No rule against moving or adding chopsticks!!!
 ““Dining Philosophers Problem valuable lock-hierarchy Dining Philosophers Problem valuable lock-hierarchy

teaching tool – #3 just destroyed it!!!”teaching tool – #3 just destroyed it!!!”
• Lock hierarchy is indeed very valuable and widely used, so the Lock hierarchy is indeed very valuable and widely used, so the

restriction “there can only be five chopsticks positioned as restriction “there can only be five chopsticks positioned as
shown” does indeed have its place, even if it didn't appear in shown” does indeed have its place, even if it didn't appear in
this instance of the Dining Philosophers Problem.this instance of the Dining Philosophers Problem.

• But the lesson of transforming the problem into perfectly But the lesson of transforming the problem into perfectly
partitionable form is also very valuable, and given the wide partitionable form is also very valuable, and given the wide
availability of cheap multiprocessors, most desperately needed.availability of cheap multiprocessors, most desperately needed.

 ““But what if each chopstick costs a million dollars?”But what if each chopstick costs a million dollars?”
• Then we make the philosophers eat with their fingers... Then we make the philosophers eat with their fingers... ☺☺

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 51

But What About Real-World Software?

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 52

Sequential Programs Often Highly Optimized

 Highly optimized means difficult to modifyHighly optimized means difficult to modify
 And no wand can wish this awayAnd no wand can wish this away

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 53

Sequential Programs Often Highly Optimized

 Highly optimized means difficult to modifyHighly optimized means difficult to modify
 And no wand can wish this awayAnd no wand can wish this away

 But there are some tricks that can often help:But there are some tricks that can often help:
 Partition the problem at high levelPartition the problem at high level

• Reduce communication overhead between partitionsReduce communication overhead between partitions
• Good approach for multitasking smartphonesGood approach for multitasking smartphones

 Use existing parallel softwareUse existing parallel software
• Single-threaded user-interface programs talking to central Single-threaded user-interface programs talking to central

database software in serversdatabase software in servers
• Changes in protocols may be needed to open up similar Changes in protocols may be needed to open up similar

opportunities in embeddedopportunities in embedded
 Hardware acceleration can also be attractiveHardware acceleration can also be attractive

 Parallelize only the performance-critical codeParallelize only the performance-critical code

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 54

Some Issues With Real-World Software

 Object-oriented spaghetti codeObject-oriented spaghetti code

 Highly optimized sequential codeHighly optimized sequential code

 Parallel-unfriendly APIsParallel-unfriendly APIs

 Parallelization can be a major changeParallelization can be a major change

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 55

Object-Oriented Spaghetti Code

Let's see you create a valid locking hierarchy!!!
What can you do about this?

Photo: © 2007 Ed Hawco all cc-gy-sa

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 56

Object-Oriented Spaghetti Code: Solution 1

Run multiple instances in parallel.
Maybe with the sh “&” operator.

Photo: © 2007 Ed Hawco all cc-gy-sa

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 57

Object-Oriented Spaghetti Code: Solution 2

Find the high-cost portion of the code, and rewrite that portion to be parallel-friendly.
Or implement in hardware.
Either way, a careful redesign will be required.

Photo: © 2007 Ed Hawco all cc-gy-sa

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 58

Object-Oriented Spaghetti Code: Solution 3

 Use explicit lockingUse explicit locking
 No “synchronized” clausesNo “synchronized” clauses
 Provide a global hashed array of locksProvide a global hashed array of locks

• Hash from object address to corresponding lockHash from object address to corresponding lock

 Also provide a single global lockAlso provide a single global lock

 Conditionally acquire needed locks before making any Conditionally acquire needed locks before making any
changeschanges

 If any lock acquisition fails, drop all locks and then acquire the If any lock acquisition fails, drop all locks and then acquire the
global lockglobal lock

 Then unconditionally acquire the needed locksThen unconditionally acquire the needed locks

 Make changes, then release all the acquired locksMake changes, then release all the acquired locks

 From “Concurrent Programming in Java: Design From “Concurrent Programming in Java: Design
Principles and Patterns” by Doug LeaPrinciples and Patterns” by Doug Lea

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 59

Highly Optimized Sequential Code

 Highly optimized sequential code is difficult to Highly optimized sequential code is difficult to
change, especially if the result is to remain change, especially if the result is to remain
optimizedoptimized

 Parallelization is a change, so parallelizing Parallelization is a change, so parallelizing
highly optimized sequential code is likely to be highly optimized sequential code is likely to be
difficultdifficult

 But it is easy to run multiple instances in parallelBut it is easy to run multiple instances in parallel
 It may well be that the sequential optimizations work It may well be that the sequential optimizations work

better than parallelizationbetter than parallelization
• Parallelism is but one optimization of many: Use the best Parallelism is but one optimization of many: Use the best

optimization for the task at handoptimization for the task at hand

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 60

Parallel-Unfriendly APIs

 Consider a hash-table addition function that Consider a hash-table addition function that
returns the number of entries in the tablereturns the number of entries in the table

 What is the best way to implement this in What is the best way to implement this in
parallel?parallel?

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 61

Parallel-Unfriendly APIs

 Consider a hash-table addition function that Consider a hash-table addition function that
returns the number of entries in the tablereturns the number of entries in the table

 What is the best way to implement this in What is the best way to implement this in
parallel?parallel?

 There is no good way to do so!!!There is no good way to do so!!!

 The problem is that concurrent additions must The problem is that concurrent additions must
communicate, and this communication is communicate, and this communication is
inherently expensiveinherently expensive

 http://lwn.net/Articles/423994/http://lwn.net/Articles/423994/

 What should be done instead?What should be done instead?

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 62

Parallel-Unfriendly APIs

 Don't return the count!Don't return the count!
 Without the count, a hash-table implementation can Without the count, a hash-table implementation can

handle two concurrent “add” operations with no handle two concurrent “add” operations with no
conflicts: fully in parallelconflicts: fully in parallel

 With the count, the two concurrent “add” operations With the count, the two concurrent “add” operations
must update the countmust update the count

 Alternatively, return an approximate countAlternatively, return an approximate count

 Either way, sequential APIs may need to be Either way, sequential APIs may need to be
reworked to allow efficient implementationreworked to allow efficient implementation

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 63

Parallelization Can Be A Major Change

 Software resembles building constructionSoftware resembles building construction
 Start with architectsStart with architects
 Then constructionThen construction
 Finally maintenanceFinally maintenance

 If you have a old piece of software, your staff might If you have a old piece of software, your staff might
consist only of software janitorsconsist only of software janitors

 Nothing wrong with janitors: I used to be oneNothing wrong with janitors: I used to be one
 But odds are against janitors remodeling skyscrapers But odds are against janitors remodeling skyscrapers

 Use the right people for the jobUse the right people for the job

 Can current staff do a major change?Can current staff do a major change?
 And yes, you might need time and budget to suit...And yes, you might need time and budget to suit...

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 64

Conclusions

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 65

Summary and Problem Statement

 Writing new parallel code is quite doableWriting new parallel code is quite doable
 Many open-source projects prove this pointMany open-source projects prove this point

 Converting existing sequential code to run in Converting existing sequential code to run in
parallel can be easy...parallel can be easy...

 … … or arbitrarily difficultor arbitrarily difficult

 So don't do things the hard way!So don't do things the hard way!

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 66

Is Parallel Programming Hard, And If So, Why?

Parallel Programming is as Hard or as Easy as We Make It.

It is that hard (or that easy) because we make it that way!!!

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 67

Legal Statement

 This work represents the view of the author and does not This work represents the view of the author and does not
necessarily represent the view of IBM.necessarily represent the view of IBM.

 IBM and IBM (logo) are trademarks or registered IBM and IBM (logo) are trademarks or registered
trademarks of International Business Machines trademarks of International Business Machines
Corporation in the United States and/or other countries.Corporation in the United States and/or other countries.

 Linux is a registered trademark of Linus Torvalds.Linux is a registered trademark of Linus Torvalds.

 Other company, product, and service names may be Other company, product, and service names may be
trademarks or service marks of others.trademarks or service marks of others.

 This material is based upon work supported by the This material is based upon work supported by the
National Science Foundation under Grant No. CNS-National Science Foundation under Grant No. CNS-
0719851.0719851.

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 68

Summarized Summary

UseUse
the right toolthe right tool
for the job!!!for the job!!!

Image copyright © 2004 Melissa McKenney

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 69

To Probe Further...

 Pattern-Oriented Software Architecture, vol 2&4, Schmidt et al.Pattern-Oriented Software Architecture, vol 2&4, Schmidt et al.
 Programming with POSIX Threads, ButenhofProgramming with POSIX Threads, Butenhof
 Intel Threading Building Blocks, ReindersIntel Threading Building Blocks, Reinders
 Patterns for Parallel Programming, Mattson et al.Patterns for Parallel Programming, Mattson et al.
 Concurrent Programming in Java, LeaConcurrent Programming in Java, Lea
 Effective Concurrency, SutterEffective Concurrency, Sutter
 The Art of Multiprocessor Programming, Herlihy and ShavitThe Art of Multiprocessor Programming, Herlihy and Shavit
 Design and Validation of Computer Protocols, HolzmannDesign and Validation of Computer Protocols, Holzmann
 http://www.opengroup.org/onlinepubs/007908799/xsh/pthread.h.htmlhttp://www.opengroup.org/onlinepubs/007908799/xsh/pthread.h.html

 Online pthreads referenceOnline pthreads reference
 ““Is Parallel Programming Hard, And If So, What Can You Do About It?”Is Parallel Programming Hard, And If So, What Can You Do About It?”

 git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.gitgit://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 70

BACKUP

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 71

Parallel Programming Advanced Topic: RCU

 For read-mostly data structures, RCU provides For read-mostly data structures, RCU provides
the benefits of the data-parallel modelthe benefits of the data-parallel model

 But without the need to actually partition or replicate But without the need to actually partition or replicate
the RCU-protected data structuresthe RCU-protected data structures

 Readers access data without needing to exclude Readers access data without needing to exclude
each others or updateseach others or updates

• Extremely lightweight read-side primitivesExtremely lightweight read-side primitives

 And RCU provides additional read-side And RCU provides additional read-side
performance and scalability benefitsperformance and scalability benefits

 With a few limitations and restrictions....With a few limitations and restrictions....

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 72

RCU for Read-Mostly Data Structures

Work
Partitioning

Interacting
With Hardware

Parallel
Access Control

RCU data-parallel approach: first partition resources, then partition work, and
only then worry about parallel access control, and only for updates.

Resource
Partitioning

& Replication

RCU

Almost...

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 73

RCU Usage in the Linux Kernel

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 74

What Is RCU?

 Publication of new dataPublication of new data

 Subscription to existing dataSubscription to existing data

 Wait for pre-existing RCU readersWait for pre-existing RCU readers
 Once all pre-existing RCU readers are done, old Once all pre-existing RCU readers are done, old

versions of the data may be discardedversions of the data may be discarded

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 75

Publication of And Subscription To New Data

A gp

->a=?
->b=?
->c=?

gpgp gp

in
iti

al
iz

at
io

n

km
al

lo
c(

)

rc
u_

as
si

g n
_p

oi
nt

er
()

->a=1
->b=2
->c=3

->a=1
->b=2
->c=3

pp p

Key: Dangerous for updates: all readers can access
Still dangerous for updates: pre-existing readers can access
Safe for updates: inaccessible to all readers

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 76

RCU Removal From Linked List

 Combines waiting for readers and multiple versions:Combines waiting for readers and multiple versions:
 Writer removes element B from the list (list_del_rcu())Writer removes element B from the list (list_del_rcu())

 Writer waits for all readers to finish (synchronize_rcu())Writer waits for all readers to finish (synchronize_rcu())

 Writer can then free B (kfree())Writer can then free B (kfree())

A

B

C

A

B

C

A

B

C

A

B

C

A

C

sy
nc

h
ro

ni
ze

_r
cu

()

lis
t_

de
l_

rc
u(

)

kf
re

e(
)

One Version Two Versions One Version

Readers? Readers? Readers?X

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 77

Waiting for Pre-Existing Readers: QSBR

 Non-preemptive environment (CONFIG_PREEMPT=n)Non-preemptive environment (CONFIG_PREEMPT=n)
 RCU readers are not permitted to blockRCU readers are not permitted to block
 Same rule as for tasks holding spinlocksSame rule as for tasks holding spinlocks

 CPU context switch means all that CPU's readers are doneCPU context switch means all that CPU's readers are done
 Grace periodGrace period ends after all CPUs execute a context switch ends after all CPUs execute a context switch

synchronize_rcu()

CPU 0

CPU 1

CPU 2

co
nt

ex
t

sw
itc

h

Grace Period

RCU re
ad

er

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 78

RCU Replacement Of Item In Linked List

AA

C

km
al

lo
c(

)

A

C

A

B

C

1 Version

co
py

A

C

A

B

C

1 Version

up
da

te

A

C

B

C

1 Version

lis
t_

re
pl

ac
e_

rc
u(

)

A

C

A

B

C

2 Versions

sy
nc

h
ro

ni
ze

_r
cu

()

A

C

A

B

C

1 Version

kf
re

e(
)

A

B

A

C

1 Version

A

B

? B B' B' B' B'

Readers? Readers? Readers? Readers? Readers? Readers?X

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 79

Wait For Pre-Existing RCU Readers

Change Visible
to All Readers

Reader

Change Grace Period

Reader

Reader

Reader

Reader

Reader

Forbidden!

ReaderReader

So what happens if you try to extend an RCU read-side critical section across a grace period?

rcu_read_lock()

rcu_read_unlock()
RCU readers

concurrent with
updates

synchronize_rcu()

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 80

Wait For Pre-Existing RCU Readers

Grace Period Grace Period Change Visible
to All Readers

Reader

Change

Reader

Reader

Reader

Reader

Reader

Grace period
extends as
needed.

ReaderReader

A grace period is not permitted to end until all pre-existing readers have completed.

synchronize_rcu()

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 81

Wait For Pre-Existing RCU Readers

Grace Period Grace Period Change Visible
to All Readers

Reader

Change

Reader

Reader

Reader

Reader

Reader

ReaderReader

But it is OK for a grace period to extend longer than necessary

synchronize_rcu()

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 82

Wait For Pre-Existing RCU Readers

Change Visible
to All Readers

Reader

Change Grace Period

Reader

Reader

Reader

Reader

Reader

ReaderReader

And it is also OK for a grace period to begin later than necessary

synchronize_rcu()

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 83

Change Visible
to All Readers

Wait For Pre-Existing RCU Readers

Change Visible
to All Readers

Reader

Change

Grace Period

Reader

Reader

Reader

Reader

Reader

ReaderReader

Starting a grace period late can allow it to serve multiple updates.

synchronize_rcu()
Change

synchronize_rcu()

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 84

Wait For Pre-Existing RCU Readers

Change Visible
to All Readers

Reader

Change Grace Period

Reader

Reader

Reader

Reader

Reader

ReaderReader

And it is OK for the system to complain (or even abort) if a grace period extends too long.
Too-long of grace periods are likely to result in death by memory exhaustion anyway.

synchronize_rcu()

Reader

!!!

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 85

Wait For Pre-Existing RCU Readers

Change Visible
to All Readers

Reader

Change Grace Period

Reader

Reader

Reader

Reader

Reader

ReaderReader

Returning to the minimum-duration grace period.

synchronize_rcu()

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 86

Wait For Pre-Existing RCU Readers

Grace Period Grace Period Change Visible
to All Readers

Reader

Change

Reader

Reader

Reader

Reader

Reader

ReaderReader

synchronize_rcu()

RT

Real-time scheduling constraints can extend grace periods by preempting RCU readers.
It is sometimes necessary to priority-boost RCU readers.

RT

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 87

RCU-Mediated Mode Change Diagram

recovery_mode==0 recovery_mode==1

Thread 0

Thread 1

Thread 2

synchronize_rcu()

Thread 3

Thread 4

Thread 5

do_recovery()recovery_mode=1

Might have seen
recovery_mode==0

Guaranteed to see
recovery_mode==1

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 88

RCU-Mediated Mode Change Diagram Redux

Recovery mode
visible to all

readers

Reader

recovery_mode = 1 Grace Period

Reader

Reader

Reader

synchronize_rcu()

Reader

Reader

Reader

Reader

Red readers might be unaware of recovery_mode==1, green readers guaranteed to be aware.

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 89

RCU Asynchronous Grace-Period Detection

 The call_rcu() function registers an RCU callback, which The call_rcu() function registers an RCU callback, which
is invoked after a subsequent grace period elapsesis invoked after a subsequent grace period elapses

 API:API:
 call_rcu(struct rcu_head head,call_rcu(struct rcu_head head,

 void (void (*func)(struct rcu_head *rcu));*func)(struct rcu_head *rcu));

 The The rcu_headrcu_head structure: structure:
 struct rcu_head {struct rcu_head {

 struct rcu_head *next;struct rcu_head *next;

 void void ((*func)(struct rcu_head *rcu);*func)(struct rcu_head *rcu);

 };};

 The The rcu_headrcu_head structure is normally embedded within the structure is normally embedded within the
RCU-protected data structureRCU-protected data structure

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 90

RCU Asynchronous Grace-Period Detection

Change Visible
to All Readers

Reader

Change Grace Period

Reader

Reader

Reader

Reader

Reader

ReaderReader

call_rcu(&p->rcu, func);call_rcu(&p->rcu, func); func(&p->rcu);func(&p->rcu);

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 91

RCU Asynchronous Grace-Period Detection

 But suppose But suppose call_rcu()call_rcu() is invoked from a is invoked from a
kernel module, which is later unloaded?kernel module, which is later unloaded?

 When is it safe to actually unload the module?When is it safe to actually unload the module?

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 92

RCU Asynchronous Grace-Period Detection

 But suppose But suppose call_rcu()call_rcu() is invoked from a is invoked from a
kernel module, which is later unloaded?kernel module, which is later unloaded?

 When is it safe to actually unload the module?When is it safe to actually unload the module?
 Only after all outstanding RCU callbacks registered Only after all outstanding RCU callbacks registered

by that module have been invoked!by that module have been invoked!
 Otherwise, later RCU callbacks will try to reference Otherwise, later RCU callbacks will try to reference

that module's code and data, which have now been that module's code and data, which have now been
unloaded!!!unloaded!!!

 Use Use rcu_barrier()rcu_barrier(): waits until all currently : waits until all currently
registered RCU callbacks have been invokedregistered RCU callbacks have been invoked

 After After rcu_barrier()rcu_barrier() returns, safe to unload module returns, safe to unload module

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 93

RCU vs. Reader-Writer Locking Performance

Non-CONFIG_PREEMPT kernel build (QSBR)

How is this
possible?

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 94

RCU vs. Reader-Writer Locking Performance

CONFIG_PREEMPT kernel build

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 95

RCU vs. Reader-Writer Locking Performance

CONFIG_PREEMPT kernel build, 16 CPUs

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 96

RCU and Reader-Writer Lock Response Latency

rwlock reader

rwlock reader

rwlock reader

spin

spin

rwlock writer

spin

spin

rwlock reader

rwlock reader

rwlock reader

rwlock reader

RCU reader

RCU reader

RCU reader

RCU reader

RCU reader

RCU reader

RCU updater

RCU reader

RCU reader

RCU reader

External Event

RCU Latency

rwlock Latency

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 97

Analogy: Reader-Writer Lock vs. RCU

Readers

ReclaimerRemover

ReadersReadersReaders

Lock
ReadRead

AcquireAcquire Writer
WriteWrite

AcquireAcquire

WriterWriter

Lock Acquire Acquire

ReaderReaderReaderReader

Remover IdentifiesRemover Identifies
Removed ObjectsRemoved Objects

Readers Use Memory Barriers
As Needed by CPU

Architectures
(Linux Handles This)

Readers Indicate When Done:Readers Indicate When Done:
Realtime FocusRealtime Focus

(Balance low reader(Balance low reader
overhead w/memoryoverhead w/memory

and preemption)and preemption)

List Update
Free

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 98

RCU Area of Applicability

Update-Mostly, Need Consistent Data
(RCU is Really Unlikely to be the Right Tool For The Job,

But SLAB_DESTROY_BY_RCU Is A Possibility)

Read-Write, Need Consistent Data
(RCU Might Be OK...)

Read-Mostly, Need Consistent Data
(RCU Works OK)

Read-Mostly, Stale &
Inconsistent Data OK
(RCU Works Great!!!)

IBM Linux Technology Center

“Is Parallel Programming Hard?” 2011 Android System Development Forum © 2011 IBM Corporation 99

To Probe Further into RCU...

 http://lwn.net/Articles/262464/ (What is RCU, Fundamentally?)http://lwn.net/Articles/262464/ (What is RCU, Fundamentally?)
 http://lwn.net/Articles/263130/ (What is RCU's Usage?)http://lwn.net/Articles/263130/ (What is RCU's Usage?)
 http://lwn.net/Articles/264090/ (What is RCU's API?)http://lwn.net/Articles/264090/ (What is RCU's API?)
 http://www.rdrop.com/users/paulmck/RCU/lockperf.2004.01.17a.pdfhttp://www.rdrop.com/users/paulmck/RCU/lockperf.2004.01.17a.pdf

 linux.conf.au paper comparing RCU vs. locking performancelinux.conf.au paper comparing RCU vs. locking performance
 http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdfhttp://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdf

 RCU motivation, implementations, usage patterns, performance (micro+sys)RCU motivation, implementations, usage patterns, performance (micro+sys)
 http://www.livejournal.com/users/james_morris/2153.htmlhttp://www.livejournal.com/users/james_morris/2153.html

 System-level performance for SELinux workload: >500x improvementSystem-level performance for SELinux workload: >500x improvement
 http://www.rdrop.com/users/paulmck/RCU/hart_ipdps06.pdfhttp://www.rdrop.com/users/paulmck/RCU/hart_ipdps06.pdf

 Comparison of RCU and NBS (later appeared in JPDC)Comparison of RCU and NBS (later appeared in JPDC)
 http://doi.acm.org/10.1145/1400097.1400099http://doi.acm.org/10.1145/1400097.1400099

 History of RCU in Linux (Linux changed RCU more than vice versa)History of RCU in Linux (Linux changed RCU more than vice versa)
 http://www.rdrop.com/users/paulmck/preprints/http://www.rdrop.com/users/paulmck/preprints/

 User-level implementations of RCU (IEEE TPDS)User-level implementations of RCU (IEEE TPDS)
 http://www.rdrop.com/users/paulmck/RCU/ (More RCU information)http://www.rdrop.com/users/paulmck/RCU/ (More RCU information)

	Evolution of Software: The simplification of software development v10a September 5, 2005
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99

